]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: eliminate magic numbers in FPGA configuration
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a 28
b1648dea
MV
29/*
30 * The ASIX Sigma supports arbitrary integer frequency divider in
31 * the 50MHz mode. The divider is in range 1...256 , allowing for
32 * very precise sampling rate selection. This driver supports only
33 * a subset of the sampling rates.
34 */
3ba56876 35SR_PRIV const uint64_t samplerates[] = {
b1648dea
MV
36 SR_KHZ(200), /* div=250 */
37 SR_KHZ(250), /* div=200 */
38 SR_KHZ(500), /* div=100 */
39 SR_MHZ(1), /* div=50 */
40 SR_MHZ(5), /* div=10 */
41 SR_MHZ(10), /* div=5 */
42 SR_MHZ(25), /* div=2 */
43 SR_MHZ(50), /* div=1 */
44 SR_MHZ(100), /* Special FW needed */
45 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
46};
47
4154a516 48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 49
742368a2
GS
50static const char *firmware_files[] = {
51 "asix-sigma-50.fw", /* Up to 50MHz sample rate, 8bit divider. */
52 "asix-sigma-100.fw", /* 100MHz sample rate, fixed. */
53 "asix-sigma-200.fw", /* 200MHz sample rate, fixed. */
54 "asix-sigma-50sync.fw", /* Synchronous clock from external pin. */
55 "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
56};
57
742368a2
GS
58#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
59
0e1357e8 60static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
61{
62 int ret;
fefa1800 63
0e1357e8 64 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 65 if (ret < 0) {
47f4f073 66 sr_err("ftdi_read_data failed: %s",
0e1357e8 67 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
68 }
69
70 return ret;
71}
72
0e1357e8 73static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
74{
75 int ret;
fefa1800 76
0e1357e8 77 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
8ebad343 78 if (ret < 0)
47f4f073 79 sr_err("ftdi_write_data failed: %s",
0e1357e8 80 ftdi_get_error_string(&devc->ftdic));
8ebad343 81 else if ((size_t) ret != size)
47f4f073 82 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
83
84 return ret;
85}
86
e8686e3a
AG
87/*
88 * NOTE: We chose the buffer size to be large enough to hold any write to the
89 * device. We still print a message just in case.
90 */
3ba56876 91SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
92 struct dev_context *devc)
28a35d8a
HE
93{
94 size_t i;
e8686e3a 95 uint8_t buf[80];
28a35d8a
HE
96 int idx = 0;
97
7c86d853 98 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 99 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 100 len);
e8686e3a
AG
101 return SR_ERR_BUG;
102 }
103
28a35d8a
HE
104 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
105 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
106
0a1f7b09 107 for (i = 0; i < len; i++) {
28a35d8a
HE
108 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
109 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
110 }
111
0e1357e8 112 return sigma_write(buf, idx, devc);
28a35d8a
HE
113}
114
3ba56876 115SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 116{
0e1357e8 117 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
118}
119
99965709 120static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 121 struct dev_context *devc)
28a35d8a
HE
122{
123 uint8_t buf[3];
fefa1800 124
28a35d8a
HE
125 buf[0] = REG_ADDR_LOW | (reg & 0xf);
126 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
127 buf[2] = REG_READ_ADDR;
128
0e1357e8 129 sigma_write(buf, sizeof(buf), devc);
28a35d8a 130
0e1357e8 131 return sigma_read(data, len, devc);
28a35d8a
HE
132}
133
99965709 134static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 135 struct dev_context *devc)
28a35d8a
HE
136{
137 uint8_t buf[] = {
138 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
139
140 REG_READ_ADDR | NEXT_REG,
141 REG_READ_ADDR | NEXT_REG,
142 REG_READ_ADDR | NEXT_REG,
143 REG_READ_ADDR | NEXT_REG,
144 REG_READ_ADDR | NEXT_REG,
145 REG_READ_ADDR | NEXT_REG,
146 };
28a35d8a
HE
147 uint8_t result[6];
148
0e1357e8 149 sigma_write(buf, sizeof(buf), devc);
28a35d8a 150
0e1357e8 151 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
152
153 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
154 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
155
dc400817
GS
156 /*
157 * These "position" values point to after the event (end of
158 * capture data, trigger condition matched). This is why they
159 * get decremented here. Sample memory consists of 512-byte
160 * chunks with meta data in the upper 64 bytes. Thus when the
161 * decrements takes us into this upper part of the chunk, then
162 * further move backwards to the end of the chunk's data part.
