]> sigrok.org Git - libsigrok.git/blame - hardware/asix-sigma/asix-sigma.c
asix-sigma: Rework download_capture() to support more than 32 lines
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
3bbd9849
UH
26#include <glib.h>
27#include <glib/gstdio.h>
28a35d8a
HE
28#include <ftdi.h>
29#include <string.h>
45c59c8b
BV
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
28a35d8a
HE
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
c50277a6 39#define TRIGGER_TYPE "rf10"
28a35d8a 40
ed300b9f 41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
a873c594 42static struct sr_dev_driver *di = &asix_sigma_driver_info;
6078d2c9 43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
28a35d8a 44
b1648dea
MV
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
2c9c0df8 51static const uint64_t samplerates[] = {
b1648dea
MV
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
62};
63
d261dbbf 64/*
ba7dd8bb 65 * Channel numbers seem to go from 1-16, according to this image:
d261dbbf
UH
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
790c7ccc 69static const char *channel_names[] = {
78693401
UH
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
464d12c7
KS
72};
73
2c9c0df8 74static const int32_t hwcaps[] = {
1953564a
BV
75 SR_CONF_LOGIC_ANALYZER,
76 SR_CONF_SAMPLERATE,
38d32464 77 SR_CONF_TRIGGER_TYPE,
1953564a 78 SR_CONF_CAPTURE_RATIO,
1953564a 79 SR_CONF_LIMIT_MSEC,
6868626b 80 SR_CONF_LIMIT_SAMPLES,
28a35d8a
HE
81};
82
499b17e9
MV
83static const char *sigma_firmware_files[] = {
84 /* 50 MHz, supports 8 bit fractions */
85 FIRMWARE_DIR "/asix-sigma-50.fw",
86 /* 100 MHz */
87 FIRMWARE_DIR "/asix-sigma-100.fw",
88 /* 200 MHz */
89 FIRMWARE_DIR "/asix-sigma-200.fw",
90 /* Synchronous clock from pin */
91 FIRMWARE_DIR "/asix-sigma-50sync.fw",
92 /* Frequency counter */
93 FIRMWARE_DIR "/asix-sigma-phasor.fw",
f6564c8d
HE
94};
95
0e1357e8 96static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
97{
98 int ret;
fefa1800 99
0e1357e8 100 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 101 if (ret < 0) {
47f4f073 102 sr_err("ftdi_read_data failed: %s",
0e1357e8 103 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
104 }
105
106 return ret;
107}
108
0e1357e8 109static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
110{
111 int ret;
fefa1800 112
0e1357e8 113 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 114 if (ret < 0) {
47f4f073 115 sr_err("ftdi_write_data failed: %s",
0e1357e8 116 ftdi_get_error_string(&devc->ftdic));
fefa1800 117 } else if ((size_t) ret != size) {
47f4f073 118 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
119 }
120
121 return ret;
122}
123
99965709 124static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 125 struct dev_context *devc)
28a35d8a
HE
126{
127 size_t i;
128 uint8_t buf[len + 2];
129 int idx = 0;
130
131 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
132 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
133
fefa1800 134 for (i = 0; i < len; ++i) {
28a35d8a
HE
135 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
136 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
137 }
138
0e1357e8 139 return sigma_write(buf, idx, devc);
28a35d8a
HE
140}
141
0e1357e8 142static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 143{
0e1357e8 144 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
145}
146
99965709 147static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 148 struct dev_context *devc)
28a35d8a
HE
149{
150 uint8_t buf[3];
fefa1800 151
28a35d8a
HE
152 buf[0] = REG_ADDR_LOW | (reg & 0xf);
153 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
154 buf[2] = REG_READ_ADDR;
155
0e1357e8 156 sigma_write(buf, sizeof(buf), devc);
28a35d8a 157
0e1357e8 158 return sigma_read(data, len, devc);
28a35d8a
HE
159}
160
0e1357e8 161static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
28a35d8a
HE
162{
163 uint8_t value;
fefa1800 164
0e1357e8 165 if (1 != sigma_read_register(reg, &value, 1, devc)) {
47f4f073 166 sr_err("sigma_get_register: 1 byte expected");
28a35d8a
HE
167 return 0;
168 }
169
170 return value;
171}
172
99965709 173static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 174 struct dev_context *devc)
28a35d8a
HE
175{
176 uint8_t buf[] = {
177 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
178
179 REG_READ_ADDR | NEXT_REG,
180 REG_READ_ADDR | NEXT_REG,
181 REG_READ_ADDR | NEXT_REG,
182 REG_READ_ADDR | NEXT_REG,
183 REG_READ_ADDR | NEXT_REG,
184 REG_READ_ADDR | NEXT_REG,
185 };
28a35d8a
HE
186 uint8_t result[6];
187
0e1357e8 188 sigma_write(buf, sizeof(buf), devc);
28a35d8a 189
0e1357e8 190 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
191
192 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
193 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
194
57bbf56b
HE
195 /* Not really sure why this must be done, but according to spec. */
196 if ((--*stoppos & 0x1ff) == 0x1ff)
197 stoppos -= 64;
198
199 if ((*--triggerpos & 0x1ff) == 0x1ff)
200 triggerpos -= 64;
201
28a35d8a
HE
202 return 1;
203}
204
99965709 205static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 206 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
207{
208 size_t i;
209 uint8_t buf[4096];
210 int idx = 0;
211
fefa1800 212 /* Send the startchunk. Index start with 1. */
28a35d8a
HE
213 buf[0] = startchunk >> 8;
214 buf[1] = startchunk & 0xff;
0e1357e8 215 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
28a35d8a 216
fefa1800 217 /* Read the DRAM. */
28a35d8a
HE
218 buf[idx++] = REG_DRAM_BLOCK;
219 buf[idx++] = REG_DRAM_WAIT_ACK;
220
221 for (i = 0; i < numchunks; ++i) {
fefa1800
UH
222 /* Alternate bit to copy from DRAM to cache. */
223 if (i != (numchunks - 1))
224 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
225
226 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
227
fefa1800 228 if (i != (numchunks - 1))
28a35d8a
HE
229 buf[idx++] = REG_DRAM_WAIT_ACK;
230 }
231
0e1357e8 232 sigma_write(buf, idx, devc);
28a35d8a 233
0e1357e8 234 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
235}
236
4ae1f451 237/* Upload trigger look-up tables to Sigma. */
