]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/asix-sigma.c
Simplify channel creation.
[libsigrok.git] / src / hardware / asix-sigma / asix-sigma.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
3bbd9849
UH
26#include <glib.h>
27#include <glib/gstdio.h>
28a35d8a
HE
28#include <ftdi.h>
29#include <string.h>
e15e5873 30#include <unistd.h>
45c59c8b
BV
31#include "libsigrok.h"
32#include "libsigrok-internal.h"
28a35d8a
HE
33#include "asix-sigma.h"
34
35#define USB_VENDOR 0xa600
36#define USB_PRODUCT 0xa000
37#define USB_DESCRIPTION "ASIX SIGMA"
38#define USB_VENDOR_NAME "ASIX"
39#define USB_MODEL_NAME "SIGMA"
28a35d8a 40
ed300b9f 41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
a873c594 42static struct sr_dev_driver *di = &asix_sigma_driver_info;
6078d2c9 43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
28a35d8a 44
b1648dea
MV
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
2c9c0df8 51static const uint64_t samplerates[] = {
b1648dea
MV
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
62};
63
d261dbbf 64/*
ba7dd8bb 65 * Channel numbers seem to go from 1-16, according to this image:
d261dbbf
UH
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
790c7ccc 69static const char *channel_names[] = {
78693401
UH
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
464d12c7
KS
72};
73
2ff11e50 74static const uint32_t drvopts[] = {
1953564a 75 SR_CONF_LOGIC_ANALYZER,
e7ba5a99
BV
76};
77
2ff11e50
BV
78static const uint32_t devopts[] = {
79 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
80 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
5827f61b
BV
81 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
82 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
83 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
28a35d8a
HE
84};
85
39c64c6a
BV
86static const int32_t trigger_matches[] = {
87 SR_TRIGGER_ZERO,
88 SR_TRIGGER_ONE,
89 SR_TRIGGER_RISING,
90 SR_TRIGGER_FALLING,
91};
92
499b17e9
MV
93static const char *sigma_firmware_files[] = {
94 /* 50 MHz, supports 8 bit fractions */
95 FIRMWARE_DIR "/asix-sigma-50.fw",
96 /* 100 MHz */
97 FIRMWARE_DIR "/asix-sigma-100.fw",
98 /* 200 MHz */
99 FIRMWARE_DIR "/asix-sigma-200.fw",
100 /* Synchronous clock from pin */
101 FIRMWARE_DIR "/asix-sigma-50sync.fw",
102 /* Frequency counter */
103 FIRMWARE_DIR "/asix-sigma-phasor.fw",
f6564c8d
HE
104};
105
0e1357e8 106static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
107{
108 int ret;
fefa1800 109
0e1357e8 110 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 111 if (ret < 0) {
47f4f073 112 sr_err("ftdi_read_data failed: %s",
0e1357e8 113 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
114 }
115
116 return ret;
117}
118
0e1357e8 119static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
120{
121 int ret;
fefa1800 122
0e1357e8 123 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 124 if (ret < 0) {
47f4f073 125 sr_err("ftdi_write_data failed: %s",
0e1357e8 126 ftdi_get_error_string(&devc->ftdic));
fefa1800 127 } else if ((size_t) ret != size) {
47f4f073 128 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
129 }
130
131 return ret;
132}
133
99965709 134static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 135 struct dev_context *devc)
28a35d8a
HE
136{
137 size_t i;
138 uint8_t buf[len + 2];
139 int idx = 0;
140
141 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
142 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
143
fefa1800 144 for (i = 0; i < len; ++i) {