163 */
57bbf56b 164 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 165 *stoppos -= 64;
dc400817 166 if ((--*triggerpos & 0x1ff) == 0x1ff)
382cb19f 167 *triggerpos -= 64;
57bbf56b 168
28a35d8a
HE
169 return 1;
170}
171
99965709 172static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 173 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
174{
175 size_t i;
176 uint8_t buf[4096];
f06fb3e9 177 int idx;
28a35d8a 178
fefa1800 179 /* Send the startchunk. Index start with 1. */
f06fb3e9
GS
180 idx = 0;
181 buf[idx++] = startchunk >> 8;
182 buf[idx++] = startchunk & 0xff;
183 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
28a35d8a 184
fefa1800 185 /* Read the DRAM. */
f06fb3e9 186 idx = 0;
28a35d8a
HE
187 buf[idx++] = REG_DRAM_BLOCK;
188 buf[idx++] = REG_DRAM_WAIT_ACK;
189
0a1f7b09 190 for (i = 0; i < numchunks; i++) {
fefa1800
UH
191 /* Alternate bit to copy from DRAM to cache. */
192 if (i != (numchunks - 1))
193 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
194
195 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
196
fefa1800 197 if (i != (numchunks - 1))
28a35d8a
HE
198 buf[idx++] = REG_DRAM_WAIT_ACK;
199 }
200
0e1357e8 201 sigma_write(buf, idx, devc);
28a35d8a 202
0e1357e8 203 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
204}
205
4ae1f451 206/* Upload trigger look-up tables to Sigma. */
3ba56876 207SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
208{
209 int i;
210 uint8_t tmp[2];
211 uint16_t bit;
212
213 /* Transpose the table and send to Sigma. */
0a1f7b09 214 for (i = 0; i < 16; i++) {
ee492173
HE
215 bit = 1 << i;
216
217 tmp[0] = tmp[1] = 0;
218
219 if (lut->m2d[0] & bit)
220 tmp[0] |= 0x01;
221 if (lut->m2d[1] & bit)
222 tmp[0] |= 0x02;
223 if (lut->m2d[2] & bit)
224 tmp[0] |= 0x04;
225 if (lut->m2d[3] & bit)
226 tmp[0] |= 0x08;
227
228 if (lut->m3 & bit)
229 tmp[0] |= 0x10;
230 if (lut->m3s & bit)
231 tmp[0] |= 0x20;
232 if (lut->m4 & bit)
233 tmp[0] |= 0x40;
234
235 if (lut->m0d[0] & bit)
236 tmp[1] |= 0x01;
237 if (lut->m0d[1] & bit)
238 tmp[1] |= 0x02;
239 if (lut->m0d[2] & bit)
240 tmp[1] |= 0x04;
241 if (lut->m0d[3] & bit)
242 tmp[1] |= 0x08;
243
244 if (lut->m1d[0] & bit)
245 tmp[1] |= 0x10;
246 if (lut->m1d[1] & bit)
247 tmp[1] |= 0x20;
248 if (lut->m1d[2] & bit)
249 tmp[1] |= 0x40;
250 if (lut->m1d[3] & bit)
251 tmp[1] |= 0x80;
252
99965709 253 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
254 devc);
255 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
256 }
257
258 /* Send the parameters */
259 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 260 sizeof(lut->params), devc);
ee492173 261
e46b8fb1 262 return SR_OK;
ee492173
HE
263}
264
d5fa188a 265/*
dc0906e2
GS
266 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
267 * uses FTDI bitbang mode for netlist download in slave serial mode.
268 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
269 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
270 * compatible bitbang mode? For maximum code re-use and reduced libftdi
271 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
272 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
273 *
274 * 750kbps rate (four times the speed of sigmalogan) works well for
275 * netlist download. All pins except INIT_B are output pins during
276 * configuration download.
277 *
278 * Some pins are inverted as a byproduct of level shifting circuitry.
279 * That's why high CCLK level (from the cable's point of view) is idle
280 * from the FPGA's perspective.
281 *
282 * The vendor's literature discusses a "suicide sequence" which ends
283 * regular FPGA execution and should be sent before entering bitbang
284 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
285 * a few times.
286 */
287#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
288#define BB_PIN_PROG (1 << 1) /* D1, PROG */
289#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
290#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
291#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
292#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
293#define BB_PIN_DIN (1 << 6) /* D6, DIN */
294#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
295
296#define BB_BITRATE (750 * 1000)
297#define BB_PINMASK (0xff & ~BB_PIN_INIT)
298
299/*
300 * Initiate slave serial mode for configuration download. Which is done
301 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
302 * initiating the configuration download. Run a "suicide sequence" first
303 * to terminate the regular FPGA operation before reconfiguration.
d5fa188a
MV
304 */
305static int sigma_fpga_init_bitbang(struct dev_context *devc)
306{
307 uint8_t suicide[] = {
dc0906e2
GS
308 BB_PIN_D7 | BB_PIN_D2,
309 BB_PIN_D7 | BB_PIN_D2,
310 BB_PIN_D7 | BB_PIN_D3,
311 BB_PIN_D7 | BB_PIN_D2,
312 BB_PIN_D7 | BB_PIN_D3,
313 BB_PIN_D7 | BB_PIN_D2,
314 BB_PIN_D7 | BB_PIN_D3,
315 BB_PIN_D7 | BB_PIN_D2,
d5fa188a
MV
316 };
317 uint8_t init_array[] = {
dc0906e2
GS
318 BB_PIN_CCLK,
319 BB_PIN_CCLK | BB_PIN_PROG,
320 BB_PIN_CCLK | BB_PIN_PROG,
321 BB_PIN_CCLK,
322 BB_PIN_CCLK,
323 BB_PIN_CCLK,
324 BB_PIN_CCLK,
325 BB_PIN_CCLK,
326 BB_PIN_CCLK,
327 BB_PIN_CCLK,
d5fa188a 328 };
dc0906e2 329 int retries, ret;
d5fa188a
MV
330 uint8_t data;
331
332 /* Section 2. part 1), do the FPGA suicide. */
333 sigma_write(suicide, sizeof(suicide), devc);
334 sigma_write(suicide, sizeof(suicide), devc);
335 sigma_write(suicide, sizeof(suicide), devc);
336 sigma_write(suicide, sizeof(suicide), devc);
337
dc0906e2 338 /* Section 2. part 2), pulse PROG. */
d5fa188a
MV
339 sigma_write(init_array, sizeof(init_array), devc);
340 ftdi_usb_purge_buffers(&devc->ftdic);
341
dc0906e2
GS
342 /* Wait until the FPGA asserts INIT_B. */
343 retries = 10;
344 while (retries--) {
d5fa188a
MV
345 ret = sigma_read(&data, 1, devc);
346 if (ret < 0)
347 return ret;
dc0906e2
GS
348 if (data & BB_PIN_INIT)
349 return SR_OK;
1a46cc62 350 g_usleep(10 * 1000);
d5fa188a
MV
351 }
352
353 return SR_ERR_TIMEOUT;
354}
355
64fe661b
MV
356/*
357 * Configure the FPGA for logic-analyzer mode.
358 */
359static int sigma_fpga_init_la(struct dev_context *devc)
360{
dc0906e2
GS
361 /*
362 * TODO Construct the sequence at runtime? Such that request data
363 * and response check values will match more apparently?