0e1357e8 238static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
239{
240 int i;
241 uint8_t tmp[2];
242 uint16_t bit;
243
244 /* Transpose the table and send to Sigma. */
245 for (i = 0; i < 16; ++i) {
246 bit = 1 << i;
247
248 tmp[0] = tmp[1] = 0;
249
250 if (lut->m2d[0] & bit)
251 tmp[0] |= 0x01;
252 if (lut->m2d[1] & bit)
253 tmp[0] |= 0x02;
254 if (lut->m2d[2] & bit)
255 tmp[0] |= 0x04;
256 if (lut->m2d[3] & bit)
257 tmp[0] |= 0x08;
258
259 if (lut->m3 & bit)
260 tmp[0] |= 0x10;
261 if (lut->m3s & bit)
262 tmp[0] |= 0x20;
263 if (lut->m4 & bit)
264 tmp[0] |= 0x40;
265
266 if (lut->m0d[0] & bit)
267 tmp[1] |= 0x01;
268 if (lut->m0d[1] & bit)
269 tmp[1] |= 0x02;
270 if (lut->m0d[2] & bit)
271 tmp[1] |= 0x04;
272 if (lut->m0d[3] & bit)
273 tmp[1] |= 0x08;
274
275 if (lut->m1d[0] & bit)
276 tmp[1] |= 0x10;
277 if (lut->m1d[1] & bit)
278 tmp[1] |= 0x20;
279 if (lut->m1d[2] & bit)
280 tmp[1] |= 0x40;
281 if (lut->m1d[3] & bit)
282 tmp[1] |= 0x80;
283
99965709 284 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
285 devc);
286 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
287 }
288
289 /* Send the parameters */
290 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 291 sizeof(lut->params), devc);
ee492173 292
e46b8fb1 293 return SR_OK;
ee492173
HE
294}
295
3678cf73 296static void clear_helper(void *priv)
0448d110 297{
0e1357e8 298 struct dev_context *devc;
ce4d26dd 299
3678cf73 300 devc = priv;
0e1357e8 301
3678cf73
UH
302 ftdi_deinit(&devc->ftdic);
303}
0448d110 304
3b412e3a 305static int dev_clear(void)
3678cf73
UH
306{
307 return std_dev_clear(di, clear_helper);
0448d110
BV
308}
309
6078d2c9 310static int init(struct sr_context *sr_ctx)
61136ea6 311{
f6beaac5 312 return std_init(sr_ctx, di, LOG_PREFIX);
61136ea6
BV
313}
314
6078d2c9 315static GSList *scan(GSList *options)
28a35d8a 316{
d68e2d1a 317 struct sr_dev_inst *sdi;
ba7dd8bb 318 struct sr_channel *ch;
0e1357e8
BV
319 struct drv_context *drvc;
320 struct dev_context *devc;
0448d110 321 GSList *devices;
e3fff420
HE
322 struct ftdi_device_list *devlist;
323 char serial_txt[10];
324 uint32_t serial;
790c7ccc
MV
325 int ret;
326 unsigned int i;
28a35d8a 327
0448d110 328 (void)options;
64d33dc2 329
a873c594 330 drvc = di->priv;
4b97c74e 331
0448d110 332 devices = NULL;
4b97c74e 333
0e1357e8 334 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
47f4f073 335 sr_err("%s: devc malloc failed", __func__);
0448d110 336 return NULL;
b53738ba 337 }
99965709 338
0e1357e8 339 ftdi_init(&devc->ftdic);
28a35d8a 340
fefa1800 341 /* Look for SIGMAs. */
e3fff420 342
0e1357e8 343 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
eec944c5
BV
344 USB_VENDOR, USB_PRODUCT)) <= 0) {
345 if (ret < 0)
346 sr_err("ftdi_usb_find_all(): %d", ret);
99965709 347 goto free;
eec944c5 348 }
99965709 349
e3fff420 350 /* Make sure it's a version 1 or 2 SIGMA. */
0e1357e8 351 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
6352d030 352 serial_txt, sizeof(serial_txt));
e3fff420
HE
353 sscanf(serial_txt, "%x", &serial);
354
6352d030 355 if (serial < 0xa6010000 || serial > 0xa602ffff) {
47f4f073
UH
356 sr_err("Only SIGMA and SIGMA2 are supported "
357 "in this version of libsigrok.");
e3fff420
HE
358 goto free;
359 }
360
361 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
362
0e1357e8
BV
363 devc->cur_samplerate = 0;
364 devc->period_ps = 0;
365 devc->limit_msec = 0;
366 devc->cur_firmware = -1;
ba7dd8bb 367 devc->num_channels = 0;
0e1357e8
BV
368 devc->samples_per_event = 0;
369 devc->capture_ratio = 50;
370 devc->use_triggers = 0;
28a35d8a 371
fefa1800 372 /* Register SIGMA device. */
d68e2d1a 373 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
55f98c65 374 USB_MODEL_NAME, NULL))) {
47f4f073 375 sr_err("%s: sdi was NULL", __func__);
99965709 376 goto free;
d68e2d1a 377 }
a873c594 378 sdi->driver = di;
87ca93c5 379
790c7ccc
MV
380 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
381 ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
382 channel_names[i]);
383 if (!ch)
87ca93c5 384 return NULL;
ba7dd8bb 385 sdi->channels = g_slist_append(sdi->channels, ch);
87ca93c5
BV
386 }
387
0448d110 388 devices = g_slist_append(devices, sdi);
0e1357e8
BV
389 drvc->instances = g_slist_append(drvc->instances, sdi);
390 sdi->priv = devc;
28a35d8a 391
fefa1800 392 /* We will open the device again when we need it. */
e3fff420 393 ftdi_list_free(&devlist);
28a35d8a 394
0448d110 395 return devices;
ea9cfed7 396
99965709 397free:
0e1357e8
BV
398 ftdi_deinit(&devc->ftdic);
399 g_free(devc);
0448d110 400 return NULL;
28a35d8a
HE
401}
402
6078d2c9 403static GSList *dev_list(void)
811deee4 404{
0e94d524 405 return ((struct drv_context *)(di->priv))->instances;
811deee4
BV
406}
407
d5fa188a
MV
408/*
409 * Configure the FPGA for bitbang mode.
410 * This sequence is documented in section 2. of the ASIX Sigma programming
411 * manual. This sequence is necessary to configure the FPGA in the Sigma
412 * into Bitbang mode, in which it can be programmed with the firmware.
413 */
414static int sigma_fpga_init_bitbang(struct dev_context *devc)
415{
416 uint8_t suicide[] = {
417 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
418 };
419 uint8_t init_array[] = {
420 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
421 0x01, 0x01,
422 };
423 int i, ret, timeout = 10000;
424 uint8_t data;
425
426 /* Section 2. part 1), do the FPGA suicide. */
427 sigma_write(suicide, sizeof(suicide), devc);
428 sigma_write(suicide, sizeof(suicide), devc);
429 sigma_write(suicide, sizeof(suicide), devc);
430 sigma_write(suicide, sizeof(suicide), devc);
431
432 /* Section 2. part 2), do pulse on D1. */
433 sigma_write(init_array, sizeof(init_array), devc);
434 ftdi_usb_purge_buffers(&devc->ftdic);
435
436 /* Wait until the FPGA asserts D6/INIT_B. */
437 for (i = 0; i < timeout; i++) {
438 ret = sigma_read(&data, 1, devc);
439 if (ret < 0)
440 return ret;
441 /* Test if pin D6 got asserted. */
442 if (data & (1 << 5))
443 return 0;
444 /* The D6 was not asserted yet, wait a bit. */
445 usleep(10000);
446 }
447
448 return SR_ERR_TIMEOUT;
449}
450
64fe661b
MV
451/*
452 * Configure the FPGA for logic-analyzer mode.
