]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: reword list of sample rates, (try to) use 1/2/5 steps
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a 28
b1648dea 29/*
b65649f6
GS
30 * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
31 * (by means of separate firmware images). As well as 50MHz divided by
32 * an integer divider in the 1..256 range (by the "typical" firmware).
33 * Which translates to a strict lower boundary of around 195kHz.
34 *
35 * This driver "suggests" a subset of the available rates by listing a
36 * few discrete values, while setter routines accept any user specified
37 * rate that is supported by the hardware.
b1648dea 38 */
3ba56876 39SR_PRIV const uint64_t samplerates[] = {
b65649f6
GS
40 /* 50MHz and integer divider. 1/2/5 steps (where possible). */
41 SR_KHZ(200), SR_KHZ(500),
42 SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
43 SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
44 /* 100MHz/200MHz, fixed rates in special firmware. */
45 SR_MHZ(100), SR_MHZ(200),
28a35d8a
HE
46};
47
4154a516 48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 49
742368a2 50static const char *firmware_files[] = {
80e717b3
GS
51 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
52 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
53 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
54 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
55 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
56};
57
742368a2
GS
58#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
59
0e1357e8 60static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
61{
62 int ret;
fefa1800 63
0e1357e8 64 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 65 if (ret < 0) {
47f4f073 66 sr_err("ftdi_read_data failed: %s",
0e1357e8 67 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
68 }
69
70 return ret;
71}
72
0e1357e8 73static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
74{
75 int ret;
fefa1800 76
0e1357e8 77 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
8ebad343 78 if (ret < 0)
47f4f073 79 sr_err("ftdi_write_data failed: %s",
0e1357e8 80 ftdi_get_error_string(&devc->ftdic));
8ebad343 81 else if ((size_t) ret != size)
47f4f073 82 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
83
84 return ret;
85}
86
e8686e3a
AG
87/*
88 * NOTE: We chose the buffer size to be large enough to hold any write to the
89 * device. We still print a message just in case.
90 */
3ba56876 91SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
92 struct dev_context *devc)
28a35d8a
HE
93{
94 size_t i;
e8686e3a 95 uint8_t buf[80];
28a35d8a
HE
96 int idx = 0;
97
7c86d853 98 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 99 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 100 len);
e8686e3a
AG
101 return SR_ERR_BUG;
102 }
103
28a35d8a
HE
104 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
105 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
106
0a1f7b09 107 for (i = 0; i < len; i++) {
28a35d8a
HE
108 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
109 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
110 }
111
0e1357e8 112 return sigma_write(buf, idx, devc);
28a35d8a
HE
113}
114
3ba56876 115SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 116{
0e1357e8 117 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
118}
119
99965709 120static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 121 struct dev_context *devc)
28a35d8a
HE
122{
123 uint8_t buf[3];
fefa1800 124
28a35d8a
HE
125 buf[0] = REG_ADDR_LOW | (reg & 0xf);
126 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
127 buf[2] = REG_READ_ADDR;
128
0e1357e8 129 sigma_write(buf, sizeof(buf), devc);
28a35d8a 130
0e1357e8 131 return sigma_read(data, len, devc);
28a35d8a
HE
132}
133
99965709 134static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 135 struct dev_context *devc)
28a35d8a 136{
07411a60
GS
137 /*
138 * Read 6 registers starting at trigger position LSB.
139 * Which yields two 24bit counter values.
140 */
28a35d8a
HE
141 uint8_t buf[] = {
142 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
07411a60
GS
143 REG_READ_ADDR | REG_ADDR_INC,
144 REG_READ_ADDR | REG_ADDR_INC,
145 REG_READ_ADDR | REG_ADDR_INC,
146 REG_READ_ADDR | REG_ADDR_INC,
147 REG_READ_ADDR | REG_ADDR_INC,
148 REG_READ_ADDR | REG_ADDR_INC,
28a35d8a 149 };
28a35d8a
HE
150 uint8_t result[6];
151
0e1357e8 152 sigma_write(buf, sizeof(buf), devc);
28a35d8a 153
0e1357e8 154 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
155
156 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
157 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
158
dc400817
GS
159 /*
160 * These "position" values point to after the event (end of
161 * capture data, trigger condition matched). This is why they
162 * get decremented here. Sample memory consists of 512-byte
163 * chunks with meta data in the upper 64 bytes. Thus when the
164 * decrements takes us into this upper part of the chunk, then
165 * further move backwards to the end of the chunk's data part.
2c33b092
GS
166 *
167 * TODO Re-consider the above comment's validity. It's true
168 * that a 1024byte row contains 512 u16 entities, of which 64
169 * are timestamps and 448 are events with sample data. It's not
170 * true that 64bytes of metadata reside at the top of a 512byte
171 * block in a row.
172 *
173 * TODO Use ROW_MASK and CLUSTERS_PER_ROW here?
dc400817 174 */
57bbf56b 175 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 176 *stoppos -= 64;
dc400817 177 if ((--*triggerpos & 0x1ff) == 0x1ff)
382cb19f 178 *triggerpos -= 64;
57bbf56b 179
28a35d8a
HE
180 return 1;
181}
182
99965709 183static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 184 uint8_t *data, struct dev_context *devc)
28a35d8a 185{
28a35d8a 186 uint8_t buf[4096];
f06fb3e9 187 int idx;
07411a60
GS
188 size_t chunk;
189 int sel;
190 gboolean is_last;
28a35d8a 191
07411a60 192 /* Communicate DRAM start address (memory row, aka samples line). */
f06fb3e9
GS
193 idx = 0;
194 buf[idx++] = startchunk >> 8;
195 buf[idx++] = startchunk & 0xff;
196 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
28a35d8a 197
07411a60
GS
198 /*
199 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
200 * then transfer via USB. Interleave the FPGA's DRAM access and
201 * USB transfer, use alternating buffers (0/1) in the process.