364 */
22f64ed8 365 uint8_t mode_regval = WMR_SDRAMINIT;
64fe661b 366 uint8_t logic_mode_start[] = {
dc0906e2 367 /* Read ID register. */
011f1091 368 REG_ADDR_LOW | (READ_ID & 0xf),
84a6ed1a 369 REG_ADDR_HIGH | (READ_ID >> 4),
dc0906e2 370 REG_READ_ADDR,
011f1091 371
dc0906e2 372 /* Write 0x55 to scratch register, read back. */
011f1091
MV
373 REG_ADDR_LOW | (WRITE_TEST & 0xf),
374 REG_DATA_LOW | 0x5,
375 REG_DATA_HIGH_WRITE | 0x5,
dc0906e2 376 REG_READ_ADDR,
011f1091 377
dc0906e2 378 /* Write 0xaa to scratch register, read back. */
011f1091
MV
379 REG_DATA_LOW | 0xa,
380 REG_DATA_HIGH_WRITE | 0xa,
dc0906e2 381 REG_READ_ADDR,
011f1091 382
dc0906e2 383 /* Initiate SDRAM initialization in mode register. */
011f1091 384 REG_ADDR_LOW | (WRITE_MODE & 0xf),
22f64ed8
GS
385 REG_DATA_LOW | (mode_regval & 0xf),
386 REG_DATA_HIGH_WRITE | (mode_regval >> 4),
64fe661b 387 };
64fe661b
MV
388 uint8_t result[3];
389 int ret;
390
dc0906e2
GS
391 /*
392 * Send the command sequence which contains 3 READ requests.
393 * Expect to see the corresponding 3 response bytes.
394 */
64fe661b 395 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
dc0906e2
GS
396 ret = sigma_read(result, ARRAY_SIZE(result), devc);
397 if (ret != ARRAY_SIZE(result))
64fe661b 398 goto err;
64fe661b
MV
399 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
400 goto err;
401
402 return SR_OK;
dc0906e2 403
64fe661b
MV
404err:
405 sr_err("Configuration failed. Invalid reply received.");
406 return SR_ERR;
407}
408
a80226bb
MV
409/*
410 * Read the firmware from a file and transform it into a series of bitbang
411 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
412 * by the caller of this function.
413 */
8e2d6c9d 414static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
415 uint8_t **bb_cmd, gsize *bb_cmd_size)
416{
dc0906e2
GS
417 uint8_t *firmware;
418 size_t file_size;
419 uint8_t *p;
420 size_t l;
a80226bb 421 uint32_t imm;
dc0906e2
GS
422 size_t bb_size;
423 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 424
387825dc 425 /* Retrieve the on-disk firmware file content. */
742368a2
GS
426 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
427 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 428 if (!firmware)
dc0906e2 429 return SR_ERR_IO;
a80226bb 430
387825dc 431 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
432 p = firmware;
433 l = file_size;
a80226bb 434 imm = 0x3f6df2ab;
dc0906e2 435 while (l--) {
a80226bb 436 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 437 *p++ ^= imm & 0xff;
a80226bb
MV
438 }
439
440 /*
387825dc
GS
441 * Generate a sequence of bitbang samples. With two samples per
442 * FPGA configuration bit, providing the level for the DIN signal
443 * as well as two edges for CCLK. See Xilinx UG332 for details
444 * ("slave serial" mode).
445 *
446 * Note that CCLK is inverted in hardware. That's why the
447 * respective bit is first set and then cleared in the bitbang
448 * sample sets. So that the DIN level will be stable when the
449 * data gets sampled at the rising CCLK edge, and the signals'
450 * setup time constraint will be met.
451 *
452 * The caller will put the FPGA into download mode, will send
453 * the bitbang samples, and release the allocated memory.
a80226bb 454 */
a80226bb 455 bb_size = file_size * 8 * 2;
dc0906e2 456 bb_stream = g_try_malloc(bb_size);
a80226bb
MV
457 if (!bb_stream) {
458 sr_err("%s: Failed to allocate bitbang stream", __func__);
dc0906e2
GS
459 g_free(firmware);
460 return SR_ERR_MALLOC;
a80226bb 461 }
a80226bb 462 bbs = bb_stream;
dc0906e2
GS
463 p = firmware;
464 l = file_size;
465 while (l--) {
466 byte = *p++;
467 mask = 0x80;
468 while (mask) {
469 v = (byte & mask) ? BB_PIN_DIN : 0;
470 mask >>= 1;
471 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
472 *bbs++ = v;
473 }
474 }
dc0906e2 475 g_free(firmware);
a80226bb
MV
476
477 /* The transformation completed successfully, return the result. */
478 *bb_cmd = bb_stream;
479 *bb_cmd_size = bb_size;
480
dc0906e2 481 return SR_OK;
a80226bb
MV
482}
483
8e2d6c9d
DE
484static int upload_firmware(struct sr_context *ctx,
485 int firmware_idx, struct dev_context *devc)
28a35d8a
HE
486{
487 int ret;
488 unsigned char *buf;
489 unsigned char pins;
490 size_t buf_size;
a9016883 491 const char *firmware;
a9016883
GS
492
493 /* Avoid downloading the same firmware multiple times. */
4b25cbff 494 firmware = firmware_files[firmware_idx];
a9016883
GS
495 if (devc->cur_firmware == firmware_idx) {
496 sr_info("Not uploading firmware file '%s' again.", firmware);
497 return SR_OK;
498 }
28a35d8a 499
dc0906e2
GS
500 /* Set the cable to bitbang mode. */
501 ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 502 if (ret < 0) {
47f4f073 503 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 504 ftdi_get_error_string(&devc->ftdic));
7bcf2168 505 return SR_ERR;
28a35d8a 506 }
dc0906e2 507 ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
8bbf7627 508 if (ret < 0) {
47f4f073 509 sr_err("ftdi_set_baudrate failed: %s",
1f4f98e0 510 ftdi_get_error_string(&devc->ftdic));
7bcf2168 511 return SR_ERR;
28a35d8a
HE
512 }
513
dc0906e2 514 /* Initiate FPGA configuration mode. */
d5fa188a
MV
515 ret = sigma_fpga_init_bitbang(devc);
516 if (ret)
517 return ret;
28a35d8a 518
dc0906e2 519 /* Prepare wire format of the firmware image. */
8e2d6c9d 520 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 521 if (ret != SR_OK) {
f3f19d11 522 sr_err("An error occurred while reading the firmware: %s",
499b17e9 523 firmware);
b53738ba 524 return ret;
28a35d8a
HE
525 }
526
dc0906e2 527 /* Write the FPGA netlist to the cable. */
499b17e9 528 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 529 sigma_write(buf, buf_size, devc);
28a35d8a
HE
530
531 g_free(buf);
532
dc0906e2
GS
533 /* Leave bitbang mode and discard pending input data. */
534 ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
8bbf7627 535 if (ret < 0) {
47f4f073 536 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 537 ftdi_get_error_string(&devc->ftdic));
e46b8fb1 538 return SR_ERR;
28a35d8a 539 }
1f4f98e0 540 ftdi_usb_purge_buffers(&devc->ftdic);
29b66a2e 541 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
542 ;
543
64fe661b
MV
544 /* Initialize the FPGA for logic-analyzer mode. */
545 ret = sigma_fpga_init_la(devc);
546 if (ret != SR_OK)
547 return ret;
28a35d8a 548
dc0906e2 549 /* Keep track of successful firmware download completion. */
0e1357e8 550 devc->cur_firmware = firmware_idx;
47f4f073 551 sr_info("Firmware uploaded.");
e3fff420 552
e46b8fb1 553 return SR_OK;
f6564c8d
HE
554}
555
9a0a606a
GS
556/*
557 * Sigma doesn't support limiting the number of samples, so we have to
558 * translate the number and the samplerate to an elapsed time.