453 */
454static int sigma_fpga_init_la(struct dev_context *devc)
455{
456 /* Initialize the logic analyzer mode. */
457 uint8_t logic_mode_start[] = {
011f1091
MV
458 REG_ADDR_LOW | (READ_ID & 0xf),
459 REG_ADDR_HIGH | (READ_ID >> 8),
460 REG_READ_ADDR, /* Read ID register. */
461
462 REG_ADDR_LOW | (WRITE_TEST & 0xf),
463 REG_DATA_LOW | 0x5,
464 REG_DATA_HIGH_WRITE | 0x5,
465 REG_READ_ADDR, /* Read scratch register. */
466
467 REG_DATA_LOW | 0xa,
468 REG_DATA_HIGH_WRITE | 0xa,
469 REG_READ_ADDR, /* Read scratch register. */
470
471 REG_ADDR_LOW | (WRITE_MODE & 0xf),
472 REG_DATA_LOW | 0x0,
473 REG_DATA_HIGH_WRITE | 0x8,
64fe661b
MV
474 };
475
476 uint8_t result[3];
477 int ret;
478
479 /* Initialize the logic analyzer mode. */
480 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
481
011f1091 482 /* Expect a 3 byte reply since we issued three READ requests. */
64fe661b
MV
483 ret = sigma_read(result, 3, devc);
484 if (ret != 3)
485 goto err;
486
487 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
488 goto err;
489
490 return SR_OK;
491err:
492 sr_err("Configuration failed. Invalid reply received.");
493 return SR_ERR;
494}
495
a80226bb
MV
496/*
497 * Read the firmware from a file and transform it into a series of bitbang
498 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
499 * by the caller of this function.
500 */
501static int sigma_fw_2_bitbang(const char *filename,
502 uint8_t **bb_cmd, gsize *bb_cmd_size)
503{
504 GMappedFile *file;
505 GError *error;
506 gsize i, file_size, bb_size;
507 gchar *firmware;
508 uint8_t *bb_stream, *bbs;
509 uint32_t imm;
510 int bit, v;
511 int ret = SR_OK;
512
513 /*
514 * Map the file and make the mapped buffer writable.
515 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
516 * will be modified. It will not be modified until someone uses
517 * g_file_set_contents() on it.
518 */
519 error = NULL;
520 file = g_mapped_file_new(filename, TRUE, &error);
521 g_assert_no_error(error);
522
523 file_size = g_mapped_file_get_length(file);
524 firmware = g_mapped_file_get_contents(file);
525 g_assert(firmware);
526
527 /* Weird magic transformation below, I have no idea what it does. */
528 imm = 0x3f6df2ab;
529 for (i = 0; i < file_size; i++) {
530 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
531 firmware[i] ^= imm & 0xff;
532 }
533
534 /*
535 * Now that the firmware is "transformed", we will transcribe the
536 * firmware blob into a sequence of toggles of the Dx wires. This
537 * sequence will be fed directly into the Sigma, which must be in
538 * the FPGA bitbang programming mode.
539 */
540
541 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
542 bb_size = file_size * 8 * 2;
543 bb_stream = (uint8_t *)g_try_malloc(bb_size);
544 if (!bb_stream) {
545 sr_err("%s: Failed to allocate bitbang stream", __func__);
546 ret = SR_ERR_MALLOC;
547 goto exit;
548 }
549
550 bbs = bb_stream;
551 for (i = 0; i < file_size; i++) {
552 for (bit = 7; bit >= 0; bit--) {
553 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
554 *bbs++ = v | 0x01;
555 *bbs++ = v;
556 }
557 }
558
559 /* The transformation completed successfully, return the result. */
560 *bb_cmd = bb_stream;
561 *bb_cmd_size = bb_size;
562
563exit:
564 g_mapped_file_unref(file);
565 return ret;
566}
567
0e1357e8 568static int upload_firmware(int firmware_idx, struct dev_context *devc)
28a35d8a
HE
569{
570 int ret;
571 unsigned char *buf;
572 unsigned char pins;
573 size_t buf_size;
499b17e9 574 const char *firmware = sigma_firmware_files[firmware_idx];
8bbf7627 575 struct ftdi_context *ftdic = &devc->ftdic;
28a35d8a 576
fefa1800 577 /* Make sure it's an ASIX SIGMA. */
8bbf7627
MV
578 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
579 USB_DESCRIPTION, NULL);
580 if (ret < 0) {
47f4f073 581 sr_err("ftdi_usb_open failed: %s",
8bbf7627 582 ftdi_get_error_string(ftdic));
28a35d8a
HE
583 return 0;
584 }
585
8bbf7627
MV
586 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
587 if (ret < 0) {
47f4f073 588 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 589 ftdi_get_error_string(ftdic));
28a35d8a
HE
590 return 0;
591 }
592
fefa1800 593 /* Four times the speed of sigmalogan - Works well. */
8bbf7627
MV
594 ret = ftdi_set_baudrate(ftdic, 750000);
595 if (ret < 0) {
47f4f073 596 sr_err("ftdi_set_baudrate failed: %s",
8bbf7627 597 ftdi_get_error_string(ftdic));
28a35d8a
HE
598 return 0;
599 }
600
d5fa188a
MV
601 /* Initialize the FPGA for firmware upload. */
602 ret = sigma_fpga_init_bitbang(devc);
603 if (ret)
604 return ret;
28a35d8a 605
9ddb2a12 606 /* Prepare firmware. */
d485d443 607 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
8bbf7627 608 if (ret != SR_OK) {
47f4f073 609 sr_err("An error occured while reading the firmware: %s",
499b17e9 610 firmware);
b53738ba 611 return ret;
28a35d8a
HE
612 }
613
fefa1800 614 /* Upload firmare. */
499b17e9 615 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 616 sigma_write(buf, buf_size, devc);