28a35d8a
HE
145 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
146 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
147 }
148
0e1357e8 149 return sigma_write(buf, idx, devc);
28a35d8a
HE
150}
151
0e1357e8 152static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 153{
0e1357e8 154 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
155}
156
99965709 157static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 158 struct dev_context *devc)
28a35d8a
HE
159{
160 uint8_t buf[3];
fefa1800 161
28a35d8a
HE
162 buf[0] = REG_ADDR_LOW | (reg & 0xf);
163 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
164 buf[2] = REG_READ_ADDR;
165
0e1357e8 166 sigma_write(buf, sizeof(buf), devc);
28a35d8a 167
0e1357e8 168 return sigma_read(data, len, devc);
28a35d8a
HE
169}
170
0e1357e8 171static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
28a35d8a
HE
172{
173 uint8_t value;
fefa1800 174
0e1357e8 175 if (1 != sigma_read_register(reg, &value, 1, devc)) {
47f4f073 176 sr_err("sigma_get_register: 1 byte expected");
28a35d8a
HE
177 return 0;
178 }
179
180 return value;
181}
182
99965709 183static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 184 struct dev_context *devc)
28a35d8a
HE
185{
186 uint8_t buf[] = {
187 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
188
189 REG_READ_ADDR | NEXT_REG,
190 REG_READ_ADDR | NEXT_REG,
191 REG_READ_ADDR | NEXT_REG,
192 REG_READ_ADDR | NEXT_REG,
193 REG_READ_ADDR | NEXT_REG,
194 REG_READ_ADDR | NEXT_REG,
195 };
28a35d8a
HE
196 uint8_t result[6];
197
0e1357e8 198 sigma_write(buf, sizeof(buf), devc);
28a35d8a 199
0e1357e8 200 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
201
202 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
203 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
204
57bbf56b
HE
205 /* Not really sure why this must be done, but according to spec. */
206 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 207 *stoppos -= 64;
57bbf56b
HE
208
209 if ((*--triggerpos & 0x1ff) == 0x1ff)
382cb19f 210 *triggerpos -= 64;
57bbf56b 211
28a35d8a
HE
212 return 1;
213}
214
99965709 215static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 216 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
217{
218 size_t i;
219 uint8_t buf[4096];
220 int idx = 0;
221
fefa1800 222 /* Send the startchunk. Index start with 1. */
28a35d8a
HE
223 buf[0] = startchunk >> 8;
224 buf[1] = startchunk & 0xff;
0e1357e8 225 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
28a35d8a 226
fefa1800 227 /* Read the DRAM. */
28a35d8a
HE
228 buf[idx++] = REG_DRAM_BLOCK;
229 buf[idx++] = REG_DRAM_WAIT_ACK;
230
231 for (i = 0; i < numchunks; ++i) {
fefa1800
UH
232 /* Alternate bit to copy from DRAM to cache. */
233 if (i != (numchunks - 1))
234 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
235
236 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
237
fefa1800 238 if (i != (numchunks - 1))
28a35d8a
HE
239 buf[idx++] = REG_DRAM_WAIT_ACK;
240 }
241
0e1357e8 242 sigma_write(buf, idx, devc);
28a35d8a 243
0e1357e8 244 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
245}
246
4ae1f451 247/* Upload trigger look-up tables to Sigma. */
0e1357e8 248static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
249{
250 int i;
251 uint8_t tmp[2];
252 uint16_t bit;
253
254 /* Transpose the table and send to Sigma. */
255 for (i = 0; i < 16; ++i) {
256 bit = 1 << i;
257
258 tmp[0] = tmp[1] = 0;
259
260 if (lut->m2d[0] & bit)
261 tmp[0] |= 0x01;
262 if (lut->m2d[1] & bit)