202 */
f06fb3e9 203 idx = 0;
28a35d8a
HE
204 buf[idx++] = REG_DRAM_BLOCK;
205 buf[idx++] = REG_DRAM_WAIT_ACK;
07411a60
GS
206 for (chunk = 0; chunk < numchunks; chunk++) {
207 sel = chunk % 2;
208 is_last = chunk == numchunks - 1;
209 if (!is_last)
210 buf[idx++] = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
211 buf[idx++] = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
212 if (!is_last)
28a35d8a
HE
213 buf[idx++] = REG_DRAM_WAIT_ACK;
214 }
0e1357e8 215 sigma_write(buf, idx, devc);
28a35d8a 216
2c33b092 217 return sigma_read(data, numchunks * ROW_LENGTH_BYTES, devc);
28a35d8a
HE
218}
219
4ae1f451 220/* Upload trigger look-up tables to Sigma. */
3ba56876 221SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
222{
223 int i;
224 uint8_t tmp[2];
225 uint16_t bit;
226
227 /* Transpose the table and send to Sigma. */
0a1f7b09 228 for (i = 0; i < 16; i++) {
ee492173
HE
229 bit = 1 << i;
230
231 tmp[0] = tmp[1] = 0;
232
233 if (lut->m2d[0] & bit)
234 tmp[0] |= 0x01;
235 if (lut->m2d[1] & bit)
236 tmp[0] |= 0x02;
237 if (lut->m2d[2] & bit)
238 tmp[0] |= 0x04;
239 if (lut->m2d[3] & bit)
240 tmp[0] |= 0x08;
241
242 if (lut->m3 & bit)
243 tmp[0] |= 0x10;
244 if (lut->m3s & bit)
245 tmp[0] |= 0x20;
246 if (lut->m4 & bit)
247 tmp[0] |= 0x40;
248
249 if (lut->m0d[0] & bit)
250 tmp[1] |= 0x01;
251 if (lut->m0d[1] & bit)
252 tmp[1] |= 0x02;
253 if (lut->m0d[2] & bit)
254 tmp[1] |= 0x04;
255 if (lut->m0d[3] & bit)
256 tmp[1] |= 0x08;
257
258 if (lut->m1d[0] & bit)
259 tmp[1] |= 0x10;
260 if (lut->m1d[1] & bit)
261 tmp[1] |= 0x20;
262 if (lut->m1d[2] & bit)
263 tmp[1] |= 0x40;
264 if (lut->m1d[3] & bit)
265 tmp[1] |= 0x80;
266
9fb4c632 267 sigma_write_register(WRITE_TRIGGER_SELECT, tmp, sizeof(tmp),
0e1357e8 268 devc);
9fb4c632 269 sigma_set_register(WRITE_TRIGGER_SELECT2, 0x30 | i, devc);
ee492173
HE
270 }
271
272 /* Send the parameters */
9fb4c632 273 sigma_write_register(WRITE_TRIGGER_SELECT, (uint8_t *) &lut->params,
0e1357e8 274 sizeof(lut->params), devc);
ee492173 275
e46b8fb1 276 return SR_OK;
ee492173
HE
277}
278
d5fa188a 279/*
dc0906e2
GS
280 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
281 * uses FTDI bitbang mode for netlist download in slave serial mode.
282 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
283 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
284 * compatible bitbang mode? For maximum code re-use and reduced libftdi
285 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
286 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
287 *
288 * 750kbps rate (four times the speed of sigmalogan) works well for
289 * netlist download. All pins except INIT_B are output pins during
290 * configuration download.
291 *
292 * Some pins are inverted as a byproduct of level shifting circuitry.
293 * That's why high CCLK level (from the cable's point of view) is idle
294 * from the FPGA's perspective.
295 *
296 * The vendor's literature discusses a "suicide sequence" which ends
297 * regular FPGA execution and should be sent before entering bitbang
298 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
299 * a few times.
300 */
301#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
302#define BB_PIN_PROG (1 << 1) /* D1, PROG */
303#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
304#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
305#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
306#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
307#define BB_PIN_DIN (1 << 6) /* D6, DIN */
308#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
309
310#define BB_BITRATE (750 * 1000)
311#define BB_PINMASK (0xff & ~BB_PIN_INIT)
312
313/*
314 * Initiate slave serial mode for configuration download. Which is done
315 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
c749d1ca
GS
316 * initiating the configuration download.
317 *
318 * Run a "suicide sequence" first to terminate the regular FPGA operation
319 * before reconfiguration. The FTDI cable is single channel, and shares
320 * pins which are used for data communication in FIFO mode with pins that
321 * are used for FPGA configuration in bitbang mode. Hardware defaults for
322 * unconfigured hardware, and runtime conditions after FPGA configuration
323 * need to cooperate such that re-configuration of the FPGA can start.
d5fa188a 324 */
c749d1ca 325static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
d5fa188a
MV
326{
327 uint8_t suicide[] = {
dc0906e2
GS
328 BB_PIN_D7 | BB_PIN_D2,
329 BB_PIN_D7 | BB_PIN_D2,
330 BB_PIN_D7 | BB_PIN_D3,
331 BB_PIN_D7 | BB_PIN_D2,
332 BB_PIN_D7 | BB_PIN_D3,
333 BB_PIN_D7 | BB_PIN_D2,
334 BB_PIN_D7 | BB_PIN_D3,
335 BB_PIN_D7 | BB_PIN_D2,
d5fa188a
MV
336 };
337 uint8_t init_array[] = {
dc0906e2
GS
338 BB_PIN_CCLK,
339 BB_PIN_CCLK | BB_PIN_PROG,
340 BB_PIN_CCLK | BB_PIN_PROG,
341 BB_PIN_CCLK,
342 BB_PIN_CCLK,
343 BB_PIN_CCLK,
344 BB_PIN_CCLK,
345 BB_PIN_CCLK,
346 BB_PIN_CCLK,
347 BB_PIN_CCLK,
d5fa188a 348 };
dc0906e2 349 int retries, ret;
d5fa188a
MV
350 uint8_t data;
351
352 /* Section 2. part 1), do the FPGA suicide. */
353 sigma_write(suicide, sizeof(suicide), devc);
354 sigma_write(suicide, sizeof(suicide), devc);
355 sigma_write(suicide, sizeof(suicide), devc);
356 sigma_write(suicide, sizeof(suicide), devc);
c749d1ca 357 g_usleep(10 * 1000);
d5fa188a 358
dc0906e2 359 /* Section 2. part 2), pulse PROG. */
d5fa188a 360 sigma_write(init_array, sizeof(init_array), devc);
c749d1ca 361 g_usleep(10 * 1000);
d5fa188a
MV
362 ftdi_usb_purge_buffers(&devc->ftdic);
363
dc0906e2
GS
364 /* Wait until the FPGA asserts INIT_B. */
365 retries = 10;
366 while (retries--) {
d5fa188a
MV
367 ret = sigma_read(&data, 1, devc);
368 if (ret < 0)
369 return ret;
dc0906e2
GS
370 if (data & BB_PIN_INIT)
371 return SR_OK;
1a46cc62 372 g_usleep(10 * 1000);
d5fa188a
MV
373 }
374
375 return SR_ERR_TIMEOUT;
376}
377
c749d1ca
GS
378/*
379 * This is belt and braces. Re-run the bitbang initiation sequence a few
380 * times should first attempts fail. Failure is rare but can happen (was
381 * observed during driver development).
382 */
383static int sigma_fpga_init_bitbang(struct dev_context *devc)
384{
385 size_t retries;
386 int ret;
387
388 retries = 10;
389 while (retries--) {
390 ret = sigma_fpga_init_bitbang_once(devc);
391 if (ret == SR_OK)
392 return ret;
393 if (ret != SR_ERR_TIMEOUT)
394 return ret;
395 }
396 return ret;
397}
398
64fe661b
MV
399/*
400 * Configure the FPGA for logic-analyzer mode.
401 */
402static int sigma_fpga_init_la(struct dev_context *devc)
403{
dc0906e2
GS
404 /*
405 * TODO Construct the sequence at runtime? Such that request data
406 * and response check values will match more apparently?
