]> sigrok.org Git - libsigrok.git/blame - hardware/asix-sigma/asix-sigma.c
asix-sigma: Encode the opcodes as hex values
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
3bbd9849
UH
26#include <glib.h>
27#include <glib/gstdio.h>
28a35d8a
HE
28#include <ftdi.h>
29#include <string.h>
45c59c8b
BV
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
28a35d8a
HE
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
c50277a6 39#define TRIGGER_TYPE "rf10"
28a35d8a 40
ed300b9f 41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
a873c594 42static struct sr_dev_driver *di = &asix_sigma_driver_info;
6078d2c9 43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
28a35d8a 44
b1648dea
MV
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
2c9c0df8 51static const uint64_t samplerates[] = {
b1648dea
MV
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
62};
63
d261dbbf 64/*
ba7dd8bb 65 * Channel numbers seem to go from 1-16, according to this image:
d261dbbf
UH
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
790c7ccc 69static const char *channel_names[] = {
78693401
UH
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
464d12c7
KS
72};
73
2c9c0df8 74static const int32_t hwcaps[] = {
1953564a
BV
75 SR_CONF_LOGIC_ANALYZER,
76 SR_CONF_SAMPLERATE,
38d32464 77 SR_CONF_TRIGGER_TYPE,
1953564a 78 SR_CONF_CAPTURE_RATIO,
1953564a 79 SR_CONF_LIMIT_MSEC,
6868626b 80 SR_CONF_LIMIT_SAMPLES,
28a35d8a
HE
81};
82
499b17e9
MV
83static const char *sigma_firmware_files[] = {
84 /* 50 MHz, supports 8 bit fractions */
85 FIRMWARE_DIR "/asix-sigma-50.fw",
86 /* 100 MHz */
87 FIRMWARE_DIR "/asix-sigma-100.fw",
88 /* 200 MHz */
89 FIRMWARE_DIR "/asix-sigma-200.fw",
90 /* Synchronous clock from pin */
91 FIRMWARE_DIR "/asix-sigma-50sync.fw",
92 /* Frequency counter */
93 FIRMWARE_DIR "/asix-sigma-phasor.fw",
f6564c8d
HE
94};
95
0e1357e8 96static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
97{
98 int ret;
fefa1800 99
0e1357e8 100 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 101 if (ret < 0) {
47f4f073 102 sr_err("ftdi_read_data failed: %s",
0e1357e8 103 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
104 }
105
106 return ret;
107}
108
0e1357e8 109static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
110{
111 int ret;
fefa1800 112
0e1357e8 113 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 114 if (ret < 0) {
47f4f073 115 sr_err("ftdi_write_data failed: %s",
0e1357e8 116 ftdi_get_error_string(&devc->ftdic));
fefa1800 117 } else if ((size_t) ret != size) {
47f4f073 118 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
119 }
120
121 return ret;
122}
123
99965709 124static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 125 struct dev_context *devc)
28a35d8a
HE
126{
127 size_t i;
128 uint8_t buf[len + 2];
129 int idx = 0;
130
131 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
132 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
133
fefa1800 134 for (i = 0; i < len; ++i) {
28a35d8a
HE
135 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
136 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
137 }
138
0e1357e8 139 return sigma_write(buf, idx, devc);
28a35d8a
HE
140}
141
0e1357e8 142static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 143{
0e1357e8 144 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
145}
146
99965709 147static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 148 struct dev_context *devc)
28a35d8a
HE
149{
150 uint8_t buf[3];
fefa1800 151
28a35d8a
HE
152 buf[0] = REG_ADDR_LOW | (reg & 0xf);
153 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
154 buf[2] = REG_READ_ADDR;
155
0e1357e8 156 sigma_write(buf, sizeof(buf), devc);
28a35d8a 157
0e1357e8 158 return sigma_read(data, len, devc);
28a35d8a
HE
159}
160
0e1357e8 161static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
28a35d8a
HE
162{
163 uint8_t value;
fefa1800 164
0e1357e8 165 if (1 != sigma_read_register(reg, &value, 1, devc)) {
47f4f073 166 sr_err("sigma_get_register: 1 byte expected");
28a35d8a
HE
167 return 0;
168 }
169
170 return value;
171}
172
99965709 173static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 174 struct dev_context *devc)
28a35d8a
HE
175{
176 uint8_t buf[] = {
177 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
178
179 REG_READ_ADDR | NEXT_REG,
180 REG_READ_ADDR | NEXT_REG,
181 REG_READ_ADDR | NEXT_REG,
182 REG_READ_ADDR | NEXT_REG,
183 REG_READ_ADDR | NEXT_REG,
184 REG_READ_ADDR | NEXT_REG,
185 };
28a35d8a
HE
186 uint8_t result[6];
187
0e1357e8 188 sigma_write(buf, sizeof(buf), devc);
28a35d8a 189
0e1357e8 190 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
191
192 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
193 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
194
57bbf56b
HE
195 /* Not really sure why this must be done, but according to spec. */
196 if ((--*stoppos & 0x1ff) == 0x1ff)
197 stoppos -= 64;
198
199 if ((*--triggerpos & 0x1ff) == 0x1ff)
200 triggerpos -= 64;
201
28a35d8a
HE
202 return 1;
203}
204
99965709 205static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 206 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
207{
208 size_t i;
209 uint8_t buf[4096];
210 int idx = 0;
211
fefa1800 212 /* Send the startchunk. Index start with 1. */
28a35d8a
HE
213 buf[0] = startchunk >> 8;
214 buf[1] = startchunk & 0xff;
0e1357e8 215 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
28a35d8a 216
fefa1800 217 /* Read the DRAM. */
28a35d8a
HE
218 buf[idx++] = REG_DRAM_BLOCK;
219 buf[idx++] = REG_DRAM_WAIT_ACK;
220