263 tmp[0] |= 0x02;
264 if (lut->m2d[2] & bit)
265 tmp[0] |= 0x04;
266 if (lut->m2d[3] & bit)
267 tmp[0] |= 0x08;
268
269 if (lut->m3 & bit)
270 tmp[0] |= 0x10;
271 if (lut->m3s & bit)
272 tmp[0] |= 0x20;
273 if (lut->m4 & bit)
274 tmp[0] |= 0x40;
275
276 if (lut->m0d[0] & bit)
277 tmp[1] |= 0x01;
278 if (lut->m0d[1] & bit)
279 tmp[1] |= 0x02;
280 if (lut->m0d[2] & bit)
281 tmp[1] |= 0x04;
282 if (lut->m0d[3] & bit)
283 tmp[1] |= 0x08;
284
285 if (lut->m1d[0] & bit)
286 tmp[1] |= 0x10;
287 if (lut->m1d[1] & bit)
288 tmp[1] |= 0x20;
289 if (lut->m1d[2] & bit)
290 tmp[1] |= 0x40;
291 if (lut->m1d[3] & bit)
292 tmp[1] |= 0x80;
293
99965709 294 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
295 devc);
296 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
297 }
298
299 /* Send the parameters */
300 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 301 sizeof(lut->params), devc);
ee492173 302
e46b8fb1 303 return SR_OK;
ee492173
HE
304}
305
3678cf73 306static void clear_helper(void *priv)
0448d110 307{
0e1357e8 308 struct dev_context *devc;
ce4d26dd 309
3678cf73 310 devc = priv;
0e1357e8 311
3678cf73
UH
312 ftdi_deinit(&devc->ftdic);
313}
0448d110 314
3b412e3a 315static int dev_clear(void)
3678cf73
UH
316{
317 return std_dev_clear(di, clear_helper);
0448d110
BV
318}
319
6078d2c9 320static int init(struct sr_context *sr_ctx)
61136ea6 321{
f6beaac5 322 return std_init(sr_ctx, di, LOG_PREFIX);
61136ea6
BV
323}
324
6078d2c9 325static GSList *scan(GSList *options)
28a35d8a 326{
d68e2d1a 327 struct sr_dev_inst *sdi;
0e1357e8
BV
328 struct drv_context *drvc;
329 struct dev_context *devc;
0448d110 330 GSList *devices;
e3fff420
HE
331 struct ftdi_device_list *devlist;
332 char serial_txt[10];
333 uint32_t serial;
790c7ccc
MV
334 int ret;
335 unsigned int i;
28a35d8a 336
0448d110 337 (void)options;
64d33dc2 338
a873c594 339 drvc = di->priv;
4b97c74e 340
0448d110 341 devices = NULL;
4b97c74e 342
f57d8ffe 343 devc = g_malloc0(sizeof(struct dev_context));
99965709 344
0e1357e8 345 ftdi_init(&devc->ftdic);
28a35d8a 346
fefa1800 347 /* Look for SIGMAs. */
e3fff420 348
0e1357e8 349 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
eec944c5
BV
350 USB_VENDOR, USB_PRODUCT)) <= 0) {
351 if (ret < 0)
352 sr_err("ftdi_usb_find_all(): %d", ret);
99965709 353 goto free;
eec944c5 354 }
99965709 355
e3fff420 356 /* Make sure it's a version 1 or 2 SIGMA. */
0e1357e8 357 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
6352d030 358 serial_txt, sizeof(serial_txt));
e3fff420
HE
359 sscanf(serial_txt, "%x", &serial);
360
6352d030 361 if (serial < 0xa6010000 || serial > 0xa602ffff) {
47f4f073
UH
362 sr_err("Only SIGMA and SIGMA2 are supported "
363 "in this version of libsigrok.");
e3fff420
HE
364 goto free;
365 }
366
367 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
368
23b886bc 369 devc->cur_samplerate = samplerates[0];
0e1357e8
BV
370 devc->period_ps = 0;
371 devc->limit_msec = 0;
372 devc->cur_firmware = -1;
ba7dd8bb 373 devc->num_channels = 0;
0e1357e8
BV
374 devc->samples_per_event = 0;
375 devc->capture_ratio = 50;
376 devc->use_triggers = 0;
28a35d8a 377
fefa1800 378 /* Register SIGMA device. */
aac29cc1 379 sdi = g_malloc0(sizeof(struct sr_dev_inst));
0af636be
UH
380 sdi->status = SR_ST_INITIALIZING;
381 sdi->vendor = g_strdup(USB_VENDOR_NAME);
382 sdi->model = g_strdup(USB_MODEL_NAME);
a873c594 383 sdi->driver = di;
87ca93c5 384
5e23fcab
ML
385 for (i = 0; i < ARRAY_SIZE(channel_names); i++)