407 */
22f64ed8 408 uint8_t mode_regval = WMR_SDRAMINIT;
64fe661b 409 uint8_t logic_mode_start[] = {
dc0906e2 410 /* Read ID register. */
011f1091 411 REG_ADDR_LOW | (READ_ID & 0xf),
84a6ed1a 412 REG_ADDR_HIGH | (READ_ID >> 4),
dc0906e2 413 REG_READ_ADDR,
011f1091 414
dc0906e2 415 /* Write 0x55 to scratch register, read back. */
011f1091
MV
416 REG_ADDR_LOW | (WRITE_TEST & 0xf),
417 REG_DATA_LOW | 0x5,
418 REG_DATA_HIGH_WRITE | 0x5,
dc0906e2 419 REG_READ_ADDR,
011f1091 420
dc0906e2 421 /* Write 0xaa to scratch register, read back. */
011f1091
MV
422 REG_DATA_LOW | 0xa,
423 REG_DATA_HIGH_WRITE | 0xa,
dc0906e2 424 REG_READ_ADDR,
011f1091 425
dc0906e2 426 /* Initiate SDRAM initialization in mode register. */
011f1091 427 REG_ADDR_LOW | (WRITE_MODE & 0xf),
22f64ed8
GS
428 REG_DATA_LOW | (mode_regval & 0xf),
429 REG_DATA_HIGH_WRITE | (mode_regval >> 4),
64fe661b 430 };
64fe661b
MV
431 uint8_t result[3];
432 int ret;
433
dc0906e2
GS
434 /*
435 * Send the command sequence which contains 3 READ requests.
436 * Expect to see the corresponding 3 response bytes.
437 */
64fe661b 438 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
dc0906e2
GS
439 ret = sigma_read(result, ARRAY_SIZE(result), devc);
440 if (ret != ARRAY_SIZE(result))
64fe661b 441 goto err;
64fe661b
MV
442 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
443 goto err;
444
445 return SR_OK;
dc0906e2 446
64fe661b
MV
447err:
448 sr_err("Configuration failed. Invalid reply received.");
449 return SR_ERR;
450}
451
a80226bb
MV
452/*
453 * Read the firmware from a file and transform it into a series of bitbang
454 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
455 * by the caller of this function.
456 */
8e2d6c9d 457static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
458 uint8_t **bb_cmd, gsize *bb_cmd_size)
459{
dc0906e2
GS
460 uint8_t *firmware;
461 size_t file_size;
462 uint8_t *p;
463 size_t l;
a80226bb 464 uint32_t imm;
dc0906e2
GS
465 size_t bb_size;
466 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 467
387825dc 468 /* Retrieve the on-disk firmware file content. */
742368a2
GS
469 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
470 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 471 if (!firmware)
dc0906e2 472 return SR_ERR_IO;
a80226bb 473
387825dc 474 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
475 p = firmware;
476 l = file_size;
a80226bb 477 imm = 0x3f6df2ab;
dc0906e2 478 while (l--) {
a80226bb 479 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 480 *p++ ^= imm & 0xff;
a80226bb
MV
481 }
482
483 /*
387825dc
GS
484 * Generate a sequence of bitbang samples. With two samples per
485 * FPGA configuration bit, providing the level for the DIN signal
486 * as well as two edges for CCLK. See Xilinx UG332 for details
487 * ("slave serial" mode).
488 *
489 * Note that CCLK is inverted in hardware. That's why the
490 * respective bit is first set and then cleared in the bitbang
491 * sample sets. So that the DIN level will be stable when the
492 * data gets sampled at the rising CCLK edge, and the signals'
493 * setup time constraint will be met.
494 *
495 * The caller will put the FPGA into download mode, will send
496 * the bitbang samples, and release the allocated memory.
a80226bb 497 */
a80226bb 498 bb_size = file_size * 8 * 2;
dc0906e2 499 bb_stream = g_try_malloc(bb_size);
a80226bb
MV
500 if (!bb_stream) {
501 sr_err("%s: Failed to allocate bitbang stream", __func__);
dc0906e2
GS
502 g_free(firmware);
503 return SR_ERR_MALLOC;
a80226bb 504 }
a80226bb 505 bbs = bb_stream;
dc0906e2
GS
506 p = firmware;
507 l = file_size;
508 while (l--) {
509 byte = *p++;
510 mask = 0x80;
511 while (mask) {
512 v = (byte & mask) ? BB_PIN_DIN : 0;
513 mask >>= 1;
514 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
515 *bbs++ = v;
516 }
517 }
dc0906e2 518 g_free(firmware);
a80226bb
MV
519
520 /* The transformation completed successfully, return the result. */
521 *bb_cmd = bb_stream;
522 *bb_cmd_size = bb_size;
523
dc0906e2 524 return SR_OK;
a80226bb
MV
525}
526
8e2d6c9d 527static int upload_firmware(struct sr_context *ctx,
80e717b3 528 struct dev_context *devc, enum sigma_firmware_idx firmware_idx)
28a35d8a
HE
529{
530 int ret;
531 unsigned char *buf;
532 unsigned char pins;
533 size_t buf_size;
a9016883 534 const char *firmware;
a9016883 535
80e717b3
GS
536 /* Check for valid firmware file selection. */
537 if (firmware_idx >= ARRAY_SIZE(firmware_files))
538 return SR_ERR_ARG;
4b25cbff 539 firmware = firmware_files[firmware_idx];
80e717b3
GS
540 if (!firmware || !*firmware)
541 return SR_ERR_ARG;
542
543 /* Avoid downloading the same firmware multiple times. */
544 if (devc->firmware_idx == firmware_idx) {
a9016883
GS
545 sr_info("Not uploading firmware file '%s' again.", firmware);
546 return SR_OK;
547 }
28a35d8a 548
1bb9dc82
GS
549 devc->state.state = SIGMA_CONFIG;
550
dc0906e2
GS
551 /* Set the cable to bitbang mode. */
552 ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 553 if (ret < 0) {
47f4f073 554 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 555 ftdi_get_error_string(&devc->ftdic));
7bcf2168 556 return SR_ERR;
28a35d8a 557 }
dc0906e2 558 ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
8bbf7627 559 if (ret < 0) {
47f4f073 560 sr_err("ftdi_set_baudrate failed: %s",
1f4f98e0 561 ftdi_get_error_string(&devc->ftdic));
7bcf2168 562 return SR_ERR;
28a35d8a
HE
563 }
564
dc0906e2 565 /* Initiate FPGA configuration mode. */
d5fa188a
MV
566 ret = sigma_fpga_init_bitbang(devc);
567 if (ret)
568 return ret;
28a35d8a 569
dc0906e2 570 /* Prepare wire format of the firmware image. */
8e2d6c9d 571 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 572 if (ret != SR_OK) {
f3f19d11 573 sr_err("An error occurred while reading the firmware: %s",
499b17e9 574 firmware);
b53738ba 575 return ret;
28a35d8a
HE
576 }
577
dc0906e2 578 /* Write the FPGA netlist to the cable. */
499b17e9 579 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 580 sigma_write(buf, buf_size, devc);
28a35d8a
HE
581
582 g_free(buf);
583
dc0906e2
GS
584 /* Leave bitbang mode and discard pending input data. */
585 ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
8bbf7627 586 if (ret < 0) {
47f4f073 587 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 588 ftdi_get_error_string(&devc->ftdic));
e46b8fb1 589 return SR_ERR;
28a35d8a 590 }
1f4f98e0 591 ftdi_usb_purge_buffers(&devc->ftdic);
29b66a2e 592 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
593 ;
594
64fe661b
MV
595 /* Initialize the FPGA for logic-analyzer mode. */
596 ret = sigma_fpga_init_la(devc);
597 if (ret != SR_OK)
598 return ret;
28a35d8a 599
dc0906e2 600 /* Keep track of successful firmware download completion. */
1bb9dc82 601 devc->state.state = SIGMA_IDLE;
80e717b3 602 devc->firmware_idx = firmware_idx;
47f4f073 603 sr_info("Firmware uploaded.");
e3fff420 604
e46b8fb1 605 return SR_OK;
f6564c8d
HE
606}
607
9a0a606a 608/*
5e78a564
GS
609 * The driver supports user specified time or sample count limits. The
610 * device's hardware supports neither, and hardware compression prevents
611 * reliable detection of "fill levels" (currently reached sample counts)
612 * from register values during acquisition. That's why the driver needs
613 * to apply some heuristics:
9a0a606a 614 *
5e78a564
GS
615 * - The (optional) sample count limit and the (normalized) samplerate
616 * get mapped to an estimated duration for these samples' acquisition.