221 for (i = 0; i < numchunks; ++i) {
fefa1800
UH
222 /* Alternate bit to copy from DRAM to cache. */
223 if (i != (numchunks - 1))
224 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
225
226 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
227
fefa1800 228 if (i != (numchunks - 1))
28a35d8a
HE
229 buf[idx++] = REG_DRAM_WAIT_ACK;
230 }
231
0e1357e8 232 sigma_write(buf, idx, devc);
28a35d8a 233
0e1357e8 234 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
235}
236
4ae1f451 237/* Upload trigger look-up tables to Sigma. */
0e1357e8 238static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
239{
240 int i;
241 uint8_t tmp[2];
242 uint16_t bit;
243
244 /* Transpose the table and send to Sigma. */
245 for (i = 0; i < 16; ++i) {
246 bit = 1 << i;
247
248 tmp[0] = tmp[1] = 0;
249
250 if (lut->m2d[0] & bit)
251 tmp[0] |= 0x01;
252 if (lut->m2d[1] & bit)
253 tmp[0] |= 0x02;
254 if (lut->m2d[2] & bit)
255 tmp[0] |= 0x04;
256 if (lut->m2d[3] & bit)
257 tmp[0] |= 0x08;
258
259 if (lut->m3 & bit)
260 tmp[0] |= 0x10;
261 if (lut->m3s & bit)
262 tmp[0] |= 0x20;
263 if (lut->m4 & bit)
264 tmp[0] |= 0x40;
265
266 if (lut->m0d[0] & bit)
267 tmp[1] |= 0x01;
268 if (lut->m0d[1] & bit)
269 tmp[1] |= 0x02;
270 if (lut->m0d[2] & bit)
271 tmp[1] |= 0x04;
272 if (lut->m0d[3] & bit)
273 tmp[1] |= 0x08;
274
275 if (lut->m1d[0] & bit)
276 tmp[1] |= 0x10;
277 if (lut->m1d[1] & bit)
278 tmp[1] |= 0x20;
279 if (lut->m1d[2] & bit)
280 tmp[1] |= 0x40;
281 if (lut->m1d[3] & bit)
282 tmp[1] |= 0x80;
283
99965709 284 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
285 devc);
286 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
287 }
288
289 /* Send the parameters */
290 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 291 sizeof(lut->params), devc);
ee492173 292
e46b8fb1 293 return SR_OK;
ee492173
HE
294}
295
3678cf73 296static void clear_helper(void *priv)
0448d110 297{
0e1357e8 298 struct dev_context *devc;
ce4d26dd 299
3678cf73 300 devc = priv;
0e1357e8 301
3678cf73
UH
302 ftdi_deinit(&devc->ftdic);
303}
0448d110 304
3b412e3a 305static int dev_clear(void)
3678cf73
UH
306{
307 return std_dev_clear(di, clear_helper);
0448d110
BV
308}
309
6078d2c9 310static int init(struct sr_context *sr_ctx)
61136ea6 311{
f6beaac5 312 return std_init(sr_ctx, di, LOG_PREFIX);
61136ea6
BV
313}
314
6078d2c9 315static GSList *scan(GSList *options)
28a35d8a 316{
d68e2d1a 317 struct sr_dev_inst *sdi;
ba7dd8bb 318 struct sr_channel *ch;
0e1357e8
BV
319 struct drv_context *drvc;
320 struct dev_context *devc;
0448d110 321 GSList *devices;
e3fff420
HE
322 struct ftdi_device_list *devlist;
323 char serial_txt[10];
324 uint32_t serial;
790c7ccc
MV
325 int ret;
326 unsigned int i;
28a35d8a 327
0448d110 328 (void)options;
64d33dc2 329
a873c594 330 drvc = di->priv;
4b97c74e 331
0448d110 332 devices = NULL;
4b97c74e 333
0e1357e8 334 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
47f4f073 335 sr_err("%s: devc malloc failed", __func__);
0448d110 336 return NULL;
b53738ba 337 }
99965709 338
0e1357e8 339 ftdi_init(&devc->ftdic);
28a35d8a 340
fefa1800 341 /* Look for SIGMAs. */
e3fff420 342
0e1357e8 343 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
eec944c5
BV
344 USB_VENDOR, USB_PRODUCT)) <= 0) {
345 if (ret < 0)
346 sr_err("ftdi_usb_find_all(): %d", ret);
99965709 347 goto free;
eec944c5 348 }
99965709 349
e3fff420 350 /* Make sure it's a version 1 or 2 SIGMA. */
0e1357e8 351 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
6352d030 352 serial_txt, sizeof(serial_txt));
e3fff420
HE
353 sscanf(serial_txt, "%x", &serial);
354
6352d030 355 if (serial < 0xa6010000 || serial > 0xa602ffff) {
47f4f073
UH
356 sr_err("Only SIGMA and SIGMA2 are supported "
357 "in this version of libsigrok.");
e3fff420
HE
358 goto free;
359 }
360
361 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
362
0e1357e8
BV
363 devc->cur_samplerate = 0;
364 devc->period_ps = 0;
365 devc->limit_msec = 0;
366 devc->cur_firmware = -1;
ba7dd8bb 367 devc->num_channels = 0;
0e1357e8
BV
368 devc->samples_per_event = 0;
369 devc->capture_ratio = 50;
370 devc->use_triggers = 0;
28a35d8a 371
fefa1800 372 /* Register SIGMA device. */
d68e2d1a 373 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
55f98c65 374 USB_MODEL_NAME, NULL))) {
47f4f073 375 sr_err("%s: sdi was NULL", __func__);
99965709 376 goto free;
d68e2d1a 377 }
a873c594 378 sdi->driver = di;
87ca93c5 379
790c7ccc
MV
380 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
381 ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
382 channel_names[i]);
383 if (!ch)
87ca93c5 384 return NULL;
ba7dd8bb 385 sdi->channels = g_slist_append(sdi->channels, ch);
87ca93c5
BV
386 }
387
0448d110 388 devices = g_slist_append(devices, sdi);
0e1357e8
BV
389 drvc->instances = g_slist_append(drvc->instances, sdi);
390 sdi->priv = devc;
28a35d8a 391
fefa1800 392 /* We will open the device again when we need it. */
e3fff420 393 ftdi_list_free(&devlist);
28a35d8a 394
0448d110 395 return devices;
ea9cfed7 396
99965709 397free:
0e1357e8
BV
398 ftdi_deinit(&devc->ftdic);
399 g_free(devc);
0448d110 400 return NULL;
28a35d8a
HE
401}
402
6078d2c9 403static GSList *dev_list(void)
811deee4 404{
0e94d524 405 return ((struct drv_context *)(di->priv))->instances;
811deee4
BV
406}
407
d5fa188a
MV
408/*
409 * Configure the FPGA for bitbang mode.
410 * This sequence is documented in section 2. of the ASIX Sigma programming
411 * manual. This sequence is necessary to configure the FPGA in the Sigma
412 * into Bitbang mode, in which it can be programmed with the firmware.