386 sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
790c7ccc 387 channel_names[i]);
87ca93c5 388
0448d110 389 devices = g_slist_append(devices, sdi);
0e1357e8
BV
390 drvc->instances = g_slist_append(drvc->instances, sdi);
391 sdi->priv = devc;
28a35d8a 392
fefa1800 393 /* We will open the device again when we need it. */
e3fff420 394 ftdi_list_free(&devlist);
28a35d8a 395
0448d110 396 return devices;
ea9cfed7 397
99965709 398free:
0e1357e8
BV
399 ftdi_deinit(&devc->ftdic);
400 g_free(devc);
0448d110 401 return NULL;
28a35d8a
HE
402}
403
6078d2c9 404static GSList *dev_list(void)
811deee4 405{
0e94d524 406 return ((struct drv_context *)(di->priv))->instances;
811deee4
BV
407}
408
d5fa188a
MV
409/*
410 * Configure the FPGA for bitbang mode.
411 * This sequence is documented in section 2. of the ASIX Sigma programming
412 * manual. This sequence is necessary to configure the FPGA in the Sigma
413 * into Bitbang mode, in which it can be programmed with the firmware.
414 */
415static int sigma_fpga_init_bitbang(struct dev_context *devc)
416{
417 uint8_t suicide[] = {
418 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
419 };
420 uint8_t init_array[] = {
421 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
422 0x01, 0x01,
423 };
424 int i, ret, timeout = 10000;
425 uint8_t data;
426
427 /* Section 2. part 1), do the FPGA suicide. */
428 sigma_write(suicide, sizeof(suicide), devc);
429 sigma_write(suicide, sizeof(suicide), devc);
430 sigma_write(suicide, sizeof(suicide), devc);
431 sigma_write(suicide, sizeof(suicide), devc);
432
433 /* Section 2. part 2), do pulse on D1. */
434 sigma_write(init_array, sizeof(init_array), devc);
435 ftdi_usb_purge_buffers(&devc->ftdic);
436
437 /* Wait until the FPGA asserts D6/INIT_B. */
438 for (i = 0; i < timeout; i++) {
439 ret = sigma_read(&data, 1, devc);
440 if (ret < 0)
441 return ret;
442 /* Test if pin D6 got asserted. */
443 if (data & (1 << 5))
444 return 0;
445 /* The D6 was not asserted yet, wait a bit. */
d9c3331d 446 g_usleep(10000);
d5fa188a
MV
447 }
448
449 return SR_ERR_TIMEOUT;
450}
451
64fe661b
MV
452/*
453 * Configure the FPGA for logic-analyzer mode.
454 */
455static int sigma_fpga_init_la(struct dev_context *devc)
456{
457 /* Initialize the logic analyzer mode. */
458 uint8_t logic_mode_start[] = {
011f1091
MV
459 REG_ADDR_LOW | (READ_ID & 0xf),
460 REG_ADDR_HIGH | (READ_ID >> 8),
461 REG_READ_ADDR, /* Read ID register. */
462
463 REG_ADDR_LOW | (WRITE_TEST & 0xf),
464 REG_DATA_LOW | 0x5,
465 REG_DATA_HIGH_WRITE | 0x5,
466 REG_READ_ADDR, /* Read scratch register. */
467
468 REG_DATA_LOW | 0xa,
469 REG_DATA_HIGH_WRITE | 0xa,
470 REG_READ_ADDR, /* Read scratch register. */
471
472 REG_ADDR_LOW | (WRITE_MODE & 0xf),
473 REG_DATA_LOW | 0x0,
474 REG_DATA_HIGH_WRITE | 0x8,
64fe661b
MV
475 };
476
477 uint8_t result[3];
478 int ret;
479
480 /* Initialize the logic analyzer mode. */
481 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
482
011f1091 483 /* Expect a 3 byte reply since we issued three READ requests. */
64fe661b
MV
484 ret = sigma_read(result, 3, devc);
485 if (ret != 3)
486 goto err;
487
488 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
489 goto err;
490
491 return SR_OK;
492err:
493 sr_err("Configuration failed. Invalid reply received.");
494 return SR_ERR;
495}
496
a80226bb
MV
497/*
498 * Read the firmware from a file and transform it into a series of bitbang
499 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
500 * by the caller of this function.