617 * - The (optional) time limit gets checked as well. The lesser of the
618 * two limits will terminate the data acquisition phase. The exact
619 * sample count limit gets enforced in session feed submission paths.
620 * - Some slack needs to be given to account for hardware pipelines as
621 * well as late storage of last chunks after compression thresholds
622 * are tripped. The resulting data set will span at least the caller
623 * specified period of time, which shall be perfectly acceptable.
624 *
625 * With RLE compression active, up to 64K sample periods can pass before
626 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
627 * times that period for good measure, one is not enough to flush the
628 * hardware pipeline (observation from an earlier experiment).
9a0a606a 629 */
5e78a564 630SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
9a0a606a 631{
5e78a564
GS
632 int ret;
633 GVariant *data;
634 uint64_t user_count, user_msecs;
9a0a606a 635 uint64_t worst_cluster_time_ms;
5e78a564 636 uint64_t count_msecs, acquire_msecs;
9a0a606a 637
5e78a564
GS
638 sr_sw_limits_init(&devc->acq_limits);
639
640 /* Get sample count limit, convert to msecs. */
641 ret = sr_sw_limits_config_get(&devc->cfg_limits,
642 SR_CONF_LIMIT_SAMPLES, &data);
643 if (ret != SR_OK)
644 return ret;
645 user_count = g_variant_get_uint64(data);
646 g_variant_unref(data);
647 count_msecs = 0;
648 if (user_count)
649 count_msecs = 1000 * user_count / devc->samplerate + 1;
650
651 /* Get time limit, which is in msecs. */
652 ret = sr_sw_limits_config_get(&devc->cfg_limits,
653 SR_CONF_LIMIT_MSEC, &data);
654 if (ret != SR_OK)
655 return ret;
656 user_msecs = g_variant_get_uint64(data);
657 g_variant_unref(data);
658
659 /* Get the lesser of them, with both being optional. */
660 acquire_msecs = ~0ull;
661 if (user_count && count_msecs < acquire_msecs)
662 acquire_msecs = count_msecs;
663 if (user_msecs && user_msecs < acquire_msecs)
664 acquire_msecs = user_msecs;
665 if (acquire_msecs == ~0ull)
666 return SR_OK;
667
668 /* Add some slack, and use that timeout for acquisition. */
669 worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
670 acquire_msecs += 2 * worst_cluster_time_ms;
671 data = g_variant_new_uint64(acquire_msecs);
672 ret = sr_sw_limits_config_set(&devc->acq_limits,
673 SR_CONF_LIMIT_MSEC, data);
674 g_variant_unref(data);
675 if (ret != SR_OK)
676 return ret;
677
678 sr_sw_limits_acquisition_start(&devc->acq_limits);
679 return SR_OK;
9a0a606a
GS
680}
681
5e78a564
GS
682/*
683 * Check whether a caller specified samplerate matches the device's
684 * hardware constraints (can be used for acquisition). Optionally yield
685 * a value that approximates the original spec.
686 *
687 * This routine assumes that input specs are in the 200kHz to 200MHz
688 * range of supported rates, and callers typically want to normalize a
689 * given value to the hardware capabilities. Values in the 50MHz range
690 * get rounded up by default, to avoid a more expensive check for the
691 * closest match, while higher sampling rate is always desirable during
692 * measurement. Input specs which exactly match hardware capabilities
693 * remain unaffected. Because 100/200MHz rates also limit the number of
694 * available channels, they are not suggested by this routine, instead
695 * callers need to pick them consciously.
696 */
697SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
698{
699 uint64_t div, rate;
700
701 /* Accept exact matches for 100/200MHz. */
702 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
703 if (have_rate)
704 *have_rate = want_rate;
705 return SR_OK;
706 }
707
708 /* Accept 200kHz to 50MHz range, and map to near value. */
709 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
710 div = SR_MHZ(50) / want_rate;
711 rate = SR_MHZ(50) / div;
712 if (have_rate)
713 *have_rate = rate;
714 return SR_OK;
715 }
716
717 return SR_ERR_ARG;
718}
719
720SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
f6564c8d 721{
2c9c0df8 722 struct dev_context *devc;
8e2d6c9d 723 struct drv_context *drvc;
5e78a564 724 uint64_t samplerate;
2c9c0df8 725 int ret;
ac9534f4 726 int num_channels;
f6564c8d 727
2c9c0df8 728 devc = sdi->priv;
8e2d6c9d 729 drvc = sdi->driver->context;
f4abaa9f 730
5e78a564
GS
731 /* Accept any caller specified rate which the hardware supports. */
732 ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
733 if (ret != SR_OK)
734 return ret;
f6564c8d 735
2f7e529c
GS
736 /*
737 * Depending on the samplerates of 200/100/50- MHz, specific
738 * firmware is required and higher rates might limit the set
739 * of available channels.
740 */
ac9534f4 741 num_channels = devc->num_channels;
59df0c77 742 if (samplerate <= SR_MHZ(50)) {
80e717b3 743 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
ac9534f4 744 num_channels = 16;
6b2d3385 745 } else if (samplerate == SR_MHZ(100)) {
80e717b3 746 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
ac9534f4 747 num_channels = 8;
6b2d3385 748 } else if (samplerate == SR_MHZ(200)) {
80e717b3 749 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
ac9534f4 750 num_channels = 4;
f78898e9 751 }
f6564c8d 752
2f7e529c 753 /*
5e78a564
GS
754 * The samplerate affects the number of available logic channels
755 * as well as a sample memory layout detail (the number of samples
756 * which the device will communicate within an "event").
2f7e529c 757 */
6b2d3385 758 if (ret == SR_OK) {
ac9534f4 759 devc->num_channels = num_channels;
6b2d3385 760 devc->samples_per_event = 16 / devc->num_channels;
6b2d3385 761 }
f6564c8d 762
e8397563 763 return ret;
28a35d8a
HE
764}
765
98b43eb3
GS
766/*
767 * Arrange for a session feed submit buffer. A queue where a number of
768 * samples gets accumulated to reduce the number of send calls. Which
769 * also enforces an optional sample count limit for data acquisition.
770 *
771 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
772 * driver provides a fixed channel layout regardless of samplerate).