413 */
414static int sigma_fpga_init_bitbang(struct dev_context *devc)
415{
416 uint8_t suicide[] = {
417 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
418 };
419 uint8_t init_array[] = {
420 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
421 0x01, 0x01,
422 };
423 int i, ret, timeout = 10000;
424 uint8_t data;
425
426 /* Section 2. part 1), do the FPGA suicide. */
427 sigma_write(suicide, sizeof(suicide), devc);
428 sigma_write(suicide, sizeof(suicide), devc);
429 sigma_write(suicide, sizeof(suicide), devc);
430 sigma_write(suicide, sizeof(suicide), devc);
431
432 /* Section 2. part 2), do pulse on D1. */
433 sigma_write(init_array, sizeof(init_array), devc);
434 ftdi_usb_purge_buffers(&devc->ftdic);
435
436 /* Wait until the FPGA asserts D6/INIT_B. */
437 for (i = 0; i < timeout; i++) {
438 ret = sigma_read(&data, 1, devc);
439 if (ret < 0)
440 return ret;
441 /* Test if pin D6 got asserted. */
442 if (data & (1 << 5))
443 return 0;
444 /* The D6 was not asserted yet, wait a bit. */
445 usleep(10000);
446 }
447
448 return SR_ERR_TIMEOUT;
449}
450
64fe661b
MV
451/*
452 * Configure the FPGA for logic-analyzer mode.
453 */
454static int sigma_fpga_init_la(struct dev_context *devc)
455{
456 /* Initialize the logic analyzer mode. */
457 uint8_t logic_mode_start[] = {
458 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
459 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
460 };
461
462 uint8_t result[3];
463 int ret;
464
465 /* Initialize the logic analyzer mode. */
466 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
467
468 /* Expect a 3 byte reply. */
469 ret = sigma_read(result, 3, devc);
470 if (ret != 3)
471 goto err;
472
473 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
474 goto err;
475
476 return SR_OK;
477err:
478 sr_err("Configuration failed. Invalid reply received.");
479 return SR_ERR;
480}
481
a80226bb
MV
482/*
483 * Read the firmware from a file and transform it into a series of bitbang
484 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
485 * by the caller of this function.
486 */
487static int sigma_fw_2_bitbang(const char *filename,
488 uint8_t **bb_cmd, gsize *bb_cmd_size)
489{
490 GMappedFile *file;
491 GError *error;
492 gsize i, file_size, bb_size;
493 gchar *firmware;
494 uint8_t *bb_stream, *bbs;
495 uint32_t imm;
496 int bit, v;
497 int ret = SR_OK;
498
499 /*
500 * Map the file and make the mapped buffer writable.
501 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
502 * will be modified. It will not be modified until someone uses
503 * g_file_set_contents() on it.
504 */
505 error = NULL;
506 file = g_mapped_file_new(filename, TRUE, &error);
507 g_assert_no_error(error);
508
509 file_size = g_mapped_file_get_length(file);
510 firmware = g_mapped_file_get_contents(file);
511 g_assert(firmware);
512
513 /* Weird magic transformation below, I have no idea what it does. */
514 imm = 0x3f6df2ab;
515 for (i = 0; i < file_size; i++) {
516 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
517 firmware[i] ^= imm & 0xff;
518 }
519
520 /*
521 * Now that the firmware is "transformed", we will transcribe the
522 * firmware blob into a sequence of toggles of the Dx wires. This
523 * sequence will be fed directly into the Sigma, which must be in
524 * the FPGA bitbang programming mode.
525 */
526
527 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
528 bb_size = file_size * 8 * 2;
529 bb_stream = (uint8_t *)g_try_malloc(bb_size);
530 if (!bb_stream) {
531 sr_err("%s: Failed to allocate bitbang stream", __func__);
532 ret = SR_ERR_MALLOC;
533 goto exit;
534 }
535
536 bbs = bb_stream;
537 for (i = 0; i < file_size; i++) {
538 for (bit = 7; bit >= 0; bit--) {
539 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
540 *bbs++ = v | 0x01;
541 *bbs++ = v;
542 }
543 }
544
545 /* The transformation completed successfully, return the result. */
546 *bb_cmd = bb_stream;
547 *bb_cmd_size = bb_size;
548
549exit:
550 g_mapped_file_unref(file);
551 return ret;
552}
553
0e1357e8 554static int upload_firmware(int firmware_idx, struct dev_context *devc)
28a35d8a
HE
555{
556 int ret;
557 unsigned char *buf;
558 unsigned char pins;
559 size_t buf_size;
499b17e9 560 const char *firmware = sigma_firmware_files[firmware_idx];
8bbf7627 561 struct ftdi_context *ftdic = &devc->ftdic;
28a35d8a 562
fefa1800 563 /* Make sure it's an ASIX SIGMA. */
8bbf7627
MV
564 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
565 USB_DESCRIPTION, NULL);
566 if (ret < 0) {
47f4f073 567 sr_err("ftdi_usb_open failed: %s",
8bbf7627 568 ftdi_get_error_string(ftdic));
28a35d8a
HE
569 return 0;
570 }
571
8bbf7627
MV
572 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
573 if (ret < 0) {
47f4f073 574 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 575 ftdi_get_error_string(ftdic));
28a35d8a
HE
576 return 0;
577 }
578
fefa1800 579 /* Four times the speed of sigmalogan - Works well. */
8bbf7627
MV
580 ret = ftdi_set_baudrate(ftdic, 750000);
581 if (ret < 0) {
47f4f073 582 sr_err("ftdi_set_baudrate failed: %s",
8bbf7627 583 ftdi_get_error_string(ftdic));
28a35d8a
HE
584 return 0;
585 }
586
d5fa188a
MV
587 /* Initialize the FPGA for firmware upload. */
588 ret = sigma_fpga_init_bitbang(devc);
589 if (ret)
590 return ret;
28a35d8a 591
9ddb2a12 592 /* Prepare firmware. */