501 */
502static int sigma_fw_2_bitbang(const char *filename,
503 uint8_t **bb_cmd, gsize *bb_cmd_size)
504{
505 GMappedFile *file;
506 GError *error;
507 gsize i, file_size, bb_size;
508 gchar *firmware;
509 uint8_t *bb_stream, *bbs;
510 uint32_t imm;
511 int bit, v;
512 int ret = SR_OK;
513
514 /*
515 * Map the file and make the mapped buffer writable.
516 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
517 * will be modified. It will not be modified until someone uses
518 * g_file_set_contents() on it.
519 */
520 error = NULL;
521 file = g_mapped_file_new(filename, TRUE, &error);
522 g_assert_no_error(error);
523
524 file_size = g_mapped_file_get_length(file);
525 firmware = g_mapped_file_get_contents(file);
526 g_assert(firmware);
527
528 /* Weird magic transformation below, I have no idea what it does. */
529 imm = 0x3f6df2ab;
530 for (i = 0; i < file_size; i++) {
531 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
532 firmware[i] ^= imm & 0xff;
533 }
534
535 /*
536 * Now that the firmware is "transformed", we will transcribe the
537 * firmware blob into a sequence of toggles of the Dx wires. This
538 * sequence will be fed directly into the Sigma, which must be in
539 * the FPGA bitbang programming mode.
540 */
541
542 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
543 bb_size = file_size * 8 * 2;
544 bb_stream = (uint8_t *)g_try_malloc(bb_size);
545 if (!bb_stream) {
546 sr_err("%s: Failed to allocate bitbang stream", __func__);
547 ret = SR_ERR_MALLOC;
548 goto exit;
549 }
550
551 bbs = bb_stream;
552 for (i = 0; i < file_size; i++) {
553 for (bit = 7; bit >= 0; bit--) {
554 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
555 *bbs++ = v | 0x01;
556 *bbs++ = v;
557 }
558 }
559
560 /* The transformation completed successfully, return the result. */
561 *bb_cmd = bb_stream;
562 *bb_cmd_size = bb_size;
563
564exit:
565 g_mapped_file_unref(file);
566 return ret;
567}
568
0e1357e8 569static int upload_firmware(int firmware_idx, struct dev_context *devc)
28a35d8a
HE
570{
571 int ret;
572 unsigned char *buf;
573 unsigned char pins;
574 size_t buf_size;
499b17e9 575 const char *firmware = sigma_firmware_files[firmware_idx];
8bbf7627 576 struct ftdi_context *ftdic = &devc->ftdic;
28a35d8a 577
fefa1800 578 /* Make sure it's an ASIX SIGMA. */
8bbf7627
MV
579 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
580 USB_DESCRIPTION, NULL);
581 if (ret < 0) {
47f4f073 582 sr_err("ftdi_usb_open failed: %s",
8bbf7627 583 ftdi_get_error_string(ftdic));
28a35d8a
HE
584 return 0;
585 }
586
8bbf7627
MV
587 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
588 if (ret < 0) {
47f4f073 589 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 590 ftdi_get_error_string(ftdic));
28a35d8a
HE
591 return 0;
592 }
593
fefa1800 594 /* Four times the speed of sigmalogan - Works well. */
8bbf7627
MV
595 ret = ftdi_set_baudrate(ftdic, 750000);
596 if (ret < 0) {
47f4f073 597 sr_err("ftdi_set_baudrate failed: %s",
8bbf7627 598 ftdi_get_error_string(ftdic));
28a35d8a
HE
599 return 0;
600 }
601
d5fa188a
MV
602 /* Initialize the FPGA for firmware upload. */
603 ret = sigma_fpga_init_bitbang(devc);
604 if (ret)
605 return ret;
28a35d8a 606
9ddb2a12 607 /* Prepare firmware. */