559 *
560 * In addition we need to ensure that the last data cluster has passed
561 * the hardware pipeline, and became available to the PC side. With RLE
562 * compression up to 327ms could pass before another cluster accumulates
563 * at 200kHz samplerate when input pins don't change.
564 */
565SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
566 uint64_t limit_samples)
567{
568 uint64_t limit_msec;
569 uint64_t worst_cluster_time_ms;
570
571 limit_msec = limit_samples * 1000 / devc->cur_samplerate;
572 worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
573 /*
574 * One cluster time is not enough to flush pipeline when sampling
575 * grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
576 */
577 return limit_msec + 2 * worst_cluster_time_ms;
578}
579
3ba56876 580SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 581{
2c9c0df8 582 struct dev_context *devc;
8e2d6c9d 583 struct drv_context *drvc;
4154a516 584 size_t i;
2c9c0df8 585 int ret;
ac9534f4 586 int num_channels;
f6564c8d 587
2c9c0df8 588 devc = sdi->priv;
8e2d6c9d 589 drvc = sdi->driver->context;
f4abaa9f
UH
590 ret = SR_OK;
591
2f7e529c 592 /* Reject rates that are not in the list of supported rates. */
4154a516 593 for (i = 0; i < samplerates_count; i++) {
2c9c0df8 594 if (samplerates[i] == samplerate)
f6564c8d
HE
595 break;
596 }
4154a516 597 if (i >= samplerates_count || samplerates[i] == 0)
e46b8fb1 598 return SR_ERR_SAMPLERATE;
f6564c8d 599
2f7e529c
GS
600 /*
601 * Depending on the samplerates of 200/100/50- MHz, specific
602 * firmware is required and higher rates might limit the set
603 * of available channels.
604 */
ac9534f4 605 num_channels = devc->num_channels;
59df0c77 606 if (samplerate <= SR_MHZ(50)) {
8e2d6c9d 607 ret = upload_firmware(drvc->sr_ctx, 0, devc);
ac9534f4 608 num_channels = 16;
6b2d3385 609 } else if (samplerate == SR_MHZ(100)) {
8e2d6c9d 610 ret = upload_firmware(drvc->sr_ctx, 1, devc);
ac9534f4 611 num_channels = 8;
6b2d3385 612 } else if (samplerate == SR_MHZ(200)) {
8e2d6c9d 613 ret = upload_firmware(drvc->sr_ctx, 2, devc);
ac9534f4 614 num_channels = 4;
f78898e9 615 }
f6564c8d 616
2f7e529c
GS
617 /*
618 * Derive the sample period from the sample rate as well as the
619 * number of samples that the device will communicate within
620 * an "event" (memory organization internal to the device).
621 */
6b2d3385 622 if (ret == SR_OK) {
ac9534f4 623 devc->num_channels = num_channels;
6b2d3385 624 devc->cur_samplerate = samplerate;
6b2d3385
BV
625 devc->samples_per_event = 16 / devc->num_channels;
626 devc->state.state = SIGMA_IDLE;
627 }
f6564c8d 628
2f7e529c
GS
629 /*
630 * Support for "limit_samples" is implemented by stopping
631 * acquisition after a corresponding period of time.
632 * Re-calculate that period of time, in case the limit is
633 * set first and the samplerate gets (re-)configured later.
634 */
635 if (ret == SR_OK && devc->limit_samples) {
636 uint64_t msecs;
9a0a606a 637 msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
2f7e529c
GS
638 devc->limit_msec = msecs;
639 }
640
e8397563 641 return ret;
28a35d8a
HE
642}
643
c53d793f
HE
644/*
645 * In 100 and 200 MHz mode, only a single pin rising/falling can be
646 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 647 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
648 *
649 * The Sigma supports complex triggers using boolean expressions, but this
650 * has not been implemented yet.
651 */
3ba56876 652SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 653{
39c64c6a
BV
654 struct dev_context *devc;
655 struct sr_trigger *trigger;
656 struct sr_trigger_stage *stage;
657 struct sr_trigger_match *match;
658 const GSList *l, *m;
659 int channelbit, trigger_set;
57bbf56b 660
39c64c6a 661 devc = sdi->priv;
0e1357e8 662 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 663 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
664 return SR_OK;
665
666 trigger_set = 0;
667 for (l = trigger->stages; l; l = l->next) {
668 stage = l->data;
669 for (m = stage->matches; m; m = m->next) {
670 match = m->data;
671 if (!match->channel->enabled)
672 /* Ignore disabled channels with a trigger. */
673 continue;
674 channelbit = 1 << (match->channel->index);
675 if (devc->cur_samplerate >= SR_MHZ(100)) {
676 /* Fast trigger support. */
677 if (trigger_set) {
678 sr_err("Only a single pin trigger is "
679 "supported in 100 and 200MHz mode.");
680 return SR_ERR;
681 }
682 if (match->match == SR_TRIGGER_FALLING)
683 devc->trigger.fallingmask |= channelbit;
684 else if (match->match == SR_TRIGGER_RISING)
685 devc->trigger.risingmask |= channelbit;
686 else {
687 sr_err("Only rising/falling trigger is "
688 "supported in 100 and 200MHz mode.");
689 return SR_ERR;
690 }
eec5275e 691
0a1f7b09 692 trigger_set++;
39c64c6a
BV
693 } else {
694 /* Simple trigger support (event). */
695 if (match->match == SR_TRIGGER_ONE) {
696 devc->trigger.simplevalue |= channelbit;
697 devc->trigger.simplemask |= channelbit;
8ebad343 698 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
699 devc->trigger.simplevalue &= ~channelbit;
700 devc->trigger.simplemask |= channelbit;
8ebad343 701 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 702 devc->trigger.fallingmask |= channelbit;
0a1f7b09 703 trigger_set++;
8ebad343 704 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 705 devc->trigger.risingmask |= channelbit;
0a1f7b09 706 trigger_set++;
39c64c6a
BV
707 }
708
709 /*
710 * Actually, Sigma supports 2 rising/falling triggers,
711 * but they are ORed and the current trigger syntax
712 * does not permit ORed triggers.