d485d443 593 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
8bbf7627 594 if (ret != SR_OK) {
47f4f073 595 sr_err("An error occured while reading the firmware: %s",
499b17e9 596 firmware);
b53738ba 597 return ret;
28a35d8a
HE
598 }
599
fefa1800 600 /* Upload firmare. */
499b17e9 601 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 602 sigma_write(buf, buf_size, devc);
28a35d8a
HE
603
604 g_free(buf);
605
8bbf7627
MV
606 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
607 if (ret < 0) {
47f4f073 608 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 609 ftdi_get_error_string(ftdic));
e46b8fb1 610 return SR_ERR;
28a35d8a
HE
611 }
612
8bbf7627 613 ftdi_usb_purge_buffers(ftdic);
28a35d8a 614
fefa1800 615 /* Discard garbage. */
29b66a2e 616 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
617 ;
618
64fe661b
MV
619 /* Initialize the FPGA for logic-analyzer mode. */
620 ret = sigma_fpga_init_la(devc);
621 if (ret != SR_OK)
622 return ret;
28a35d8a 623
0e1357e8 624 devc->cur_firmware = firmware_idx;
f6564c8d 625
47f4f073 626 sr_info("Firmware uploaded.");
e3fff420 627
e46b8fb1 628 return SR_OK;
f6564c8d
HE
629}
630
6078d2c9 631static int dev_open(struct sr_dev_inst *sdi)
f6564c8d 632{
0e1357e8 633 struct dev_context *devc;
f6564c8d
HE
634 int ret;
635
0e1357e8 636 devc = sdi->priv;
99965709 637
9ddb2a12 638 /* Make sure it's an ASIX SIGMA. */
0e1357e8 639 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
f6564c8d
HE
640 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
641
47f4f073 642 sr_err("ftdi_usb_open failed: %s",
0e1357e8 643 ftdi_get_error_string(&devc->ftdic));
f6564c8d
HE
644
645 return 0;
646 }
28a35d8a 647
5a2326a7 648 sdi->status = SR_ST_ACTIVE;
28a35d8a 649
e46b8fb1 650 return SR_OK;
f6564c8d
HE
651}
652
6f4b1868 653static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 654{
2c9c0df8
BV
655 struct dev_context *devc;
656 unsigned int i;
657 int ret;
f6564c8d 658
2c9c0df8 659 devc = sdi->priv;
f4abaa9f
UH
660 ret = SR_OK;
661
2c9c0df8
BV
662 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
663 if (samplerates[i] == samplerate)
f6564c8d
HE
664 break;
665 }
2c9c0df8 666 if (samplerates[i] == 0)
e46b8fb1 667 return SR_ERR_SAMPLERATE;
f6564c8d 668
59df0c77 669 if (samplerate <= SR_MHZ(50)) {
0e1357e8 670 ret = upload_firmware(0, devc);
ba7dd8bb 671 devc->num_channels = 16;
e8397563 672 }
59df0c77 673 if (samplerate == SR_MHZ(100)) {
0e1357e8 674 ret = upload_firmware(1, devc);
ba7dd8bb 675 devc->num_channels = 8;
f78898e9 676 }
59df0c77 677 else if (samplerate == SR_MHZ(200)) {
0e1357e8 678 ret = upload_firmware(2, devc);
ba7dd8bb 679 devc->num_channels = 4;
f78898e9 680 }
f6564c8d 681
0e1357e8 682 devc->cur_samplerate = samplerate;
5edc02c7 683 devc->period_ps = 1000000000000ULL / samplerate;
ba7dd8bb 684 devc->samples_per_event = 16 / devc->num_channels;
0e1357e8 685 devc->state.state = SIGMA_IDLE;
f6564c8d 686
e8397563 687 return ret;
28a35d8a
HE
688}
689
c53d793f
HE
690/*
691 * In 100 and 200 MHz mode, only a single pin rising/falling can be
692 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 693 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
694 *
695 * The Sigma supports complex triggers using boolean expressions, but this
696 * has not been implemented yet.
697 */
ba7dd8bb 698static int configure_channels(const struct sr_dev_inst *sdi)
57bbf56b 699{
0e1357e8 700 struct dev_context *devc = sdi->priv;
ba7dd8bb 701 const struct sr_channel *ch;
1b79df2f 702 const GSList *l;
57bbf56b 703 int trigger_set = 0;
ba7dd8bb 704 int channelbit;
57bbf56b 705
0e1357e8 706 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
eec5275e 707
ba7dd8bb
UH
708 for (l = sdi->channels; l; l = l->next) {
709 ch = (struct sr_channel *)l->data;
710 channelbit = 1 << (ch->index);
57bbf56b 711
ba7dd8bb 712 if (!ch->enabled || !ch->trigger)
57bbf56b
HE
713 continue;
714
0e1357e8 715 if (devc->cur_samplerate >= SR_MHZ(100)) {
c53d793f 716 /* Fast trigger support. */
ee492173 717 if (trigger_set) {
47f4f073
UH
718 sr_err("Only a single pin trigger in 100 and "
719 "200MHz mode is supported.");
e46b8fb1 720 return SR_ERR;
ee492173 721 }
ba7dd8bb
UH
722 if (ch->trigger[0] == 'f')
723 devc->trigger.fallingmask |= channelbit;
724 else if (ch->trigger[0] == 'r')
725 devc->trigger.risingmask |= channelbit;
ee492173 726 else {
47f4f073
UH
727 sr_err("Only rising/falling trigger in 100 "
728 "and 200MHz mode is supported.");
e46b8fb1 729 return SR_ERR;
ee492173 730 }
57bbf56b 731
c53d793f 732 ++trigger_set;
ee492173 733 } else {
c53d793f 734 /* Simple trigger support (event). */
ba7dd8bb
UH
735 if (ch->trigger[0] == '1') {
736 devc->trigger.simplevalue |= channelbit;
737 devc->trigger.simplemask |= channelbit;
c53d793f 738 }
ba7dd8bb
UH
739 else if (ch->trigger[0] == '0') {
740 devc->trigger.simplevalue &= ~channelbit;
741 devc->trigger.simplemask |= channelbit;
c53d793f 742 }
ba7dd8bb
UH
743 else if (ch->trigger[0] == 'f') {
744 devc->trigger.fallingmask |= channelbit;
c53d793f
HE
745 ++trigger_set;
746 }
ba7dd8bb
UH
747 else if (ch->trigger[0] == 'r') {
748 devc->trigger.risingmask |= channelbit;
c53d793f
HE
749 ++trigger_set;
750 }
ee492173 751
ea9cfed7
UH
752 /*
753 * Actually, Sigma supports 2 rising/falling triggers,
754 * but they are ORed and the current trigger syntax
755 * does not permit ORed triggers.