773 */
774
775#define CHUNK_SIZE (4 * 1024 * 1024)
776
777struct submit_buffer {
778 size_t unit_size;
779 size_t max_samples, curr_samples;
780 uint8_t *sample_data;
781 uint8_t *write_pointer;
782 struct sr_dev_inst *sdi;
783 struct sr_datafeed_packet packet;
784 struct sr_datafeed_logic logic;
98b43eb3
GS
785};
786
787static int alloc_submit_buffer(struct sr_dev_inst *sdi)
788{
789 struct dev_context *devc;
790 struct submit_buffer *buffer;
791 size_t size;
792
793 devc = sdi->priv;
794
795 buffer = g_malloc0(sizeof(*buffer));
796 devc->buffer = buffer;
797
798 buffer->unit_size = sizeof(uint16_t);
799 size = CHUNK_SIZE;
800 size /= buffer->unit_size;
801 buffer->max_samples = size;
802 size *= buffer->unit_size;
803 buffer->sample_data = g_try_malloc0(size);
804 if (!buffer->sample_data)
805 return SR_ERR_MALLOC;
806 buffer->write_pointer = buffer->sample_data;
5e78a564 807 sr_sw_limits_init(&devc->feed_limits);
98b43eb3
GS
808
809 buffer->sdi = sdi;
810 memset(&buffer->logic, 0, sizeof(buffer->logic));
811 buffer->logic.unitsize = buffer->unit_size;
812 buffer->logic.data = buffer->sample_data;
813 memset(&buffer->packet, 0, sizeof(buffer->packet));
814 buffer->packet.type = SR_DF_LOGIC;
815 buffer->packet.payload = &buffer->logic;
816
817 return SR_OK;
818}
819
5e78a564 820static int setup_submit_limit(struct dev_context *devc)
98b43eb3 821{
5e78a564 822 struct sr_sw_limits *limits;
98b43eb3
GS
823 int ret;
824 GVariant *data;
825 uint64_t total;
826
5e78a564 827 limits = &devc->feed_limits;
98b43eb3 828
5e78a564
GS
829 ret = sr_sw_limits_config_get(&devc->cfg_limits,
830 SR_CONF_LIMIT_SAMPLES, &data);
831 if (ret != SR_OK)
832 return ret;
833 total = g_variant_get_uint64(data);
834 g_variant_unref(data);
835
836 sr_sw_limits_init(limits);
98b43eb3
GS
837 if (total) {
838 data = g_variant_new_uint64(total);
5e78a564 839 ret = sr_sw_limits_config_set(limits,
98b43eb3
GS
840 SR_CONF_LIMIT_SAMPLES, data);
841 g_variant_unref(data);
842 if (ret != SR_OK)
843 return ret;
844 }
845
5e78a564 846 sr_sw_limits_acquisition_start(limits);
98b43eb3
GS
847
848 return SR_OK;
849}
850
851static void free_submit_buffer(struct dev_context *devc)
852{
853 struct submit_buffer *buffer;
854
855 if (!devc)
856 return;
857
858 buffer = devc->buffer;
859 if (!buffer)
860 return;
861 devc->buffer = NULL;
862
863 g_free(buffer->sample_data);
864 g_free(buffer);
865}
866
867static int flush_submit_buffer(struct dev_context *devc)
868{
869 struct submit_buffer *buffer;
870 int ret;
871
872 buffer = devc->buffer;
873
874 /* Is queued sample data available? */
875 if (!buffer->curr_samples)
876 return SR_OK;
877
878 /* Submit to the session feed. */
879 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
880 ret = sr_session_send(buffer->sdi, &buffer->packet);
881 if (ret != SR_OK)
882 return ret;
883
884 /* Rewind queue position. */
885 buffer->curr_samples = 0;
886 buffer->write_pointer = buffer->sample_data;
887
888 return SR_OK;
889}
890
891static int addto_submit_buffer(struct dev_context *devc,
892 uint16_t sample, size_t count)
893{
894 struct submit_buffer *buffer;
5e78a564 895 struct sr_sw_limits *limits;
98b43eb3
GS
896 int ret;
897
898 buffer = devc->buffer;
5e78a564
GS
899 limits = &devc->feed_limits;
900 if (sr_sw_limits_check(limits))
98b43eb3
GS
901 count = 0;
902
903 /*
904 * Individually accumulate and check each sample, such that
905 * accumulation between flushes won't exceed local storage, and
906 * enforcement of user specified limits is exact.
907 */
908 while (count--) {
909 WL16(buffer->write_pointer, sample);
910 buffer->write_pointer += buffer->unit_size;
911 buffer->curr_samples++;
912 if (buffer->curr_samples == buffer->max_samples) {
913 ret = flush_submit_buffer(devc);
914 if (ret != SR_OK)
915 return ret;
916 }
5e78a564
GS
917 sr_sw_limits_update_samples_read(limits, 1);
918 if (sr_sw_limits_check(limits))
98b43eb3
GS
919 break;
920 }
921
922 return SR_OK;
923}
924
c53d793f
HE
925/*
926 * In 100 and 200 MHz mode, only a single pin rising/falling can be
927 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 928 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
929 *
930 * The Sigma supports complex triggers using boolean expressions, but this
931 * has not been implemented yet.
932 */
3ba56876 933SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 934{
39c64c6a
BV
935 struct dev_context *devc;
936 struct sr_trigger *trigger;
937 struct sr_trigger_stage *stage;
938 struct sr_trigger_match *match;
939 const GSList *l, *m;
940 int channelbit, trigger_set;
57bbf56b 941
39c64c6a 942 devc = sdi->priv;
0e1357e8 943 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 944 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
945 return SR_OK;
946
947 trigger_set = 0;
948 for (l = trigger->stages; l; l = l->next) {
949 stage = l->data;
950 for (m = stage->matches; m; m = m->next) {
951 match = m->data;
952 if (!match->channel->enabled)
953 /* Ignore disabled channels with a trigger. */
954 continue;
955 channelbit = 1 << (match->channel->index);
5e78a564 956 if (devc->samplerate >= SR_MHZ(100)) {
39c64c6a
BV
957 /* Fast trigger support. */
958 if (trigger_set) {
959 sr_err("Only a single pin trigger is "
960 "supported in 100 and 200MHz mode.");
961 return SR_ERR;
962 }
963 if (match->match == SR_TRIGGER_FALLING)
964 devc->trigger.fallingmask |= channelbit;
965 else if (match->match == SR_TRIGGER_RISING)
966 devc->trigger.risingmask |= channelbit;
967 else {
968 sr_err("Only rising/falling trigger is "
969 "supported in 100 and 200MHz mode.");
970 return SR_ERR;
971 }
eec5275e 972
0a1f7b09 973 trigger_set++;
39c64c6a
BV
974 } else {
975 /* Simple trigger support (event). */
976 if (match->match == SR_TRIGGER_ONE) {
977 devc->trigger.simplevalue |= channelbit;
978 devc->trigger.simplemask |= channelbit;
8ebad343 979 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
980 devc->trigger.simplevalue &= ~channelbit;
981 devc->trigger.simplemask |= channelbit;
8ebad343 982 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 983 devc->trigger.fallingmask |= channelbit;
0a1f7b09 984 trigger_set++;
8ebad343 985 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 986 devc->trigger.risingmask |= channelbit;
0a1f7b09 987 trigger_set++;
39c64c6a
BV
988 }
989
990 /*
991 * Actually, Sigma supports 2 rising/falling triggers,
992 * but they are ORed and the current trigger syntax
993 * does not permit ORed triggers.