713 */
714 if (trigger_set > 1) {
715 sr_err("Only 1 rising/falling trigger "
716 "is supported.");
717 return SR_ERR;
718 }
ee492173 719 }
ee492173 720 }
57bbf56b
HE
721 }
722
e46b8fb1 723 return SR_OK;
57bbf56b
HE
724}
725
36b1c8e6 726/* Software trigger to determine exact trigger position. */
5fc01191 727static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
728 struct sigma_trigger *t)
729{
730 int i;
5fc01191 731 uint16_t sample = 0;
36b1c8e6 732
0a1f7b09 733 for (i = 0; i < 8; i++) {
36b1c8e6 734 if (i > 0)
5fc01191
MV
735 last_sample = sample;
736 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
737
738 /* Simple triggers. */
5fc01191 739 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
740 continue;
741
742 /* Rising edge. */
5fc01191
MV
743 if (((last_sample & t->risingmask) != 0) ||
744 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
745 continue;
746
747 /* Falling edge. */
bdfc7a89 748 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 749 (sample & t->fallingmask) != 0)
36b1c8e6
HE
750 continue;
751
752 break;
753 }
754
755 /* If we did not match, return original trigger pos. */
756 return i & 0x7;
757}
758
3513d965
MV
759/*
760 * Return the timestamp of "DRAM cluster".
761 */
762static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
763{
764 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
765}
766
0498f743
GS
767/*
768 * Return one 16bit data entity of a DRAM cluster at the specified index.
769 */
770static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
771{
772 uint16_t sample;
773
774 sample = 0;
775 sample |= cl->samples[idx].sample_lo << 0;
776 sample |= cl->samples[idx].sample_hi << 8;
3281cf59 777 sample = (sample >> 8) | (sample << 8);
0498f743
GS
778 return sample;
779}
780
85c032e4
GS
781/*
782 * Deinterlace sample data that was retrieved at 100MHz samplerate.
783 * One 16bit item contains two samples of 8bits each. The bits of
784 * multiple samples are interleaved.
785 */
786static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
787{
788 uint16_t outdata;
789
790 indata >>= idx;
791 outdata = 0;
792 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
793 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
794 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
795 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
796 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
797 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
798 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
799 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
800 return outdata;
801}
802
803/*
804 * Deinterlace sample data that was retrieved at 200MHz samplerate.
805 * One 16bit item contains four samples of 4bits each. The bits of
806 * multiple samples are interleaved.
807 */
808static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
809{
810 uint16_t outdata;
811
812 indata >>= idx;
813 outdata = 0;
814 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
815 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
816 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
817 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
818 return outdata;
819}
820
0498f743
GS
821static void store_sr_sample(uint8_t *samples, int idx, uint16_t data)
822{
823 samples[2 * idx + 0] = (data >> 0) & 0xff;
824 samples[2 * idx + 1] = (data >> 8) & 0xff;
825}
826
735ed8a1
GS
827/*
828 * Local wrapper around sr_session_send() calls. Make sure to not send
829 * more samples to the session's datafeed than what was requested by a
830 * previously configured (optional) sample count.
831 */
832static void sigma_session_send(struct sr_dev_inst *sdi,
833 struct sr_datafeed_packet *packet)
834{
835 struct dev_context *devc;
836 struct sr_datafeed_logic *logic;
837 uint64_t send_now;
838
839 devc = sdi->priv;
840 if (devc->limit_samples) {
841 logic = (void *)packet->payload;
842 send_now = logic->length / logic->unitsize;
843 if (devc->sent_samples + send_now > devc->limit_samples) {
844 send_now = devc->limit_samples - devc->sent_samples;
845 logic->length = send_now * logic->unitsize;
846 }
847 if (!send_now)
848 return;
849 devc->sent_samples += send_now;
850 }
851
852 sr_session_send(sdi, packet);
853}
854
85c032e4
GS
855/*
856 * This size translates to: event count (1K events per cluster), times
857 * the sample width (unitsize, 16bits per event), times the maximum
858 * number of samples per event.
859 */
860#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4)
861
23239b5c
MV
862static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
863 unsigned int events_in_cluster,
1e23158b 864 unsigned int triggered,
23239b5c
MV
865 struct sr_dev_inst *sdi)
866{
867 struct dev_context *devc = sdi->priv;
868 struct sigma_state *ss = &devc->state;
869 struct sr_datafeed_packet packet;
870 struct sr_datafeed_logic logic;
85c032e4
GS
871 uint16_t tsdiff, ts, sample, item16;
872 uint8_t samples[SAMPLES_BUFFER_SIZE];
873 uint8_t *send_ptr;
874 size_t send_count, trig_count;
23239b5c 875 unsigned int i;
85c032e4 876 int j;
23239b5c 877
23239b5c
MV
878 ts = sigma_dram_cluster_ts(dram_cluster);
879 tsdiff = ts - ss->lastts;
a44b3b3f 880 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
881
882 packet.type = SR_DF_LOGIC;
883 packet.payload = &logic;
884 logic.unitsize = 2;
885 logic.data = samples;
886
887 /*
468f17f2
GS
888 * If this cluster is not adjacent to the previously received
889 * cluster, then send the appropriate number of samples with the
890 * previous values to the sigrok session. This "decodes RLE".