756 */
98b8cbc1 757 if (trigger_set > 1) {
47f4f073
UH
758 sr_err("Only 1 rising/falling trigger "
759 "is supported.");
e46b8fb1 760 return SR_ERR;
ee492173 761 }
ee492173 762 }
5b5ea7c6
HE
763
764 if (trigger_set)
0e1357e8 765 devc->use_triggers = 1;
57bbf56b
HE
766 }
767
e46b8fb1 768 return SR_OK;
57bbf56b
HE
769}
770
6078d2c9 771static int dev_close(struct sr_dev_inst *sdi)
28a35d8a 772{
0e1357e8 773 struct dev_context *devc;
28a35d8a 774
961009b0 775 devc = sdi->priv;
697785d1
UH
776
777 /* TODO */
778 if (sdi->status == SR_ST_ACTIVE)
0e1357e8 779 ftdi_usb_close(&devc->ftdic);
697785d1
UH
780
781 sdi->status = SR_ST_INACTIVE;
782
783 return SR_OK;
28a35d8a
HE
784}
785
6078d2c9 786static int cleanup(void)
28a35d8a 787{
3b412e3a 788 return dev_clear();
28a35d8a
HE
789}
790
8f996b89 791static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 792 const struct sr_channel_group *cg)
28a35d8a 793{
0e1357e8 794 struct dev_context *devc;
99965709 795
53b4680f 796 (void)cg;
8f996b89 797
035a1078 798 switch (id) {
123e1313 799 case SR_CONF_SAMPLERATE:
41479605 800 if (sdi) {
0e1357e8 801 devc = sdi->priv;
2c9c0df8 802 *data = g_variant_new_uint64(devc->cur_samplerate);
41479605
BV
803 } else
804 return SR_ERR;
28a35d8a 805 break;
d7bbecfd 806 default:
bd6fbf62 807 return SR_ERR_NA;
28a35d8a
HE
808 }
809
41479605 810 return SR_OK;
28a35d8a
HE
811}
812
8f996b89 813static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
53b4680f 814 const struct sr_channel_group *cg)
28a35d8a 815{
0e1357e8 816 struct dev_context *devc;
6868626b 817 uint64_t num_samples;
28a35d8a 818 int ret;
f6564c8d 819
53b4680f 820 (void)cg;
8f996b89 821
e73ffd42
BV
822 if (sdi->status != SR_ST_ACTIVE)
823 return SR_ERR_DEV_CLOSED;
824
0e1357e8 825 devc = sdi->priv;
99965709 826
6868626b
BV
827 switch (id) {
828 case SR_CONF_SAMPLERATE:
2c9c0df8 829 ret = set_samplerate(sdi, g_variant_get_uint64(data));
6868626b
BV
830 break;
831 case SR_CONF_LIMIT_MSEC:
2c9c0df8 832 devc->limit_msec = g_variant_get_uint64(data);
0e1357e8 833 if (devc->limit_msec > 0)
e46b8fb1 834 ret = SR_OK;
94ba4bd6 835 else
e46b8fb1 836 ret = SR_ERR;
6868626b
BV
837 break;
838 case SR_CONF_LIMIT_SAMPLES:
839 num_samples = g_variant_get_uint64(data);
840 devc->limit_msec = num_samples * 1000 / devc->cur_samplerate;
841 break;
842 case SR_CONF_CAPTURE_RATIO:
2c9c0df8 843 devc->capture_ratio = g_variant_get_uint64(data);
0e1357e8 844 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
e46b8fb1 845 ret = SR_ERR;
94ba4bd6 846 else
e46b8fb1 847 ret = SR_OK;
6868626b
BV
848 break;
849 default:
bd6fbf62 850 ret = SR_ERR_NA;
28a35d8a
HE
851 }
852
853 return ret;
854}
855
8f996b89 856static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 857 const struct sr_channel_group *cg)
a1c743fc 858{
2c9c0df8
BV
859 GVariant *gvar;
860 GVariantBuilder gvb;
a1c743fc
BV
861
862 (void)sdi;
53b4680f 863 (void)cg;
a1c743fc
BV
864
865 switch (key) {
9a6517d1 866 case SR_CONF_DEVICE_OPTIONS:
2c9c0df8
BV
867 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
868 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
9a6517d1 869 break;
a1c743fc 870 case SR_CONF_SAMPLERATE:
2c9c0df8
BV
871 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
872 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
873 ARRAY_SIZE(samplerates), sizeof(uint64_t));
874 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
875 *data = g_variant_builder_end(&gvb);
a1c743fc 876 break;
c50277a6 877 case SR_CONF_TRIGGER_TYPE:
2c9c0df8 878 *data = g_variant_new_string(TRIGGER_TYPE);
c50277a6 879 break;
a1c743fc 880 default:
bd6fbf62 881 return SR_ERR_NA;
a1c743fc
BV
882 }
883
884 return SR_OK;
885}
886
36b1c8e6
HE
887/* Software trigger to determine exact trigger position. */
888static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
889 struct sigma_trigger *t)
890{
891 int i;
892
893 for (i = 0; i < 8; ++i) {
894 if (i > 0)
895 last_sample = samples[i-1];
896
897 /* Simple triggers. */
898 if ((samples[i] & t->simplemask) != t->simplevalue)
899 continue;
900
901 /* Rising edge. */
902 if ((last_sample & t->risingmask) != 0 || (samples[i] &
903 t->risingmask) != t->risingmask)
904 continue;
905
906 /* Falling edge. */
bdfc7a89
HE
907 if ((last_sample & t->fallingmask) != t->fallingmask ||
908 (samples[i] & t->fallingmask) != 0)
36b1c8e6
HE
909 continue;
910
911 break;
912 }
913
914 /* If we did not match, return original trigger pos. */
915 return i & 0x7;
916}
917
28a35d8a 918/*
fefa1800
UH
919 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
920 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
921 *
922 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
923 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
924 * For 50 MHz and below, events contain one sample for each channel,
925 * spread 20 ns apart.