28a35d8a
HE
617
618 g_free(buf);
619
8bbf7627
MV
620 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
621 if (ret < 0) {
47f4f073 622 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 623 ftdi_get_error_string(ftdic));
e46b8fb1 624 return SR_ERR;
28a35d8a
HE
625 }
626
8bbf7627 627 ftdi_usb_purge_buffers(ftdic);
28a35d8a 628
fefa1800 629 /* Discard garbage. */
29b66a2e 630 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
631 ;
632
64fe661b
MV
633 /* Initialize the FPGA for logic-analyzer mode. */
634 ret = sigma_fpga_init_la(devc);
635 if (ret != SR_OK)
636 return ret;
28a35d8a 637
0e1357e8 638 devc->cur_firmware = firmware_idx;
f6564c8d 639
47f4f073 640 sr_info("Firmware uploaded.");
e3fff420 641
e46b8fb1 642 return SR_OK;
f6564c8d
HE
643}
644
6078d2c9 645static int dev_open(struct sr_dev_inst *sdi)
f6564c8d 646{
0e1357e8 647 struct dev_context *devc;
f6564c8d
HE
648 int ret;
649
0e1357e8 650 devc = sdi->priv;
99965709 651
9ddb2a12 652 /* Make sure it's an ASIX SIGMA. */
0e1357e8 653 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
f6564c8d
HE
654 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
655
47f4f073 656 sr_err("ftdi_usb_open failed: %s",
0e1357e8 657 ftdi_get_error_string(&devc->ftdic));
f6564c8d
HE
658
659 return 0;
660 }
28a35d8a 661
5a2326a7 662 sdi->status = SR_ST_ACTIVE;
28a35d8a 663
e46b8fb1 664 return SR_OK;
f6564c8d
HE
665}
666
6f4b1868 667static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 668{
2c9c0df8
BV
669 struct dev_context *devc;
670 unsigned int i;
671 int ret;
f6564c8d 672
2c9c0df8 673 devc = sdi->priv;
f4abaa9f
UH
674 ret = SR_OK;
675
2c9c0df8
BV
676 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
677 if (samplerates[i] == samplerate)
f6564c8d
HE
678 break;
679 }
2c9c0df8 680 if (samplerates[i] == 0)
e46b8fb1 681 return SR_ERR_SAMPLERATE;
f6564c8d 682
59df0c77 683 if (samplerate <= SR_MHZ(50)) {
0e1357e8 684 ret = upload_firmware(0, devc);
ba7dd8bb 685 devc->num_channels = 16;
e8397563 686 }
59df0c77 687 if (samplerate == SR_MHZ(100)) {
0e1357e8 688 ret = upload_firmware(1, devc);
ba7dd8bb 689 devc->num_channels = 8;
f78898e9 690 }
59df0c77 691 else if (samplerate == SR_MHZ(200)) {
0e1357e8 692 ret = upload_firmware(2, devc);
ba7dd8bb 693 devc->num_channels = 4;
f78898e9 694 }
f6564c8d 695
0e1357e8 696 devc->cur_samplerate = samplerate;
5edc02c7 697 devc->period_ps = 1000000000000ULL / samplerate;
ba7dd8bb 698 devc->samples_per_event = 16 / devc->num_channels;
0e1357e8 699 devc->state.state = SIGMA_IDLE;
f6564c8d 700
e8397563 701 return ret;
28a35d8a
HE
702}
703
c53d793f
HE
704/*
705 * In 100 and 200 MHz mode, only a single pin rising/falling can be
706 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 707 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
708 *
709 * The Sigma supports complex triggers using boolean expressions, but this
710 * has not been implemented yet.
711 */
ba7dd8bb 712static int configure_channels(const struct sr_dev_inst *sdi)
57bbf56b 713{
0e1357e8 714 struct dev_context *devc = sdi->priv;
ba7dd8bb 715 const struct sr_channel *ch;
1b79df2f 716 const GSList *l;
57bbf56b 717 int trigger_set = 0;
ba7dd8bb 718 int channelbit;
57bbf56b 719
0e1357e8 720 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
eec5275e 721
ba7dd8bb
UH
722 for (l = sdi->channels; l; l = l->next) {
723 ch = (struct sr_channel *)l->data;
724 channelbit = 1 << (ch->index);
57bbf56b 725
ba7dd8bb 726 if (!ch->enabled || !ch->trigger)
57bbf56b
HE
727 continue;
728
0e1357e8 729 if (devc->cur_samplerate >= SR_MHZ(100)) {
c53d793f 730 /* Fast trigger support. */
ee492173 731 if (trigger_set) {
47f4f073
UH
732 sr_err("Only a single pin trigger in 100 and "
733 "200MHz mode is supported.");
e46b8fb1 734 return SR_ERR;
ee492173 735 }
ba7dd8bb
UH
736 if (ch->trigger[0] == 'f')
737 devc->trigger.fallingmask |= channelbit;
738 else if (ch->trigger[0] == 'r')
739 devc->trigger.risingmask |= channelbit;
ee492173 740 else {
47f4f073
UH
741 sr_err("Only rising/falling trigger in 100 "
742 "and 200MHz mode is supported.");
e46b8fb1 743 return SR_ERR;
ee492173 744 }
57bbf56b 745
c53d793f 746 ++trigger_set;
ee492173 747 } else {
c53d793f 748 /* Simple trigger support (event). */
ba7dd8bb
UH
749 if (ch->trigger[0] == '1') {
750 devc->trigger.simplevalue |= channelbit;
751 devc->trigger.simplemask |= channelbit;
c53d793f 752 }
ba7dd8bb
UH
753 else if (ch->trigger[0] == '0') {
754 devc->trigger.simplevalue &= ~channelbit;
755 devc->trigger.simplemask |= channelbit;
c53d793f 756 }
ba7dd8bb
UH
757 else if (ch->trigger[0] == 'f') {
758 devc->trigger.fallingmask |= channelbit;
c53d793f
HE
759 ++trigger_set;
760 }
ba7dd8bb
UH
761 else if (ch->trigger[0] == 'r') {
762 devc->trigger.risingmask |= channelbit;
c53d793f
HE
763 ++trigger_set;
764 }
ee492173 765
ea9cfed7
UH
766 /*
767 * Actually, Sigma supports 2 rising/falling triggers,
768 * but they are ORed and the current trigger syntax
769 * does not permit ORed triggers.