23239b5c 891 */
a44b3b3f 892 for (ts = 0; ts < tsdiff; ts++) {
23239b5c 893 i = ts % 1024;
0498f743 894 store_sr_sample(samples, i, ss->lastsample);
23239b5c
MV
895
896 /*
897 * If we have 1024 samples ready or we're at the
898 * end of submitting the padding samples, submit
85c032e4
GS
899 * the packet to Sigrok. Since constant data is
900 * sent, duplication of data for rates above 50MHz
901 * is simple.
23239b5c 902 */
a44b3b3f 903 if ((i == 1023) || (ts == tsdiff - 1)) {
23239b5c 904 logic.length = (i + 1) * logic.unitsize;
85c032e4 905 for (j = 0; j < devc->samples_per_event; j++)
735ed8a1 906 sigma_session_send(sdi, &packet);
23239b5c
MV
907 }
908 }
909
910 /*
911 * Parse the samples in current cluster and prepare them
85c032e4
GS
912 * to be submitted to Sigrok. Cope with memory layouts that
913 * vary with the samplerate.
23239b5c 914 */
85c032e4
GS
915 send_ptr = &samples[0];
916 send_count = 0;
0498f743 917 sample = 0;
23239b5c 918 for (i = 0; i < events_in_cluster; i++) {
85c032e4
GS
919 item16 = sigma_dram_cluster_data(dram_cluster, i);
920 if (devc->cur_samplerate == SR_MHZ(200)) {
921 sample = sigma_deinterlace_200mhz_data(item16, 0);
922 store_sr_sample(samples, send_count++, sample);
923 sample = sigma_deinterlace_200mhz_data(item16, 1);
924 store_sr_sample(samples, send_count++, sample);
925 sample = sigma_deinterlace_200mhz_data(item16, 2);
926 store_sr_sample(samples, send_count++, sample);
927 sample = sigma_deinterlace_200mhz_data(item16, 3);
928 store_sr_sample(samples, send_count++, sample);
929 } else if (devc->cur_samplerate == SR_MHZ(100)) {
930 sample = sigma_deinterlace_100mhz_data(item16, 0);
931 store_sr_sample(samples, send_count++, sample);
932 sample = sigma_deinterlace_100mhz_data(item16, 1);
933 store_sr_sample(samples, send_count++, sample);
934 } else {
935 sample = item16;
936 store_sr_sample(samples, send_count++, sample);
937 }
23239b5c
MV
938 }
939
de3f7acb
GS
940 /*
941 * If a trigger position applies, then provide the datafeed with
942 * the first part of data up to that position, then send the
943 * trigger marker.
944 */
23239b5c 945 int trigger_offset = 0;
1e23158b 946 if (triggered) {
23239b5c
MV
947 /*
948 * Trigger is not always accurate to sample because of
949 * pipeline delay. However, it always triggers before
950 * the actual event. We therefore look at the next
951 * samples to pinpoint the exact position of the trigger.
952 */
953 trigger_offset = get_trigger_offset(samples,
954 ss->lastsample, &devc->trigger);
955
956 if (trigger_offset > 0) {
85c032e4 957 trig_count = trigger_offset * devc->samples_per_event;
23239b5c 958 packet.type = SR_DF_LOGIC;
85c032e4 959 logic.length = trig_count * logic.unitsize;
735ed8a1 960 sigma_session_send(sdi, &packet);
85c032e4
GS
961 send_ptr += trig_count * logic.unitsize;
962 send_count -= trig_count;
23239b5c
MV
963 }
964
965 /* Only send trigger if explicitly enabled. */
0fa71943
UH
966 if (devc->use_triggers)
967 std_session_send_df_trigger(sdi);
23239b5c
MV
968 }
969
de3f7acb
GS
970 /*
971 * Send the data after the trigger, or all of the received data
972 * if no trigger position applies.
973 */
85c032e4 974 if (send_count) {
23239b5c 975 packet.type = SR_DF_LOGIC;
85c032e4
GS
976 logic.length = send_count * logic.unitsize;
977 logic.data = send_ptr;
735ed8a1 978 sigma_session_send(sdi, &packet);
23239b5c
MV
979 }
980
0498f743 981 ss->lastsample = sample;
23239b5c
MV
982}
983
28a35d8a 984/*
fefa1800
UH
985 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
986 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
987 *
988 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
989 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
990 * For 50 MHz and below, events contain one sample for each channel,
991 * spread 20 ns apart.
28a35d8a 992 */
1e23158b
MV
993static int decode_chunk_ts(struct sigma_dram_line *dram_line,
994 uint16_t events_in_line,
995 uint32_t trigger_event,
102f1239 996 struct sr_dev_inst *sdi)
28a35d8a 997{
3628074d 998 struct sigma_dram_cluster *dram_cluster;
f06fb3e9
GS
999 struct dev_context *devc;
1000 unsigned int clusters_in_line;
5fc01191 1001 unsigned int events_in_cluster;
23239b5c 1002 unsigned int i;
f06fb3e9
GS
1003 uint32_t trigger_cluster, triggered;
1004
1005 devc = sdi->priv;
1006 clusters_in_line = events_in_line;
1007 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1008 clusters_in_line /= EVENTS_PER_CLUSTER;
1009 trigger_cluster = ~0;
1010 triggered = 0;
ee492173 1011
4ae1f451 1012 /* Check if trigger is in this chunk. */
1e23158b
MV
1013 if (trigger_event < (64 * 7)) {
1014 if (devc->cur_samplerate <= SR_MHZ(50)) {
1015 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1016 trigger_event);
1017 }
57bbf56b 1018
f3f19d11 1019 /* Find in which cluster the trigger occurred. */
1e23158b 1020 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1021 }
28a35d8a 1022
5fc01191
MV
1023 /* For each full DRAM cluster. */
1024 for (i = 0; i < clusters_in_line; i++) {
3628074d 1025 dram_cluster = &dram_line->cluster[i];
5fc01191 1026
5fc01191 1027 /* The last cluster might not be full. */
23239b5c
MV
1028 if ((i == clusters_in_line - 1) &&
1029 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1030 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1031 } else {
5fc01191 1032 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1033 }
ee492173 1034
1e23158b
MV
1035 triggered = (i == trigger_cluster);
1036 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1037 triggered, sdi);
28a35d8a
HE
1038 }
1039
e46b8fb1 1040 return SR_OK;
28a35d8a
HE
1041}
1042
6057d9fa 1043static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1044{
e15e5873 1045 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1046
1047 struct dev_context *devc;
fd830beb 1048 struct sigma_dram_line *dram_line;
c6648b66 1049 int bufsz;
462fe786 1050 uint32_t stoppos, triggerpos;
6057d9fa 1051 uint8_t modestatus;
c6648b66
MV
1052 uint32_t i;
1053 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1054 uint32_t dl_first_line, dl_line;
f06fb3e9
GS
1055 uint32_t dl_events_in_line;
1056 uint32_t trg_line, trg_event;
1057
1058 devc = sdi->priv;
1059 dl_events_in_line = 64 * 7;
c6648b66 1060
6868626b 1061 sr_info("Downloading sample data.");
dde0175d 1062 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1063
22f64ed8
GS
1064 /*
1065 * Ask the hardware to stop data acquisition. Reception of the
1066 * FORCESTOP request makes the hardware "disable RLE" (store
1067 * clusters to DRAM regardless of whether pin state changes) and
1068 * raise the POSTTRIGGERED flag.