28a35d8a
HE
926 */
927static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
88c51afe 928 uint16_t *lastsample, int triggerpos,
3cd3a20b 929 uint16_t limit_chunk, void *cb_data)
28a35d8a 930{
3cd3a20b 931 struct sr_dev_inst *sdi = cb_data;
0e1357e8 932 struct dev_context *devc = sdi->priv;
fefa1800 933 uint16_t tsdiff, ts;
0e1357e8 934 uint16_t samples[65536 * devc->samples_per_event];
b9c735a2 935 struct sr_datafeed_packet packet;
9c939c51 936 struct sr_datafeed_logic logic;
f78898e9 937 int i, j, k, l, numpad, tosend;
fefa1800 938 size_t n = 0, sent = 0;
0e1357e8 939 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
fefa1800 940 uint16_t *event;
f78898e9 941 uint16_t cur_sample;
57bbf56b 942 int triggerts = -1;
ee492173 943
4ae1f451 944 /* Check if trigger is in this chunk. */
ee492173 945 if (triggerpos != -1) {
0e1357e8 946 if (devc->cur_samplerate <= SR_MHZ(50))
36b1c8e6 947 triggerpos -= EVENTS_PER_CLUSTER - 1;
ee492173
HE
948
949 if (triggerpos < 0)
950 triggerpos = 0;
57bbf56b 951
ee492173
HE
952 /* Find in which cluster the trigger occured. */
953 triggerts = triggerpos / 7;
954 }
28a35d8a 955
eec5275e 956 /* For each ts. */
28a35d8a 957 for (i = 0; i < 64; ++i) {
fefa1800 958 ts = *(uint16_t *) &buf[i * 16];
28a35d8a
HE
959 tsdiff = ts - *lastts;
960 *lastts = ts;
961
88c51afe
HE
962 /* Decode partial chunk. */
963 if (limit_chunk && ts > limit_chunk)
e46b8fb1 964 return SR_OK;
88c51afe 965
fefa1800 966 /* Pad last sample up to current point. */
0e1357e8 967 numpad = tsdiff * devc->samples_per_event - clustersize;
28a35d8a 968 if (numpad > 0) {
f78898e9
HE
969 for (j = 0; j < numpad; ++j)
970 samples[j] = *lastsample;
971
972 n = numpad;
28a35d8a
HE
973 }
974
57bbf56b
HE
975 /* Send samples between previous and this timestamp to sigrok. */
976 sent = 0;
977 while (sent < n) {
978 tosend = MIN(2048, n - sent);
979
5a2326a7 980 packet.type = SR_DF_LOGIC;
9c939c51
BV
981 packet.payload = &logic;
982 logic.length = tosend * sizeof(uint16_t);
983 logic.unitsize = 2;
984 logic.data = samples + sent;
3e9b7f9c 985 sr_session_send(devc->cb_data, &packet);
28a35d8a 986
57bbf56b
HE
987 sent += tosend;
988 }
989 n = 0;
990
991 event = (uint16_t *) &buf[i * 16 + 2];
f78898e9
HE
992 cur_sample = 0;
993
994 /* For each event in cluster. */
28a35d8a 995 for (j = 0; j < 7; ++j) {
f78898e9
HE
996
997 /* For each sample in event. */
0e1357e8 998 for (k = 0; k < devc->samples_per_event; ++k) {
f78898e9
HE
999 cur_sample = 0;
1000
ba7dd8bb
UH
1001 /* For each channel. */
1002 for (l = 0; l < devc->num_channels; ++l)
edca2c5c 1003 cur_sample |= (!!(event[j] & (1 << (l *
0e1357e8 1004 devc->samples_per_event + k)))) << l;
f78898e9
HE
1005
1006 samples[n++] = cur_sample;
28a35d8a
HE
1007 }
1008 }
1009
eec5275e 1010 /* Send data up to trigger point (if triggered). */
fefa1800 1011 sent = 0;
57bbf56b
HE
1012 if (i == triggerts) {
1013 /*
36b1c8e6
HE
1014 * Trigger is not always accurate to sample because of
1015 * pipeline delay. However, it always triggers before
1016 * the actual event. We therefore look at the next
1017 * samples to pinpoint the exact position of the trigger.
57bbf56b 1018 */
bdfc7a89 1019 tosend = get_trigger_offset(samples, *lastsample,
0e1357e8 1020 &devc->trigger);
57bbf56b
HE
1021
1022 if (tosend > 0) {
5a2326a7 1023 packet.type = SR_DF_LOGIC;
9c939c51
BV
1024 packet.payload = &logic;
1025 logic.length = tosend * sizeof(uint16_t);
1026 logic.unitsize = 2;
1027 logic.data = samples;
3e9b7f9c 1028 sr_session_send(devc->cb_data, &packet);
57bbf56b
HE
1029
1030 sent += tosend;
1031 }
28a35d8a 1032
5b5ea7c6 1033 /* Only send trigger if explicitly enabled. */
0e1357e8 1034 if (devc->use_triggers) {
5a2326a7 1035 packet.type = SR_DF_TRIGGER;
3e9b7f9c 1036 sr_session_send(devc->cb_data, &packet);
5b5ea7c6 1037 }
28a35d8a 1038 }
57bbf56b 1039
eec5275e 1040 /* Send rest of the chunk to sigrok. */
57bbf56b
HE
1041 tosend = n - sent;
1042
abda62ce 1043 if (tosend > 0) {
5a2326a7 1044 packet.type = SR_DF_LOGIC;
9c939c51
BV
1045 packet.payload = &logic;
1046 logic.length = tosend * sizeof(uint16_t);
1047 logic.unitsize = 2;
1048 logic.data = samples + sent;
3e9b7f9c 1049 sr_session_send(devc->cb_data, &packet);
abda62ce 1050 }
ee492173
HE
1051
1052 *lastsample = samples[n - 1];
28a35d8a
HE
1053 }
1054
e46b8fb1 1055 return SR_OK;
28a35d8a
HE
1056}
1057
6868626b 1058static void download_capture(struct sr_dev_inst *sdi)
28a35d8a 1059{
6868626b 1060 struct dev_context *devc;
28a35d8a
HE
1061 const int chunks_per_read = 32;
1062 unsigned char buf[chunks_per_read * CHUNK_SIZE];
6868626b
BV
1063 int bufsz, i, numchunks, newchunks;
1064
1065 sr_info("Downloading sample data.");
1066
1067 devc = sdi->priv;
1068 devc->state.chunks_downloaded = 0;
1069 numchunks = (devc->state.stoppos + 511) / 512;
1070 newchunks = MIN(chunks_per_read, numchunks - devc->state.chunks_downloaded);
1071
1072 bufsz = sigma_read_dram(devc->state.chunks_downloaded, newchunks, buf, devc);
1073 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1074 (void)bufsz;
1075
1076 /* Find first ts. */
1077 if (devc->state.chunks_downloaded == 0) {
1078 devc->state.lastts = RL16(buf) - 1;
1079 devc->state.lastsample = 0;
1080 }
1081
1082 /* Decode chunks and send them to sigrok. */
1083 for (i = 0; i < newchunks; ++i) {
1084 int limit_chunk = 0;
1085
1086 /* The last chunk may potentially be only in part. */