994 */
995 if (trigger_set > 1) {
996 sr_err("Only 1 rising/falling trigger "
997 "is supported.");
998 return SR_ERR;
999 }
ee492173 1000 }
ee492173 1001 }
57bbf56b
HE
1002 }
1003
e46b8fb1 1004 return SR_OK;
57bbf56b
HE
1005}
1006
36b1c8e6 1007/* Software trigger to determine exact trigger position. */
5fc01191 1008static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
1009 struct sigma_trigger *t)
1010{
1011 int i;
5fc01191 1012 uint16_t sample = 0;
36b1c8e6 1013
0a1f7b09 1014 for (i = 0; i < 8; i++) {
36b1c8e6 1015 if (i > 0)
5fc01191
MV
1016 last_sample = sample;
1017 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
1018
1019 /* Simple triggers. */
5fc01191 1020 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
1021 continue;
1022
1023 /* Rising edge. */
5fc01191
MV
1024 if (((last_sample & t->risingmask) != 0) ||
1025 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
1026 continue;
1027
1028 /* Falling edge. */
bdfc7a89 1029 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 1030 (sample & t->fallingmask) != 0)
36b1c8e6
HE
1031 continue;
1032
1033 break;
1034 }
1035
1036 /* If we did not match, return original trigger pos. */
1037 return i & 0x7;
1038}
1039
98b43eb3
GS
1040static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1041{
1042 /* TODO
1043 * Check whether the combination of this very sample and the
1044 * previous state match the configured trigger condition. This
1045 * improves the resolution of the trigger marker's position.
1046 * The hardware provided position is coarse, and may point to
1047 * a position before the actual match.
1048 *
1049 * See the previous get_trigger_offset() implementation. This
1050 * code needs to get re-used here.
1051 */
1052 (void)devc;
1053 (void)sample;
1054 (void)get_trigger_offset;
1055
1056 return FALSE;
1057}
1058
1059static int check_and_submit_sample(struct dev_context *devc,
1060 uint16_t sample, size_t count, gboolean check_trigger)
1061{
1062 gboolean triggered;
1063 int ret;
1064
1065 triggered = check_trigger && sample_matches_trigger(devc, sample);
1066 if (triggered) {
1067 ret = flush_submit_buffer(devc);
1068 if (ret != SR_OK)
1069 return ret;
1070 ret = std_session_send_df_trigger(devc->buffer->sdi);
1071 if (ret != SR_OK)
1072 return ret;
1073 }
1074
1075 ret = addto_submit_buffer(devc, sample, count);
1076 if (ret != SR_OK)
1077 return ret;
1078
1079 return SR_OK;
1080}
1081
3513d965
MV
1082/*
1083 * Return the timestamp of "DRAM cluster".
1084 */
1085static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1086{
1087 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
1088}
1089
0498f743
GS
1090/*
1091 * Return one 16bit data entity of a DRAM cluster at the specified index.
1092 */
1093static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1094{
1095 uint16_t sample;
1096
1097 sample = 0;
1098 sample |= cl->samples[idx].sample_lo << 0;
1099 sample |= cl->samples[idx].sample_hi << 8;
3281cf59 1100 sample = (sample >> 8) | (sample << 8);
0498f743
GS
1101 return sample;
1102}
1103
85c032e4
GS
1104/*
1105 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1106 * One 16bit item contains two samples of 8bits each. The bits of
1107 * multiple samples are interleaved.
1108 */
1109static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
1110{
1111 uint16_t outdata;
1112
1113 indata >>= idx;
1114 outdata = 0;
1115 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1116 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1117 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1118 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1119 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1120 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1121 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1122 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1123 return outdata;
1124}
1125
1126/*
1127 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1128 * One 16bit item contains four samples of 4bits each. The bits of
1129 * multiple samples are interleaved.
1130 */
1131static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
1132{
1133 uint16_t outdata;
1134
1135 indata >>= idx;
1136 outdata = 0;
1137 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1138 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1139 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1140 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1141 return outdata;
1142}
1143
98b43eb3
GS
1144static void sigma_decode_dram_cluster(struct dev_context *devc,
1145 struct sigma_dram_cluster *dram_cluster,
1146 size_t events_in_cluster, gboolean triggered)
23239b5c 1147{
98b43eb3 1148 struct sigma_state *ss;
85c032e4 1149 uint16_t tsdiff, ts, sample, item16;
23239b5c 1150 unsigned int i;
23239b5c 1151
98b43eb3
GS
1152 if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
1153 triggered = FALSE;
23239b5c
MV
1154
1155 /*
468f17f2
GS
1156 * If this cluster is not adjacent to the previously received
1157 * cluster, then send the appropriate number of samples with the
1158 * previous values to the sigrok session. This "decodes RLE".
2c33b092 1159 *
98b43eb3
GS
1160 * These samples cannot match the trigger since they just repeat
1161 * the previously submitted data pattern. (This assumption holds
1162 * for simple level and edge triggers. It would not for timed or
1163 * counted conditions, which currently are not supported.)
23239b5c 1164 */
98b43eb3
GS
1165 ss = &devc->state;
1166 ts = sigma_dram_cluster_ts(dram_cluster);
1167 tsdiff = ts - ss->lastts;
1168 if (tsdiff > 0) {
1169 size_t count;
1170 count = tsdiff * devc->samples_per_event;
1171 (void)check_and_submit_sample(devc, ss->lastsample, count, FALSE);
23239b5c 1172 }
98b43eb3 1173 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
1174
1175 /*
98b43eb3
GS
1176 * Grab sample data from the current cluster and prepare their
1177 * submission to the session feed. Handle samplerate dependent
1178 * memory layout of sample data. Accumulation of data chunks
1179 * before submission is transparent to this code path, specific
1180 * buffer depth is neither assumed nor required here.
23239b5c 1181 */
0498f743 1182 sample = 0;
23239b5c 1183 for (i = 0; i < events_in_cluster; i++) {
85c032e4 1184 item16 = sigma_dram_cluster_data(dram_cluster, i);
5e78a564 1185 if (devc->samplerate == SR_MHZ(200)) {
85c032e4 1186 sample = sigma_deinterlace_200mhz_data(item16, 0);
98b43eb3 1187 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1188 sample = sigma_deinterlace_200mhz_data(item16, 1);
98b43eb3 1189 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1190 sample = sigma_deinterlace_200mhz_data(item16, 2);
98b43eb3 1191 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1192 sample = sigma_deinterlace_200mhz_data(item16, 3);
98b43eb3 1193 check_and_submit_sample(devc, sample, 1, triggered);
5e78a564 1194 } else if (devc->samplerate == SR_MHZ(100)) {
85c032e4 1195 sample = sigma_deinterlace_100mhz_data(item16, 0);
98b43eb3 1196 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1197 sample = sigma_deinterlace_100mhz_data(item16, 1);
98b43eb3 1198 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4
GS
1199 } else {
1200 sample = item16;
98b43eb3 1201 check_and_submit_sample(devc, sample, 1, triggered);
23239b5c 1202 }
23239b5c 1203 }
0498f743 1204 ss->lastsample = sample;
23239b5c
MV
1205}
1206
28a35d8a 1207/*
fefa1800
UH
1208 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1209 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
1210 *
1211 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1212 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1213 * For 50 MHz and below, events contain one sample for each channel,
1214 * spread 20 ns apart.