d485d443 608 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
8bbf7627 609 if (ret != SR_OK) {
47f4f073 610 sr_err("An error occured while reading the firmware: %s",
499b17e9 611 firmware);
b53738ba 612 return ret;
28a35d8a
HE
613 }
614
fefa1800 615 /* Upload firmare. */
499b17e9 616 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 617 sigma_write(buf, buf_size, devc);
28a35d8a
HE
618
619 g_free(buf);
620
8bbf7627
MV
621 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
622 if (ret < 0) {
47f4f073 623 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 624 ftdi_get_error_string(ftdic));
e46b8fb1 625 return SR_ERR;
28a35d8a
HE
626 }
627
8bbf7627 628 ftdi_usb_purge_buffers(ftdic);
28a35d8a 629
fefa1800 630 /* Discard garbage. */
29b66a2e 631 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
632 ;
633
64fe661b
MV
634 /* Initialize the FPGA for logic-analyzer mode. */
635 ret = sigma_fpga_init_la(devc);
636 if (ret != SR_OK)
637 return ret;
28a35d8a 638
0e1357e8 639 devc->cur_firmware = firmware_idx;
f6564c8d 640
47f4f073 641 sr_info("Firmware uploaded.");
e3fff420 642
e46b8fb1 643 return SR_OK;
f6564c8d
HE
644}
645
6078d2c9 646static int dev_open(struct sr_dev_inst *sdi)
f6564c8d 647{
0e1357e8 648 struct dev_context *devc;
f6564c8d
HE
649 int ret;
650
0e1357e8 651 devc = sdi->priv;
99965709 652
9ddb2a12 653 /* Make sure it's an ASIX SIGMA. */
0e1357e8 654 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
f6564c8d
HE
655 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
656
47f4f073 657 sr_err("ftdi_usb_open failed: %s",
0e1357e8 658 ftdi_get_error_string(&devc->ftdic));
f6564c8d
HE
659
660 return 0;
661 }
28a35d8a 662
5a2326a7 663 sdi->status = SR_ST_ACTIVE;
28a35d8a 664
e46b8fb1 665 return SR_OK;
f6564c8d
HE
666}
667
6f4b1868 668static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 669{
2c9c0df8
BV
670 struct dev_context *devc;
671 unsigned int i;
672 int ret;
f6564c8d 673
2c9c0df8 674 devc = sdi->priv;
f4abaa9f
UH
675 ret = SR_OK;
676
2c9c0df8
BV
677 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
678 if (samplerates[i] == samplerate)
f6564c8d
HE
679 break;
680 }
2c9c0df8 681 if (samplerates[i] == 0)
e46b8fb1 682 return SR_ERR_SAMPLERATE;
f6564c8d 683
59df0c77 684 if (samplerate <= SR_MHZ(50)) {
0e1357e8 685 ret = upload_firmware(0, devc);
ba7dd8bb 686 devc->num_channels = 16;
6b2d3385 687 } else if (samplerate == SR_MHZ(100)) {
0e1357e8 688 ret = upload_firmware(1, devc);
ba7dd8bb 689 devc->num_channels = 8;
6b2d3385 690 } else if (samplerate == SR_MHZ(200)) {
0e1357e8 691 ret = upload_firmware(2, devc);
ba7dd8bb 692 devc->num_channels = 4;
f78898e9 693 }
f6564c8d 694
6b2d3385
BV
695 if (ret == SR_OK) {
696 devc->cur_samplerate = samplerate;
697 devc->period_ps = 1000000000000ULL / samplerate;
698 devc->samples_per_event = 16 / devc->num_channels;
699 devc->state.state = SIGMA_IDLE;
700 }
f6564c8d 701
e8397563 702 return ret;
28a35d8a
HE
703}
704
c53d793f
HE
705/*
706 * In 100 and 200 MHz mode, only a single pin rising/falling can be
707 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 708 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
709 *
710 * The Sigma supports complex triggers using boolean expressions, but this
711 * has not been implemented yet.