770 */
98b8cbc1 771 if (trigger_set > 1) {
47f4f073
UH
772 sr_err("Only 1 rising/falling trigger "
773 "is supported.");
e46b8fb1 774 return SR_ERR;
ee492173 775 }
ee492173 776 }
5b5ea7c6
HE
777
778 if (trigger_set)
0e1357e8 779 devc->use_triggers = 1;
57bbf56b
HE
780 }
781
e46b8fb1 782 return SR_OK;
57bbf56b
HE
783}
784
6078d2c9 785static int dev_close(struct sr_dev_inst *sdi)
28a35d8a 786{
0e1357e8 787 struct dev_context *devc;
28a35d8a 788
961009b0 789 devc = sdi->priv;
697785d1
UH
790
791 /* TODO */
792 if (sdi->status == SR_ST_ACTIVE)
0e1357e8 793 ftdi_usb_close(&devc->ftdic);
697785d1
UH
794
795 sdi->status = SR_ST_INACTIVE;
796
797 return SR_OK;
28a35d8a
HE
798}
799
6078d2c9 800static int cleanup(void)
28a35d8a 801{
3b412e3a 802 return dev_clear();
28a35d8a
HE
803}
804
8f996b89 805static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 806 const struct sr_channel_group *cg)
28a35d8a 807{
0e1357e8 808 struct dev_context *devc;
99965709 809
53b4680f 810 (void)cg;
8f996b89 811
035a1078 812 switch (id) {
123e1313 813 case SR_CONF_SAMPLERATE:
41479605 814 if (sdi) {
0e1357e8 815 devc = sdi->priv;
2c9c0df8 816 *data = g_variant_new_uint64(devc->cur_samplerate);
41479605
BV
817 } else
818 return SR_ERR;
28a35d8a 819 break;
d7bbecfd 820 default:
bd6fbf62 821 return SR_ERR_NA;
28a35d8a
HE
822 }
823
41479605 824 return SR_OK;
28a35d8a
HE
825}
826
8f996b89 827static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
53b4680f 828 const struct sr_channel_group *cg)
28a35d8a 829{
0e1357e8 830 struct dev_context *devc;
6868626b 831 uint64_t num_samples;
28a35d8a 832 int ret;
f6564c8d 833
53b4680f 834 (void)cg;
8f996b89 835
e73ffd42
BV
836 if (sdi->status != SR_ST_ACTIVE)
837 return SR_ERR_DEV_CLOSED;
838
0e1357e8 839 devc = sdi->priv;
99965709 840
6868626b
BV
841 switch (id) {
842 case SR_CONF_SAMPLERATE:
2c9c0df8 843 ret = set_samplerate(sdi, g_variant_get_uint64(data));
6868626b
BV
844 break;
845 case SR_CONF_LIMIT_MSEC:
2c9c0df8 846 devc->limit_msec = g_variant_get_uint64(data);
0e1357e8 847 if (devc->limit_msec > 0)
e46b8fb1 848 ret = SR_OK;
94ba4bd6 849 else
e46b8fb1 850 ret = SR_ERR;
6868626b
BV
851 break;
852 case SR_CONF_LIMIT_SAMPLES:
853 num_samples = g_variant_get_uint64(data);
854 devc->limit_msec = num_samples * 1000 / devc->cur_samplerate;
855 break;
856 case SR_CONF_CAPTURE_RATIO:
2c9c0df8 857 devc->capture_ratio = g_variant_get_uint64(data);
0e1357e8 858 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
e46b8fb1 859 ret = SR_ERR;
94ba4bd6 860 else
e46b8fb1 861 ret = SR_OK;
6868626b
BV
862 break;
863 default:
bd6fbf62 864 ret = SR_ERR_NA;
28a35d8a
HE
865 }
866
867 return ret;
868}
869
8f996b89 870static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 871 const struct sr_channel_group *cg)
a1c743fc 872{
2c9c0df8
BV
873 GVariant *gvar;
874 GVariantBuilder gvb;
a1c743fc
BV
875
876 (void)sdi;
53b4680f 877 (void)cg;
a1c743fc
BV
878
879 switch (key) {
9a6517d1 880 case SR_CONF_DEVICE_OPTIONS:
2c9c0df8
BV
881 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
882 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
9a6517d1 883 break;
a1c743fc 884 case SR_CONF_SAMPLERATE:
2c9c0df8
BV
885 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
886 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
887 ARRAY_SIZE(samplerates), sizeof(uint64_t));
888 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
889 *data = g_variant_builder_end(&gvb);
a1c743fc 890 break;
c50277a6 891 case SR_CONF_TRIGGER_TYPE:
2c9c0df8 892 *data = g_variant_new_string(TRIGGER_TYPE);
c50277a6 893 break;
a1c743fc 894 default:
bd6fbf62 895 return SR_ERR_NA;
a1c743fc
BV
896 }
897
898 return SR_OK;
899}
900
36b1c8e6
HE
901/* Software trigger to determine exact trigger position. */
902static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
903 struct sigma_trigger *t)
904{
905 int i;
906
907 for (i = 0; i < 8; ++i) {
908 if (i > 0)
909 last_sample = samples[i-1];
910
911 /* Simple triggers. */
912 if ((samples[i] & t->simplemask) != t->simplevalue)
913 continue;
914
915 /* Rising edge. */
916 if ((last_sample & t->risingmask) != 0 || (samples[i] &
917 t->risingmask) != t->risingmask)
918 continue;
919
920 /* Falling edge. */
bdfc7a89
HE
921 if ((last_sample & t->fallingmask) != t->fallingmask ||
922 (samples[i] & t->fallingmask) != 0)
36b1c8e6
HE
923 continue;
924
925 break;
926 }
927
928 /* If we did not match, return original trigger pos. */
929 return i & 0x7;
930}
931
28a35d8a 932/*
fefa1800
UH
933 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
934 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
935 *
936 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
937 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
938 * For 50 MHz and below, events contain one sample for each channel,
939 * spread 20 ns apart.
28a35d8a
HE
940 */
941static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
88c51afe 942 uint16_t *lastsample, int triggerpos,
3cd3a20b 943 uint16_t limit_chunk, void *cb_data)
28a35d8a 944{
3cd3a20b 945 struct sr_dev_inst *sdi = cb_data;
0e1357e8 946 struct dev_context *devc = sdi->priv;
fefa1800 947 uint16_t tsdiff, ts;
0e1357e8 948 uint16_t samples[65536 * devc->samples_per_event];
b9c735a2 949 struct sr_datafeed_packet packet;
9c939c51 950 struct sr_datafeed_logic logic;
f78898e9 951 int i, j, k, l, numpad, tosend;
fefa1800 952 size_t n = 0, sent = 0;
0e1357e8 953 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
fefa1800 954 uint16_t *event;
f78898e9 955 uint16_t cur_sample;
57bbf56b 956 int triggerts = -1;
ee492173 957
4ae1f451 958 /* Check if trigger is in this chunk. */
ee492173 959 if (triggerpos != -1) {
0e1357e8 960 if (devc->cur_samplerate <= SR_MHZ(50))
36b1c8e6 961 triggerpos -= EVENTS_PER_CLUSTER - 1;
ee492173
HE
962
963 if (triggerpos < 0)
964 triggerpos = 0;
57bbf56b 965
ee492173
HE
966 /* Find in which cluster the trigger occured. */
967 triggerts = triggerpos / 7;
968 }
28a35d8a 969
eec5275e 970 /* For each ts. */
28a35d8a 971 for (i = 0; i < 64; ++i) {
fefa1800 972 ts = *(uint16_t *) &buf[i * 16];
28a35d8a
HE
973 tsdiff = ts - *lastts;
974 *lastts = ts;
975
88c51afe
HE
976 /* Decode partial chunk. */
977 if (limit_chunk && ts > limit_chunk)
e46b8fb1 978 return SR_OK;
88c51afe 979
fefa1800 980 /* Pad last sample up to current point. */
0e1357e8 981 numpad = tsdiff * devc->samples_per_event - clustersize;
28a35d8a 982 if (numpad > 0) {
f78898e9
HE
983 for (j = 0; j < numpad; ++j)
984 samples[j] = *lastsample;
985
986 n = numpad;
28a35d8a
HE
987 }
988
57bbf56b
HE
989 /* Send samples between previous and this timestamp to sigrok. */
990 sent = 0;
991 while (sent < n) {
992 tosend = MIN(2048, n - sent);
993
5a2326a7 994 packet.type = SR_DF_LOGIC;
9c939c51
BV
995 packet.payload = &logic;
996 logic.length = tosend * sizeof(uint16_t);
997 logic.unitsize = 2;
998 logic.data = samples + sent;
3e9b7f9c 999 sr_session_send(devc->cb_data, &packet);
28a35d8a 1000
57bbf56b
HE
1001 sent += tosend;
1002 }
1003 n = 0;
1004
1005 event = (uint16_t *) &buf[i * 16 + 2];
f78898e9
HE
1006 cur_sample = 0;
1007
1008 /* For each event in cluster. */
28a35d8a 1009 for (j = 0; j < 7; ++j) {
f78898e9
HE
1010
1011 /* For each sample in event. */
0e1357e8 1012 for (k = 0; k < devc->samples_per_event; ++k) {
f78898e9
HE
1013 cur_sample = 0;
1014
ba7dd8bb
UH
1015 /* For each channel. */
1016 for (l = 0; l < devc->num_channels; ++l)
edca2c5c 1017 cur_sample |= (!!(event[j] & (1 << (l *
0e1357e8 1018 devc->samples_per_event + k)))) << l;
f78898e9
HE
1019
1020 samples[n++] = cur_sample;
28a35d8a
HE
1021 }
1022 }
1023
eec5275e 1024 /* Send data up to trigger point (if triggered). */
fefa1800 1025 sent = 0;
57bbf56b
HE
1026 if (i == triggerts) {
1027 /*
36b1c8e6
HE
1028 * Trigger is not always accurate to sample because of
1029 * pipeline delay. However, it always triggers before
1030 * the actual event. We therefore look at the next
1031 * samples to pinpoint the exact position of the trigger.