1069 */
1070 sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
1071 do {
f73b00b6 1072 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1073 sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
f73b00b6
DT
1074 return FALSE;
1075 }
22f64ed8 1076 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1077
1078 /* Set SDRAM Read Enable. */
22f64ed8 1079 sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
6057d9fa
MV
1080
1081 /* Get the current position. */
462fe786 1082 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1083
1084 /* Check if trigger has fired. */
f73b00b6 1085 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1086 sr_err("failed to read READ_MODE register");
f73b00b6
DT
1087 return FALSE;
1088 }
dc400817
GS
1089 trg_line = ~0;
1090 trg_event = ~0;
22f64ed8 1091 if (modestatus & RMR_TRIGGERED) {
c6648b66 1092 trg_line = triggerpos >> 9;
1e23158b
MV
1093 trg_event = triggerpos & 0x1ff;
1094 }
6057d9fa 1095
735ed8a1
GS
1096 devc->sent_samples = 0;
1097
c6648b66 1098 /*
74d453ab
GS
1099 * Determine how many "DRAM lines" of 1024 bytes each we need to
1100 * retrieve from the Sigma hardware, so that we have a complete
1101 * set of samples. Note that the last line need not contain 64
1102 * clusters, it might be partially filled only.
1103 *
1104 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1105 * around. Since the status of the very next line is uncertain in
1106 * that case, we skip it and start reading from the next line. The
1107 * circular buffer has 32K lines (0x8000).
c6648b66
MV
1108 */
1109 dl_lines_total = (stoppos >> 9) + 1;
74d453ab
GS
1110 if (modestatus & RMR_ROUND) {
1111 dl_first_line = dl_lines_total + 1;
1112 dl_lines_total = 0x8000 - 2;
1113 } else {
1114 dl_first_line = 0;
1115 }
44081095
DT
1116 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1117 if (!dram_line)
1118 return FALSE;
c6648b66 1119 dl_lines_done = 0;
c6648b66
MV
1120 while (dl_lines_total > dl_lines_done) {
1121 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1122 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1123
74d453ab
GS
1124 dl_line = dl_first_line + dl_lines_done;
1125 dl_line %= 0x8000;
1126 bufsz = sigma_read_dram(dl_line, dl_lines_curr,
f41a4cae 1127 (uint8_t *)dram_line, devc);
c6648b66
MV
1128 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1129 (void)bufsz;
6868626b 1130
c6648b66
MV
1131 /* This is the first DRAM line, so find the initial timestamp. */
1132 if (dl_lines_done == 0) {
3513d965
MV
1133 devc->state.lastts =
1134 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1135 devc->state.lastsample = 0;
6868626b
BV
1136 }
1137
c6648b66 1138 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1139 uint32_t trigger_event = ~0;
c6648b66
MV
1140 /* The last "DRAM line" can be only partially full. */
1141 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1142 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1143
e69ad48e 1144 /* Test if the trigger happened on this line. */
c6648b66 1145 if (dl_lines_done + i == trg_line)
1e23158b 1146 trigger_event = trg_event;
e69ad48e 1147
1e23158b
MV
1148 decode_chunk_ts(dram_line + i, dl_events_in_line,
1149 trigger_event, sdi);
c6648b66 1150 }
6868626b 1151
c6648b66 1152 dl_lines_done += dl_lines_curr;
6868626b 1153 }
dde0175d 1154 g_free(dram_line);
6868626b 1155
bee2b016 1156 std_session_send_df_end(sdi);
6057d9fa 1157
dde0175d 1158 devc->state.state = SIGMA_IDLE;
d2f7c417 1159 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1160
1161 return TRUE;
6868626b
BV
1162}
1163
d4051930 1164/*
74d453ab
GS
1165 * Periodically check the Sigma status when in CAPTURE mode. This routine
1166 * checks whether the configured sample count or sample time have passed,
1167 * and will stop acquisition and download the acquired samples.
d4051930
MV
1168 */
1169static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1170{
f06fb3e9 1171 struct dev_context *devc;
94ba4bd6 1172 uint64_t running_msec;
2f425a56 1173 uint64_t current_time;
28a35d8a 1174
f06fb3e9
GS
1175 devc = sdi->priv;
1176
74d453ab
GS
1177 /*
1178 * Check if the selected sampling duration passed. Sample count
1179 * limits are covered by this enforced timeout as well.