1087 if (devc->state.chunks_downloaded == numchunks - 1) {
1088 /* Find the last valid timestamp */
1089 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1090 }
1091
1092 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1093 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1094 &devc->state.lastts,
1095 &devc->state.lastsample,
1096 devc->state.triggerpos & 0x1ff,
1097 limit_chunk, sdi);
1098 else
1099 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1100 &devc->state.lastts,
1101 &devc->state.lastsample,
1102 -1, limit_chunk, sdi);
1103
1104 ++devc->state.chunks_downloaded;
1105 }
1106
1107}
1108
1109static int receive_data(int fd, int revents, void *cb_data)
1110{
1111 struct sr_dev_inst *sdi;
1112 struct dev_context *devc;
1113 struct sr_datafeed_packet packet;
94ba4bd6 1114 uint64_t running_msec;
28a35d8a 1115 struct timeval tv;
6868626b
BV
1116 int numchunks;
1117 uint8_t modestatus;
28a35d8a 1118
cb93f8a9
UH
1119 (void)fd;
1120 (void)revents;
28a35d8a 1121
6868626b
BV
1122 sdi = cb_data;
1123 devc = sdi->priv;
1124
805919b0 1125 /* Get the current position. */
0e1357e8 1126 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
805919b0 1127
0e1357e8 1128 if (devc->state.state == SIGMA_IDLE)
805919b0 1129 return TRUE;
28a35d8a 1130
0e1357e8 1131 if (devc->state.state == SIGMA_CAPTURE) {
6868626b
BV
1132 numchunks = (devc->state.stoppos + 511) / 512;
1133
6aac7737
HE
1134 /* Check if the timer has expired, or memory is full. */
1135 gettimeofday(&tv, 0);
0e1357e8
BV
1136 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1137 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
28a35d8a 1138
0e1357e8 1139 if (running_msec < devc->limit_msec && numchunks < 32767)
6868626b 1140 /* Still capturing. */
6aac7737 1141 return TRUE;
6aac7737 1142
6868626b
BV
1143 /* Stop acquisition. */
1144 sigma_set_register(WRITE_MODE, 0x11, devc);
28a35d8a 1145
6868626b
BV
1146 /* Set SDRAM Read Enable. */
1147 sigma_set_register(WRITE_MODE, 0x02, devc);
28a35d8a 1148
6868626b
BV
1149 /* Get the current position. */
1150 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
28a35d8a 1151
6868626b
BV
1152 /* Check if trigger has fired. */
1153 modestatus = sigma_get_register(READ_MODE, devc);
1154 if (modestatus & 0x20)
1155 devc->state.triggerchunk = devc->state.triggerpos / 512;
1156 else
1157 devc->state.triggerchunk = -1;
28a35d8a 1158
6868626b
BV
1159 /* Transfer captured data from device. */
1160 download_capture(sdi);
88c51afe 1161
6868626b
BV
1162 /* All done. */
1163 packet.type = SR_DF_END;
1164 sr_session_send(sdi, &packet);
88c51afe 1165
6868626b 1166 dev_acquisition_stop(sdi, sdi);
28a35d8a
HE
1167 }
1168
28a35d8a
HE
1169 return TRUE;
1170}
1171
c53d793f
HE
1172/* Build a LUT entry used by the trigger functions. */
1173static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1174{
1175 int i, j, k, bit;
1176
ba7dd8bb 1177 /* For each quad channel. */
ee492173 1178 for (i = 0; i < 4; ++i) {
c53d793f 1179 entry[i] = 0xffff;
ee492173 1180
f758d074 1181 /* For each bit in LUT. */
ee492173
HE
1182 for (j = 0; j < 16; ++j)
1183
ba7dd8bb 1184 /* For each channel in quad. */
ee492173
HE
1185 for (k = 0; k < 4; ++k) {
1186 bit = 1 << (i * 4 + k);
1187
c53d793f
HE
1188 /* Set bit in entry */
1189 if ((mask & bit) &&
1190 ((!(value & bit)) !=
4ae1f451 1191 (!(j & (1 << k)))))
c53d793f 1192 entry[i] &= ~(1 << j);
ee492173
HE
1193 }
1194 }
c53d793f 1195}
ee492173 1196
c53d793f
HE
1197/* Add a logical function to LUT mask. */
1198static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1199 int index, int neg, uint16_t *mask)
1200{
1201 int i, j;
1202 int x[2][2], tmp, a, b, aset, bset, rset;
1203
1204 memset(x, 0, 4 * sizeof(int));
1205
1206 /* Trigger detect condition. */
1207 switch (oper) {
1208 case OP_LEVEL:
1209 x[0][1] = 1;
1210 x[1][1] = 1;
1211 break;
1212 case OP_NOT:
1213 x[0][0] = 1;
1214 x[1][0] = 1;
1215 break;
1216 case OP_RISE:
1217 x[0][1] = 1;
1218 break;
1219 case OP_FALL:
1220 x[1][0] = 1;
1221 break;
1222 case OP_RISEFALL:
1223 x[0][1] = 1;
1224 x[1][0] = 1;
1225 break;
1226 case OP_NOTRISE:
1227 x[1][1] = 1;
1228 x[0][0] = 1;
1229 x[1][0] = 1;
1230 break;
1231 case OP_NOTFALL:
1232 x[1][1] = 1;
1233 x[0][0] = 1;
1234 x[0][1] = 1;
1235 break;
1236 case OP_NOTRISEFALL:
1237 x[1][1] = 1;
1238 x[0][0] = 1;
1239 break;
1240 }
1241
1242 /* Transpose if neg is set. */
1243 if (neg) {
ea9cfed7 1244 for (i = 0; i < 2; ++i) {
c53d793f
HE
1245 for (j = 0; j < 2; ++j) {
1246 tmp = x[i][j];
1247 x[i][j] = x[1-i][1-j];
1248 x[1-i][1-j] = tmp;
1249 }
ea9cfed7 1250 }
c53d793f
HE
1251 }
1252
1253 /* Update mask with function. */
1254 for (i = 0; i < 16; ++i) {
1255 a = (i >> (2 * index + 0)) & 1;
1256 b = (i >> (2 * index + 1)) & 1;
1257
1258 aset = (*mask >> i) & 1;
1259 bset = x[b][a];
1260
1261 if (func == FUNC_AND || func == FUNC_NAND)
1262 rset = aset & bset;
1263 else if (func == FUNC_OR || func == FUNC_NOR)
1264 rset = aset | bset;
1265 else if (func == FUNC_XOR || func == FUNC_NXOR)
1266 rset = aset ^ bset;
1267
1268 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1269 rset = !rset;
1270
1271 *mask &= ~(1 << i);
1272
1273 if (rset)
1274 *mask |= 1 << i;
1275 }
1276}
1277
1278/*
1279 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1280 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1281 * set at any time, but a full mask and value can be set (0/1).