57bbf56b 1032 */
bdfc7a89 1033 tosend = get_trigger_offset(samples, *lastsample,
0e1357e8 1034 &devc->trigger);
57bbf56b
HE
1035
1036 if (tosend > 0) {
5a2326a7 1037 packet.type = SR_DF_LOGIC;
9c939c51
BV
1038 packet.payload = &logic;
1039 logic.length = tosend * sizeof(uint16_t);
1040 logic.unitsize = 2;
1041 logic.data = samples;
3e9b7f9c 1042 sr_session_send(devc->cb_data, &packet);
57bbf56b
HE
1043
1044 sent += tosend;
1045 }
28a35d8a 1046
5b5ea7c6 1047 /* Only send trigger if explicitly enabled. */
0e1357e8 1048 if (devc->use_triggers) {
5a2326a7 1049 packet.type = SR_DF_TRIGGER;
3e9b7f9c 1050 sr_session_send(devc->cb_data, &packet);
5b5ea7c6 1051 }
28a35d8a 1052 }
57bbf56b 1053
eec5275e 1054 /* Send rest of the chunk to sigrok. */
57bbf56b
HE
1055 tosend = n - sent;
1056
abda62ce 1057 if (tosend > 0) {
5a2326a7 1058 packet.type = SR_DF_LOGIC;
9c939c51
BV
1059 packet.payload = &logic;
1060 logic.length = tosend * sizeof(uint16_t);
1061 logic.unitsize = 2;
1062 logic.data = samples + sent;
3e9b7f9c 1063 sr_session_send(devc->cb_data, &packet);
abda62ce 1064 }
ee492173
HE
1065
1066 *lastsample = samples[n - 1];
28a35d8a
HE
1067 }
1068
e46b8fb1 1069 return SR_OK;
28a35d8a
HE
1070}
1071
6057d9fa 1072static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1073{
6057d9fa 1074 struct dev_context *devc = sdi->priv;
28a35d8a 1075 const int chunks_per_read = 32;
fd830beb
MV
1076 struct sigma_dram_line *dram_line;
1077 unsigned char *buf;
c6648b66 1078 int bufsz;
462fe786 1079 uint32_t stoppos, triggerpos;
6057d9fa
MV
1080 struct sr_datafeed_packet packet;
1081 uint8_t modestatus;
1082
c6648b66
MV
1083 uint32_t i;
1084 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
1085 uint32_t dl_trailing_events;
1086 uint32_t trg_line;
1087
fd830beb
MV
1088 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1089 if (!dram_line)
1090 return FALSE;
1091
1092 buf = (unsigned char *)dram_line;
1093
6868626b
BV
1094 sr_info("Downloading sample data.");
1095
6057d9fa
MV
1096 /* Stop acquisition. */
1097 sigma_set_register(WRITE_MODE, 0x11, devc);
1098
1099 /* Set SDRAM Read Enable. */
1100 sigma_set_register(WRITE_MODE, 0x02, devc);
1101
1102 /* Get the current position. */
462fe786 1103 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1104
1105 /* Check if trigger has fired. */
1106 modestatus = sigma_get_register(READ_MODE, devc);
1107 if (modestatus & 0x20)
c6648b66 1108 trg_line = triggerpos >> 9;
6057d9fa 1109 else
c6648b66 1110 trg_line = ~0;
6057d9fa 1111
c6648b66
MV
1112 /*
1113 * Determine how many 1024b "DRAM lines" do we need to read from the
1114 * Sigma so we have a complete set of samples. Note that the last
1115 * line can be only partial, containing less than 64 clusters.
1116 */
1117 dl_lines_total = (stoppos >> 9) + 1;
1118 dl_trailing_events = stoppos & 0x1ff;
6868626b 1119
c6648b66 1120 dl_lines_done = 0;
6868626b 1121
c6648b66
MV
1122 while (dl_lines_total > dl_lines_done) {
1123 /* We can download only up-to 32 DRAM lines in one go! */
1124 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
6868626b 1125
c6648b66
MV
1126 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr, buf, devc);
1127 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1128 (void)bufsz;
6868626b 1129
c6648b66
MV
1130 /* This is the first DRAM line, so find the initial timestamp. */
1131 if (dl_lines_done == 0) {
1132 devc->state.lastts = RL16(buf) - 1;
1133 devc->state.lastsample = 0;
6868626b
BV
1134 }
1135
c6648b66
MV
1136 for (i = 0; i < dl_lines_curr; i++) {
1137 uint32_t dl_limit = 0;
1138 /* The last "DRAM line" can be only partially full. */
1139 if (dl_lines_done + i == dl_lines_total - 1)
1140 dl_limit = dl_trailing_events;
1141
1142 if (dl_lines_done + i == trg_line)
1143 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1144 &devc->state.lastts,
1145 &devc->state.lastsample,
1146 triggerpos & 0x1ff,
1147 dl_limit, sdi);
1148 else
1149 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1150 &devc->state.lastts,
1151 &devc->state.lastsample,
1152 -1,
1153 dl_limit, sdi);
1154 }
6868626b 1155
c6648b66 1156 dl_lines_done += dl_lines_curr;
6868626b
BV
1157 }
1158
6057d9fa
MV
1159 /* All done. */
1160 packet.type = SR_DF_END;
1161 sr_session_send(sdi, &packet);
1162
1163 dev_acquisition_stop(sdi, sdi);
1164
fd830beb
MV
1165 g_free(dram_line);
1166
6057d9fa 1167 return TRUE;
6868626b
BV
1168}
1169
d4051930
MV
1170/*
1171 * Handle the Sigma when in CAPTURE mode. This function checks:
1172 * - Sampling time ended
1173 * - DRAM capacity overflow
1174 * This function triggers download of the samples from Sigma
1175 * in case either of the above conditions is true.