1180 */
2f425a56
GS
1181 current_time = g_get_monotonic_time();
1182 running_msec = (current_time - devc->start_time) / 1000;
00c86508 1183 if (running_msec >= devc->limit_msec)
6057d9fa 1184 return download_capture(sdi);
00c86508 1185
d4051930
MV
1186 return TRUE;
1187}
28a35d8a 1188
3ba56876 1189SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1190{
1191 struct sr_dev_inst *sdi;
1192 struct dev_context *devc;
88c51afe 1193
d4051930
MV
1194 (void)fd;
1195 (void)revents;
88c51afe 1196
d4051930
MV
1197 sdi = cb_data;
1198 devc = sdi->priv;
1199
1200 if (devc->state.state == SIGMA_IDLE)
1201 return TRUE;
1202
dde0175d
GS
1203 /*
1204 * When the application has requested to stop the acquisition,
1205 * then immediately start downloading sample data. Otherwise
1206 * keep checking configured limits which will terminate the
1207 * acquisition and initiate download.
1208 */
1209 if (devc->state.state == SIGMA_STOPPING)
1210 return download_capture(sdi);
d4051930
MV
1211 if (devc->state.state == SIGMA_CAPTURE)
1212 return sigma_capture_mode(sdi);
28a35d8a 1213
28a35d8a
HE
1214 return TRUE;
1215}
1216
c53d793f
HE
1217/* Build a LUT entry used by the trigger functions. */
1218static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1219{
1220 int i, j, k, bit;
1221
ba7dd8bb 1222 /* For each quad channel. */
0a1f7b09 1223 for (i = 0; i < 4; i++) {
c53d793f 1224 entry[i] = 0xffff;
ee492173 1225
f758d074 1226 /* For each bit in LUT. */
0a1f7b09 1227 for (j = 0; j < 16; j++)
ee492173 1228
ba7dd8bb 1229 /* For each channel in quad. */
0a1f7b09 1230 for (k = 0; k < 4; k++) {
ee492173
HE
1231 bit = 1 << (i * 4 + k);
1232
c53d793f 1233 /* Set bit in entry */
0a1f7b09
UH
1234 if ((mask & bit) && ((!(value & bit)) !=
1235 (!(j & (1 << k)))))
c53d793f 1236 entry[i] &= ~(1 << j);
ee492173
HE
1237 }
1238 }
c53d793f 1239}
ee492173 1240
c53d793f
HE
1241/* Add a logical function to LUT mask. */
1242static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1243 int index, int neg, uint16_t *mask)
1244{
1245 int i, j;
1246 int x[2][2], tmp, a, b, aset, bset, rset;
1247
1248 memset(x, 0, 4 * sizeof(int));
1249
1250 /* Trigger detect condition. */
1251 switch (oper) {
1252 case OP_LEVEL:
1253 x[0][1] = 1;
1254 x[1][1] = 1;
1255 break;
1256 case OP_NOT:
1257 x[0][0] = 1;
1258 x[1][0] = 1;
1259 break;
1260 case OP_RISE:
1261 x[0][1] = 1;
1262 break;
1263 case OP_FALL:
1264 x[1][0] = 1;
1265 break;
1266 case OP_RISEFALL:
1267 x[0][1] = 1;
1268 x[1][0] = 1;
1269 break;
1270 case OP_NOTRISE:
1271 x[1][1] = 1;
1272 x[0][0] = 1;
1273 x[1][0] = 1;
1274 break;
1275 case OP_NOTFALL:
1276 x[1][1] = 1;
1277 x[0][0] = 1;
1278 x[0][1] = 1;
1279 break;
1280 case OP_NOTRISEFALL:
1281 x[1][1] = 1;
1282 x[0][0] = 1;
1283 break;
1284 }
1285
1286 /* Transpose if neg is set. */
1287 if (neg) {
0a1f7b09
UH
1288 for (i = 0; i < 2; i++) {
1289 for (j = 0; j < 2; j++) {
c53d793f 1290 tmp = x[i][j];
0a1f7b09
UH
1291 x[i][j] = x[1 - i][1 - j];
1292 x[1 - i][1 - j] = tmp;
c53d793f 1293 }
ea9cfed7 1294 }
c53d793f
HE
1295 }
1296
1297 /* Update mask with function. */
0a1f7b09 1298 for (i = 0; i < 16; i++) {
c53d793f
HE
1299 a = (i >> (2 * index + 0)) & 1;
1300 b = (i >> (2 * index + 1)) & 1;
1301
1302 aset = (*mask >> i) & 1;
1303 bset = x[b][a];
1304
382cb19f 1305 rset = 0;
c53d793f
HE
1306 if (func == FUNC_AND || func == FUNC_NAND)
1307 rset = aset & bset;
1308 else if (func == FUNC_OR || func == FUNC_NOR)
1309 rset = aset | bset;
1310 else if (func == FUNC_XOR || func == FUNC_NXOR)
1311 rset = aset ^ bset;
1312
1313 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1314 rset = !rset;
1315
1316 *mask &= ~(1 << i);
1317
1318 if (rset)
1319 *mask |= 1 << i;
1320 }
1321}
1322
1323/*
1324 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1325 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1326 * set at any time, but a full mask and value can be set (0/1).
1327 */
3ba56876 1328SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1329{
1330 int i,j;
4ae1f451 1331 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1332
1333 memset(lut, 0, sizeof(struct triggerlut));
1334
f3f19d11 1335 /* Constant for simple triggers. */
c53d793f
HE
1336 lut->m4 = 0xa000;
1337
1338 /* Value/mask trigger support. */
0e1357e8 1339 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1340 lut->m2d);
c53d793f
HE
1341
1342 /* Rise/fall trigger support. */
0a1f7b09 1343 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1344 if (devc->trigger.risingmask & (1 << i) ||
1345 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1346 masks[j++] = 1 << i;
1347 }
1348
1349 build_lut_entry(masks[0], masks[0], lut->m0d);
1350 build_lut_entry(masks[1], masks[1], lut->m1d);
1351
1352 /* Add glue logic */
1353 if (masks[0] || masks[1]) {
1354 /* Transition trigger. */
0e1357e8 1355 if (masks[0] & devc->trigger.risingmask)
c53d793f 1356 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1357 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1358 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1359 if (masks[1] & devc->trigger.risingmask)
c53d793f 1360 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1361 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1362 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1363 } else {
1364 /* Only value/mask trigger. */
1365 lut->m3 = 0xffff;
1366 }
ee492173 1367
c53d793f 1368 /* Triggertype: event. */
ee492173
HE
1369 lut->params.selres = 3;
1370
e46b8fb1 1371 return SR_OK;
ee492173 1372}