1282 */
0e1357e8 1283static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1284{
1285 int i,j;
4ae1f451 1286 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1287
1288 memset(lut, 0, sizeof(struct triggerlut));
1289
1290 /* Contant for simple triggers. */
1291 lut->m4 = 0xa000;
1292
1293 /* Value/mask trigger support. */
0e1357e8 1294 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1295 lut->m2d);
c53d793f
HE
1296
1297 /* Rise/fall trigger support. */
1298 for (i = 0, j = 0; i < 16; ++i) {
0e1357e8
BV
1299 if (devc->trigger.risingmask & (1 << i) ||
1300 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1301 masks[j++] = 1 << i;
1302 }
1303
1304 build_lut_entry(masks[0], masks[0], lut->m0d);
1305 build_lut_entry(masks[1], masks[1], lut->m1d);
1306
1307 /* Add glue logic */
1308 if (masks[0] || masks[1]) {
1309 /* Transition trigger. */
0e1357e8 1310 if (masks[0] & devc->trigger.risingmask)
c53d793f 1311 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1312 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1313 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1314 if (masks[1] & devc->trigger.risingmask)
c53d793f 1315 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1316 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1317 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1318 } else {
1319 /* Only value/mask trigger. */
1320 lut->m3 = 0xffff;
1321 }
ee492173 1322
c53d793f 1323 /* Triggertype: event. */
ee492173
HE
1324 lut->params.selres = 3;
1325
e46b8fb1 1326 return SR_OK;
ee492173
HE
1327}
1328
6078d2c9 1329static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1330{
0e1357e8 1331 struct dev_context *devc;
9ddb2a12 1332 struct clockselect_50 clockselect;
82957b65 1333 int frac, triggerpin, ret;
f4abaa9f 1334 uint8_t triggerselect = 0;
57bbf56b 1335 struct triggerinout triggerinout_conf;
ee492173 1336 struct triggerlut lut;
28a35d8a 1337
e73ffd42
BV
1338 if (sdi->status != SR_ST_ACTIVE)
1339 return SR_ERR_DEV_CLOSED;
1340
0e1357e8 1341 devc = sdi->priv;
28a35d8a 1342
ba7dd8bb
UH
1343 if (configure_channels(sdi) != SR_OK) {
1344 sr_err("Failed to configure channels.");
014359e3
BV
1345 return SR_ERR;
1346 }
1347
ea9cfed7 1348 /* If the samplerate has not been set, default to 200 kHz. */
0e1357e8 1349 if (devc->cur_firmware == -1) {
82957b65
UH
1350 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1351 return ret;
1352 }
e8397563 1353
eec5275e 1354 /* Enter trigger programming mode. */
0e1357e8 1355 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
28a35d8a 1356
eec5275e 1357 /* 100 and 200 MHz mode. */
0e1357e8
BV
1358 if (devc->cur_samplerate >= SR_MHZ(100)) {
1359 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
57bbf56b 1360
a42aec7f
HE
1361 /* Find which pin to trigger on from mask. */
1362 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
0e1357e8 1363 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
a42aec7f
HE
1364 (1 << triggerpin))
1365 break;
1366
1367 /* Set trigger pin and light LED on trigger. */
1368 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1369
1370 /* Default rising edge. */
0e1357e8 1371 if (devc->trigger.fallingmask)
a42aec7f 1372 triggerselect |= 1 << 3;
57bbf56b 1373
eec5275e 1374 /* All other modes. */
0e1357e8
BV
1375 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1376 build_basic_trigger(&lut, devc);
ee492173 1377
0e1357e8 1378 sigma_write_trigger_lut(&lut, devc);
57bbf56b
HE
1379
1380 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1381 }
1382
eec5275e 1383 /* Setup trigger in and out pins to default values. */
57bbf56b
HE
1384 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1385 triggerinout_conf.trgout_bytrigger = 1;
1386 triggerinout_conf.trgout_enable = 1;
1387
28a35d8a 1388 sigma_write_register(WRITE_TRIGGER_OPTION,
57bbf56b 1389 (uint8_t *) &triggerinout_conf,
0e1357e8 1390 sizeof(struct triggerinout), devc);
28a35d8a 1391
eec5275e 1392 /* Go back to normal mode. */
0e1357e8 1393 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
28a35d8a 1394
edca2c5c 1395 /* Set clock select register. */
0e1357e8 1396 if (devc->cur_samplerate == SR_MHZ(200))
ba7dd8bb 1397 /* Enable 4 channels. */
0e1357e8
BV
1398 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1399 else if (devc->cur_samplerate == SR_MHZ(100))
ba7dd8bb 1400 /* Enable 8 channels. */
0e1357e8 1401 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
edca2c5c
HE
1402 else {
1403 /*
9ddb2a12 1404 * 50 MHz mode (or fraction thereof). Any fraction down to
eec5275e 1405 * 50 MHz / 256 can be used, but is not supported by sigrok API.
edca2c5c 1406 */
0e1357e8 1407 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
edca2c5c 1408
9ddb2a12
UH
1409 clockselect.async = 0;
1410 clockselect.fraction = frac;
ba7dd8bb 1411 clockselect.disabled_channels = 0;
edca2c5c
HE
1412
1413 sigma_write_register(WRITE_CLOCK_SELECT,
9ddb2a12 1414 (uint8_t *) &clockselect,
0e1357e8 1415 sizeof(clockselect), devc);
edca2c5c
HE
1416 }
1417
fefa1800 1418 /* Setup maximum post trigger time. */
99965709 1419 sigma_set_register(WRITE_POST_TRIGGER,
0e1357e8 1420 (devc->capture_ratio * 255) / 100, devc);
28a35d8a 1421
eec5275e 1422 /* Start acqusition. */
0e1357e8
BV
1423 gettimeofday(&devc->start_tv, 0);
1424 sigma_set_register(WRITE_MODE, 0x0d, devc);
99965709 1425
3e9b7f9c 1426 devc->cb_data = cb_data;
28a35d8a 1427
3c36c403 1428 /* Send header packet to the session bus. */
29a27196 1429 std_session_send_df_header(cb_data, LOG_PREFIX);
f366e86c 1430
f366e86c 1431 /* Add capture source. */
3ffb6964 1432 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
f366e86c 1433
0e1357e8 1434 devc->state.state = SIGMA_CAPTURE;
6aac7737 1435
e46b8fb1 1436 return SR_OK;
28a35d8a
HE
1437}
1438
6078d2c9 1439static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1440{
0e1357e8 1441 struct dev_context *devc;
6aac7737 1442
3cd3a20b 1443 (void)cb_data;
28a35d8a 1444
6868626b
BV
1445 devc = sdi->priv;
1446 devc->state.state = SIGMA_IDLE;
6aac7737 1447
6868626b 1448 sr_source_remove(0);
3010f21c
UH
1449
1450 return SR_OK;
28a35d8a
HE
1451}
1452
c09f0b57 1453SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
e519ba86 1454 .name = "asix-sigma",
6352d030 1455 .longname = "ASIX SIGMA/SIGMA2",
e519ba86 1456 .api_version = 1,
6078d2c9
UH
1457 .init = init,
1458 .cleanup = cleanup,
1459 .scan = scan,
1460 .dev_list = dev_list,
3b412e3a 1461 .dev_clear = dev_clear,
035a1078
BV
1462 .config_get = config_get,
1463 .config_set = config_set,
a1c743fc 1464 .config_list = config_list,
6078d2c9
UH
1465 .dev_open = dev_open,
1466 .dev_close = dev_close,
1467 .dev_acquisition_start = dev_acquisition_start,
1468 .dev_acquisition_stop = dev_acquisition_stop,
0e1357e8 1469 .priv = NULL,
28a35d8a 1470};