1176 */
1177static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1178{
d4051930
MV
1179 struct dev_context *devc = sdi->priv;
1180
94ba4bd6 1181 uint64_t running_msec;
28a35d8a 1182 struct timeval tv;
28a35d8a 1183
00c86508 1184 uint32_t stoppos, triggerpos;
28a35d8a 1185
00c86508 1186 /* Check if the selected sampling duration passed. */
d4051930
MV
1187 gettimeofday(&tv, 0);
1188 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
00c86508
MV
1189 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1190 if (running_msec >= devc->limit_msec)
6057d9fa 1191 return download_capture(sdi);
00c86508
MV
1192
1193 /* Get the position in DRAM to which the FPGA is writing now. */
1194 sigma_read_pos(&stoppos, &triggerpos, devc);
1195 /* Test if DRAM is full and if so, download the data. */
1196 if ((stoppos >> 9) == 32767)
6057d9fa 1197 return download_capture(sdi);
28a35d8a 1198
d4051930
MV
1199 return TRUE;
1200}
28a35d8a 1201
d4051930
MV
1202static int receive_data(int fd, int revents, void *cb_data)
1203{
1204 struct sr_dev_inst *sdi;
1205 struct dev_context *devc;
88c51afe 1206
d4051930
MV
1207 (void)fd;
1208 (void)revents;
88c51afe 1209
d4051930
MV
1210 sdi = cb_data;
1211 devc = sdi->priv;
1212
1213 if (devc->state.state == SIGMA_IDLE)
1214 return TRUE;
1215
1216 if (devc->state.state == SIGMA_CAPTURE)
1217 return sigma_capture_mode(sdi);
28a35d8a 1218
28a35d8a
HE
1219 return TRUE;
1220}
1221
c53d793f
HE
1222/* Build a LUT entry used by the trigger functions. */
1223static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1224{
1225 int i, j, k, bit;
1226
ba7dd8bb 1227 /* For each quad channel. */
ee492173 1228 for (i = 0; i < 4; ++i) {
c53d793f 1229 entry[i] = 0xffff;
ee492173 1230
f758d074 1231 /* For each bit in LUT. */
ee492173
HE
1232 for (j = 0; j < 16; ++j)
1233
ba7dd8bb 1234 /* For each channel in quad. */
ee492173
HE
1235 for (k = 0; k < 4; ++k) {
1236 bit = 1 << (i * 4 + k);
1237
c53d793f
HE
1238 /* Set bit in entry */
1239 if ((mask & bit) &&
1240 ((!(value & bit)) !=
4ae1f451 1241 (!(j & (1 << k)))))
c53d793f 1242 entry[i] &= ~(1 << j);
ee492173
HE
1243 }
1244 }
c53d793f 1245}
ee492173 1246
c53d793f
HE
1247/* Add a logical function to LUT mask. */
1248static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1249 int index, int neg, uint16_t *mask)
1250{
1251 int i, j;
1252 int x[2][2], tmp, a, b, aset, bset, rset;
1253
1254 memset(x, 0, 4 * sizeof(int));
1255
1256 /* Trigger detect condition. */
1257 switch (oper) {
1258 case OP_LEVEL:
1259 x[0][1] = 1;
1260 x[1][1] = 1;
1261 break;
1262 case OP_NOT:
1263 x[0][0] = 1;
1264 x[1][0] = 1;
1265 break;
1266 case OP_RISE:
1267 x[0][1] = 1;
1268 break;
1269 case OP_FALL:
1270 x[1][0] = 1;
1271 break;
1272 case OP_RISEFALL:
1273 x[0][1] = 1;
1274 x[1][0] = 1;
1275 break;
1276 case OP_NOTRISE:
1277 x[1][1] = 1;
1278 x[0][0] = 1;
1279 x[1][0] = 1;
1280 break;
1281 case OP_NOTFALL:
1282 x[1][1] = 1;
1283 x[0][0] = 1;
1284 x[0][1] = 1;
1285 break;
1286 case OP_NOTRISEFALL:
1287 x[1][1] = 1;
1288 x[0][0] = 1;
1289 break;
1290 }
1291
1292 /* Transpose if neg is set. */
1293 if (neg) {
ea9cfed7 1294 for (i = 0; i < 2; ++i) {
c53d793f
HE
1295 for (j = 0; j < 2; ++j) {
1296 tmp = x[i][j];
1297 x[i][j] = x[1-i][1-j];
1298 x[1-i][1-j] = tmp;
1299 }
ea9cfed7 1300 }
c53d793f
HE
1301 }
1302
1303 /* Update mask with function. */
1304 for (i = 0; i < 16; ++i) {
1305 a = (i >> (2 * index + 0)) & 1;
1306 b = (i >> (2 * index + 1)) & 1;
1307
1308 aset = (*mask >> i) & 1;
1309 bset = x[b][a];
1310
1311 if (func == FUNC_AND || func == FUNC_NAND)
1312 rset = aset & bset;
1313 else if (func == FUNC_OR || func == FUNC_NOR)
1314 rset = aset | bset;
1315 else if (func == FUNC_XOR || func == FUNC_NXOR)
1316 rset = aset ^ bset;
1317
1318 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1319 rset = !rset;
1320
1321 *mask &= ~(1 << i);
1322
1323 if (rset)
1324 *mask |= 1 << i;
1325 }
1326}
1327
1328/*
1329 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1330 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1331 * set at any time, but a full mask and value can be set (0/1).