28a35d8a 1215 */
98b43eb3
GS
1216static int decode_chunk_ts(struct dev_context *devc,
1217 struct sigma_dram_line *dram_line,
1218 size_t events_in_line, size_t trigger_event)
28a35d8a 1219{
3628074d 1220 struct sigma_dram_cluster *dram_cluster;
f06fb3e9 1221 unsigned int clusters_in_line;
5fc01191 1222 unsigned int events_in_cluster;
23239b5c 1223 unsigned int i;
98b43eb3 1224 uint32_t trigger_cluster;
f06fb3e9 1225
f06fb3e9
GS
1226 clusters_in_line = events_in_line;
1227 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1228 clusters_in_line /= EVENTS_PER_CLUSTER;
1229 trigger_cluster = ~0;
ee492173 1230
4ae1f451 1231 /* Check if trigger is in this chunk. */
2c33b092 1232 if (trigger_event < EVENTS_PER_ROW) {
5e78a564 1233 if (devc->samplerate <= SR_MHZ(50)) {
1e23158b
MV
1234 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1235 trigger_event);
1236 }
57bbf56b 1237
f3f19d11 1238 /* Find in which cluster the trigger occurred. */
1e23158b 1239 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1240 }
28a35d8a 1241
5fc01191
MV
1242 /* For each full DRAM cluster. */
1243 for (i = 0; i < clusters_in_line; i++) {
3628074d 1244 dram_cluster = &dram_line->cluster[i];
5fc01191 1245
5fc01191 1246 /* The last cluster might not be full. */
23239b5c
MV
1247 if ((i == clusters_in_line - 1) &&
1248 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1249 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1250 } else {
5fc01191 1251 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1252 }
ee492173 1253
98b43eb3
GS
1254 sigma_decode_dram_cluster(devc, dram_cluster,
1255 events_in_cluster, i == trigger_cluster);
28a35d8a
HE
1256 }
1257
e46b8fb1 1258 return SR_OK;
28a35d8a
HE
1259}
1260
6057d9fa 1261static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1262{
e15e5873 1263 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1264
1265 struct dev_context *devc;
fd830beb 1266 struct sigma_dram_line *dram_line;
c6648b66 1267 int bufsz;
462fe786 1268 uint32_t stoppos, triggerpos;
6057d9fa 1269 uint8_t modestatus;
c6648b66
MV
1270 uint32_t i;
1271 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1272 uint32_t dl_first_line, dl_line;
f06fb3e9
GS
1273 uint32_t dl_events_in_line;
1274 uint32_t trg_line, trg_event;
98b43eb3 1275 int ret;
f06fb3e9
GS
1276
1277 devc = sdi->priv;
2c33b092 1278 dl_events_in_line = EVENTS_PER_ROW;
c6648b66 1279
6868626b 1280 sr_info("Downloading sample data.");
dde0175d 1281 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1282
22f64ed8
GS
1283 /*
1284 * Ask the hardware to stop data acquisition. Reception of the
1285 * FORCESTOP request makes the hardware "disable RLE" (store
1286 * clusters to DRAM regardless of whether pin state changes) and
1287 * raise the POSTTRIGGERED flag.
1288 */
1289 sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
1290 do {
f73b00b6 1291 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1292 sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
f73b00b6
DT
1293 return FALSE;
1294 }
22f64ed8 1295 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1296
1297 /* Set SDRAM Read Enable. */
22f64ed8 1298 sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
6057d9fa
MV
1299
1300 /* Get the current position. */
462fe786 1301 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1302
1303 /* Check if trigger has fired. */
f73b00b6 1304 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1305 sr_err("failed to read READ_MODE register");
f73b00b6
DT
1306 return FALSE;
1307 }
dc400817
GS
1308 trg_line = ~0;
1309 trg_event = ~0;
22f64ed8 1310 if (modestatus & RMR_TRIGGERED) {
c6648b66 1311 trg_line = triggerpos >> 9;
1e23158b
MV
1312 trg_event = triggerpos & 0x1ff;
1313 }
6057d9fa 1314
c6648b66 1315 /*
74d453ab
GS
1316 * Determine how many "DRAM lines" of 1024 bytes each we need to
1317 * retrieve from the Sigma hardware, so that we have a complete
1318 * set of samples. Note that the last line need not contain 64
1319 * clusters, it might be partially filled only.
1320 *
1321 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1322 * around. Since the status of the very next line is uncertain in
2c33b092 1323 * that case, we skip it and start reading from the next line.
c6648b66 1324 */
2c33b092
GS
1325 dl_first_line = 0;
1326 dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
74d453ab
GS
1327 if (modestatus & RMR_ROUND) {
1328 dl_first_line = dl_lines_total + 1;
2c33b092 1329 dl_lines_total = ROW_COUNT - 2;
74d453ab 1330 }
44081095
DT
1331 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1332 if (!dram_line)
1333 return FALSE;
98b43eb3
GS
1334 ret = alloc_submit_buffer(sdi);
1335 if (ret != SR_OK)
1336 return FALSE;
5e78a564 1337 ret = setup_submit_limit(devc);
98b43eb3
GS
1338 if (ret != SR_OK)
1339 return FALSE;
c6648b66 1340 dl_lines_done = 0;
c6648b66
MV
1341 while (dl_lines_total > dl_lines_done) {
1342 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1343 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1344
74d453ab 1345 dl_line = dl_first_line + dl_lines_done;
2c33b092 1346 dl_line %= ROW_COUNT;
74d453ab 1347 bufsz = sigma_read_dram(dl_line, dl_lines_curr,
f41a4cae 1348 (uint8_t *)dram_line, devc);
c6648b66
MV
1349 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1350 (void)bufsz;
6868626b 1351
c6648b66
MV
1352 /* This is the first DRAM line, so find the initial timestamp. */
1353 if (dl_lines_done == 0) {
3513d965
MV
1354 devc->state.lastts =
1355 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1356 devc->state.lastsample = 0;
6868626b
BV
1357 }
1358
c6648b66 1359 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1360 uint32_t trigger_event = ~0;
c6648b66
MV
1361 /* The last "DRAM line" can be only partially full. */
1362 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1363 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1364
e69ad48e 1365 /* Test if the trigger happened on this line. */
c6648b66 1366 if (dl_lines_done + i == trg_line)
1e23158b 1367 trigger_event = trg_event;
e69ad48e 1368
98b43eb3
GS
1369 decode_chunk_ts(devc, dram_line + i,
1370 dl_events_in_line, trigger_event);
c6648b66 1371 }
6868626b 1372
c6648b66 1373 dl_lines_done += dl_lines_curr;
6868626b 1374 }
98b43eb3
GS
1375 flush_submit_buffer(devc);
1376 free_submit_buffer(devc);
dde0175d 1377 g_free(dram_line);
6868626b 1378
bee2b016 1379 std_session_send_df_end(sdi);
6057d9fa 1380
dde0175d 1381 devc->state.state = SIGMA_IDLE;
d2f7c417 1382 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1383
1384 return TRUE;
6868626b
BV
1385}
1386
d4051930 1387/*
74d453ab
GS
1388 * Periodically check the Sigma status when in CAPTURE mode. This routine
1389 * checks whether the configured sample count or sample time have passed,
1390 * and will stop acquisition and download the acquired samples.
d4051930
MV
1391 */
1392static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1393{
f06fb3e9 1394 struct dev_context *devc;
28a35d8a 1395
f06fb3e9 1396 devc = sdi->priv;
5e78a564 1397 if (sr_sw_limits_check(&devc->acq_limits))
6057d9fa 1398 return download_capture(sdi);
00c86508 1399
d4051930
MV
1400 return TRUE;
1401}
28a35d8a 1402
3ba56876 1403SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1404{
1405 struct sr_dev_inst *sdi;
1406 struct dev_context *devc;
88c51afe 1407
d4051930
MV
1408 (void)fd;
1409 (void)revents;
88c51afe 1410
d4051930
MV
1411 sdi = cb_data;
1412 devc = sdi->priv;
1413
1414 if (devc->state.state == SIGMA_IDLE)
1415 return TRUE;
1416
dde0175d
GS
1417 /*
1418 * When the application has requested to stop the acquisition,
1419 * then immediately start downloading sample data. Otherwise
1420 * keep checking configured limits which will terminate the
1421 * acquisition and initiate download.
1422 */
1423 if (devc->state.state == SIGMA_STOPPING)
1424 return download_capture(sdi);
d4051930
MV
1425 if (devc->state.state == SIGMA_CAPTURE)
1426 return sigma_capture_mode(sdi);
28a35d8a 1427
28a35d8a
HE
1428 return TRUE;
1429}
1430
c53d793f
HE
1431/* Build a LUT entry used by the trigger functions. */
1432static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1433{
1434 int i, j, k, bit;
1435
ba7dd8bb 1436 /* For each quad channel. */
0a1f7b09 1437 for (i = 0; i < 4; i++) {
c53d793f 1438 entry[i] = 0xffff;
ee492173 1439
f758d074 1440 /* For each bit in LUT. */
0a1f7b09 1441 for (j = 0; j < 16; j++)
ee492173 1442
ba7dd8bb 1443 /* For each channel in quad. */
0a1f7b09 1444 for (k = 0; k < 4; k++) {
ee492173
HE
1445 bit = 1 << (i * 4 + k);
1446
c53d793f 1447 /* Set bit in entry */
0a1f7b09
UH
1448 if ((mask & bit) && ((!(value & bit)) !=
1449 (!(j & (1 << k)))))
c53d793f 1450 entry[i] &= ~(1 << j);
ee492173
HE
1451 }
1452 }
c53d793f 1453}
ee492173 1454
c53d793f
HE
1455/* Add a logical function to LUT mask. */
1456static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1457 int index, int neg, uint16_t *mask)
1458{
1459 int i, j;
1460 int x[2][2], tmp, a, b, aset, bset, rset;
1461
1462 memset(x, 0, 4 * sizeof(int));
1463
1464 /* Trigger detect condition. */
1465 switch (oper) {
1466 case OP_LEVEL:
1467 x[0][1] = 1;
1468 x[1][1] = 1;
1469 break;
1470 case OP_NOT:
1471 x[0][0] = 1;
1472 x[1][0] = 1;
1473 break;
1474 case OP_RISE:
1475 x[0][1] = 1;
1476 break;
1477 case OP_FALL:
1478 x[1][0] = 1;
1479 break;
1480 case OP_RISEFALL:
1481 x[0][1] = 1;
1482 x[1][0] = 1;
1483 break;
1484 case OP_NOTRISE:
1485 x[1][1] = 1;
1486 x[0][0] = 1;
1487 x[1][0] = 1;
1488 break;
1489 case OP_NOTFALL:
1490 x[1][1] = 1;
1491 x[0][0] = 1;
1492 x[0][1] = 1;
1493 break;
1494 case OP_NOTRISEFALL:
1495 x[1][1] = 1;
1496 x[0][0] = 1;
1497 break;
1498 }
1499
1500 /* Transpose if neg is set. */
1501 if (neg) {
0a1f7b09
UH
1502 for (i = 0; i < 2; i++) {
1503 for (j = 0; j < 2; j++) {
c53d793f 1504 tmp = x[i][j];
0a1f7b09
UH
1505 x[i][j] = x[1 - i][1 - j];
1506 x[1 - i][1 - j] = tmp;
c53d793f 1507 }
ea9cfed7 1508 }
c53d793f
HE
1509 }
1510
1511 /* Update mask with function. */
0a1f7b09 1512 for (i = 0; i < 16; i++) {
c53d793f
HE
1513 a = (i >> (2 * index + 0)) & 1;
1514 b = (i >> (2 * index + 1)) & 1;
1515
1516 aset = (*mask >> i) & 1;
1517 bset = x[b][a];
1518
382cb19f 1519 rset = 0;
c53d793f
HE
1520 if (func == FUNC_AND || func == FUNC_NAND)
1521 rset = aset & bset;
1522 else if (func == FUNC_OR || func == FUNC_NOR)
1523 rset = aset | bset;
1524 else if (func == FUNC_XOR || func == FUNC_NXOR)
1525 rset = aset ^ bset;
1526
1527 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1528 rset = !rset;
1529
1530 *mask &= ~(1 << i);
1531
1532 if (rset)
1533 *mask |= 1 << i;
1534 }
1535}
1536
1537/*
1538 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1539 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1540 * set at any time, but a full mask and value can be set (0/1).
1541 */
3ba56876 1542SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1543{
1544 int i,j;
4ae1f451 1545 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1546
1547 memset(lut, 0, sizeof(struct triggerlut));
1548
f3f19d11 1549 /* Constant for simple triggers. */
c53d793f
HE
1550 lut->m4 = 0xa000;
1551
1552 /* Value/mask trigger support. */
0e1357e8 1553 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1554 lut->m2d);
c53d793f
HE
1555
1556 /* Rise/fall trigger support. */
0a1f7b09 1557 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1558 if (devc->trigger.risingmask & (1 << i) ||
1559 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1560 masks[j++] = 1 << i;
1561 }
1562
1563 build_lut_entry(masks[0], masks[0], lut->m0d);
1564 build_lut_entry(masks[1], masks[1], lut->m1d);
1565
1566 /* Add glue logic */
1567 if (masks[0] || masks[1]) {
1568 /* Transition trigger. */
0e1357e8 1569 if (masks[0] & devc->trigger.risingmask)
c53d793f 1570 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1571 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1572 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1573 if (masks[1] & devc->trigger.risingmask)
c53d793f 1574 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1575 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1576 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1577 } else {
1578 /* Only value/mask trigger. */
1579 lut->m3 = 0xffff;
1580 }
ee492173 1581
c53d793f 1582 /* Triggertype: event. */
ee492173
HE
1583 lut->params.selres = 3;
1584
e46b8fb1 1585 return SR_OK;
ee492173 1586}