1332 */
0e1357e8 1333static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1334{
1335 int i,j;
4ae1f451 1336 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1337
1338 memset(lut, 0, sizeof(struct triggerlut));
1339
1340 /* Contant for simple triggers. */
1341 lut->m4 = 0xa000;
1342
1343 /* Value/mask trigger support. */
0e1357e8 1344 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1345 lut->m2d);
c53d793f
HE
1346
1347 /* Rise/fall trigger support. */
1348 for (i = 0, j = 0; i < 16; ++i) {
0e1357e8
BV
1349 if (devc->trigger.risingmask & (1 << i) ||
1350 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1351 masks[j++] = 1 << i;
1352 }
1353
1354 build_lut_entry(masks[0], masks[0], lut->m0d);
1355 build_lut_entry(masks[1], masks[1], lut->m1d);
1356
1357 /* Add glue logic */
1358 if (masks[0] || masks[1]) {
1359 /* Transition trigger. */
0e1357e8 1360 if (masks[0] & devc->trigger.risingmask)
c53d793f 1361 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1362 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1363 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1364 if (masks[1] & devc->trigger.risingmask)
c53d793f 1365 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1366 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1367 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1368 } else {
1369 /* Only value/mask trigger. */
1370 lut->m3 = 0xffff;
1371 }
ee492173 1372
c53d793f 1373 /* Triggertype: event. */
ee492173
HE
1374 lut->params.selres = 3;
1375
e46b8fb1 1376 return SR_OK;
ee492173
HE
1377}
1378
6078d2c9 1379static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1380{
0e1357e8 1381 struct dev_context *devc;
9ddb2a12 1382 struct clockselect_50 clockselect;
82957b65 1383 int frac, triggerpin, ret;
f4abaa9f 1384 uint8_t triggerselect = 0;
57bbf56b 1385 struct triggerinout triggerinout_conf;
ee492173 1386 struct triggerlut lut;
28a35d8a 1387
e73ffd42
BV
1388 if (sdi->status != SR_ST_ACTIVE)
1389 return SR_ERR_DEV_CLOSED;
1390
0e1357e8 1391 devc = sdi->priv;
28a35d8a 1392
ba7dd8bb
UH
1393 if (configure_channels(sdi) != SR_OK) {
1394 sr_err("Failed to configure channels.");
014359e3
BV
1395 return SR_ERR;
1396 }
1397
ea9cfed7 1398 /* If the samplerate has not been set, default to 200 kHz. */
0e1357e8 1399 if (devc->cur_firmware == -1) {
82957b65
UH
1400 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1401 return ret;
1402 }
e8397563 1403
eec5275e 1404 /* Enter trigger programming mode. */
0e1357e8 1405 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
28a35d8a 1406
eec5275e 1407 /* 100 and 200 MHz mode. */
0e1357e8
BV
1408 if (devc->cur_samplerate >= SR_MHZ(100)) {
1409 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
57bbf56b 1410
a42aec7f
HE
1411 /* Find which pin to trigger on from mask. */
1412 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
0e1357e8 1413 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
a42aec7f
HE
1414 (1 << triggerpin))
1415 break;
1416
1417 /* Set trigger pin and light LED on trigger. */
1418 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1419
1420 /* Default rising edge. */
0e1357e8 1421 if (devc->trigger.fallingmask)
a42aec7f 1422 triggerselect |= 1 << 3;
57bbf56b 1423
eec5275e 1424 /* All other modes. */
0e1357e8
BV
1425 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1426 build_basic_trigger(&lut, devc);
ee492173 1427
0e1357e8 1428 sigma_write_trigger_lut(&lut, devc);
57bbf56b
HE
1429
1430 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1431 }
1432
eec5275e 1433 /* Setup trigger in and out pins to default values. */
57bbf56b
HE
1434 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1435 triggerinout_conf.trgout_bytrigger = 1;
1436 triggerinout_conf.trgout_enable = 1;
1437
28a35d8a 1438 sigma_write_register(WRITE_TRIGGER_OPTION,
57bbf56b 1439 (uint8_t *) &triggerinout_conf,
0e1357e8 1440 sizeof(struct triggerinout), devc);
28a35d8a 1441
eec5275e 1442 /* Go back to normal mode. */
0e1357e8 1443 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
28a35d8a 1444
edca2c5c 1445 /* Set clock select register. */
0e1357e8 1446 if (devc->cur_samplerate == SR_MHZ(200))
ba7dd8bb 1447 /* Enable 4 channels. */
0e1357e8
BV
1448 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1449 else if (devc->cur_samplerate == SR_MHZ(100))
ba7dd8bb 1450 /* Enable 8 channels. */
0e1357e8 1451 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
edca2c5c
HE
1452 else {
1453 /*
9ddb2a12 1454 * 50 MHz mode (or fraction thereof). Any fraction down to
eec5275e 1455 * 50 MHz / 256 can be used, but is not supported by sigrok API.
edca2c5c 1456 */
0e1357e8 1457 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
edca2c5c 1458
9ddb2a12
UH
1459 clockselect.async = 0;
1460 clockselect.fraction = frac;
ba7dd8bb 1461 clockselect.disabled_channels = 0;
edca2c5c
HE
1462
1463 sigma_write_register(WRITE_CLOCK_SELECT,
9ddb2a12 1464 (uint8_t *) &clockselect,
0e1357e8 1465 sizeof(clockselect), devc);
edca2c5c
HE
1466 }
1467
fefa1800 1468 /* Setup maximum post trigger time. */
99965709 1469 sigma_set_register(WRITE_POST_TRIGGER,
0e1357e8 1470 (devc->capture_ratio * 255) / 100, devc);
28a35d8a 1471
eec5275e 1472 /* Start acqusition. */
0e1357e8
BV
1473 gettimeofday(&devc->start_tv, 0);
1474 sigma_set_register(WRITE_MODE, 0x0d, devc);
99965709 1475
3e9b7f9c 1476 devc->cb_data = cb_data;
28a35d8a 1477
3c36c403 1478 /* Send header packet to the session bus. */
29a27196 1479 std_session_send_df_header(cb_data, LOG_PREFIX);
f366e86c 1480
f366e86c 1481 /* Add capture source. */
3ffb6964 1482 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
f366e86c 1483
0e1357e8 1484 devc->state.state = SIGMA_CAPTURE;
6aac7737 1485
e46b8fb1 1486 return SR_OK;
28a35d8a
HE
1487}
1488
6078d2c9 1489static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1490{
0e1357e8 1491 struct dev_context *devc;
6aac7737 1492
3cd3a20b 1493 (void)cb_data;
28a35d8a 1494
6868626b
BV
1495 devc = sdi->priv;
1496 devc->state.state = SIGMA_IDLE;
6aac7737 1497
6868626b 1498 sr_source_remove(0);
3010f21c
UH
1499
1500 return SR_OK;
28a35d8a
HE
1501}
1502
c09f0b57 1503SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
e519ba86 1504 .name = "asix-sigma",
6352d030 1505 .longname = "ASIX SIGMA/SIGMA2",
e519ba86 1506 .api_version = 1,
6078d2c9
UH
1507 .init = init,
1508 .cleanup = cleanup,
1509 .scan = scan,
1510 .dev_list = dev_list,
3b412e3a 1511 .dev_clear = dev_clear,
035a1078
BV
1512 .config_get = config_get,
1513 .config_set = config_set,
a1c743fc 1514 .config_list = config_list,
6078d2c9
UH
1515 .dev_open = dev_open,
1516 .dev_close = dev_close,
1517 .dev_acquisition_start = dev_acquisition_start,
1518 .dev_acquisition_stop = dev_acquisition_stop,
0e1357e8 1519 .priv = NULL,
28a35d8a 1520};