712 */
39c64c6a 713static int convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 714{
39c64c6a
BV
715 struct dev_context *devc;
716 struct sr_trigger *trigger;
717 struct sr_trigger_stage *stage;
718 struct sr_trigger_match *match;
719 const GSList *l, *m;
720 int channelbit, trigger_set;
57bbf56b 721
39c64c6a 722 devc = sdi->priv;
0e1357e8 723 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 724 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
725 return SR_OK;
726
727 trigger_set = 0;
728 for (l = trigger->stages; l; l = l->next) {
729 stage = l->data;
730 for (m = stage->matches; m; m = m->next) {
731 match = m->data;
732 if (!match->channel->enabled)
733 /* Ignore disabled channels with a trigger. */
734 continue;
735 channelbit = 1 << (match->channel->index);
736 if (devc->cur_samplerate >= SR_MHZ(100)) {
737 /* Fast trigger support. */
738 if (trigger_set) {
739 sr_err("Only a single pin trigger is "
740 "supported in 100 and 200MHz mode.");
741 return SR_ERR;
742 }
743 if (match->match == SR_TRIGGER_FALLING)
744 devc->trigger.fallingmask |= channelbit;
745 else if (match->match == SR_TRIGGER_RISING)
746 devc->trigger.risingmask |= channelbit;
747 else {
748 sr_err("Only rising/falling trigger is "
749 "supported in 100 and 200MHz mode.");
750 return SR_ERR;
751 }
eec5275e 752
c53d793f 753 ++trigger_set;
39c64c6a
BV
754 } else {
755 /* Simple trigger support (event). */
756 if (match->match == SR_TRIGGER_ONE) {
757 devc->trigger.simplevalue |= channelbit;
758 devc->trigger.simplemask |= channelbit;
759 }
760 else if (match->match == SR_TRIGGER_ZERO) {
761 devc->trigger.simplevalue &= ~channelbit;
762 devc->trigger.simplemask |= channelbit;
763 }
764 else if (match->match == SR_TRIGGER_FALLING) {
765 devc->trigger.fallingmask |= channelbit;
766 ++trigger_set;
767 }
768 else if (match->match == SR_TRIGGER_RISING) {
769 devc->trigger.risingmask |= channelbit;
770 ++trigger_set;
771 }
772
773 /*
774 * Actually, Sigma supports 2 rising/falling triggers,
775 * but they are ORed and the current trigger syntax
776 * does not permit ORed triggers.
777 */
778 if (trigger_set > 1) {
779 sr_err("Only 1 rising/falling trigger "
780 "is supported.");
781 return SR_ERR;
782 }
ee492173 783 }
ee492173 784 }
57bbf56b
HE
785 }
786
39c64c6a 787
e46b8fb1 788 return SR_OK;
57bbf56b
HE
789}
790
6078d2c9 791static int dev_close(struct sr_dev_inst *sdi)
28a35d8a 792{
0e1357e8 793 struct dev_context *devc;
28a35d8a 794
961009b0 795 devc = sdi->priv;
697785d1
UH
796
797 /* TODO */
798 if (sdi->status == SR_ST_ACTIVE)
0e1357e8 799 ftdi_usb_close(&devc->ftdic);
697785d1
UH
800
801 sdi->status = SR_ST_INACTIVE;
802
803 return SR_OK;
28a35d8a
HE
804}
805
6078d2c9 806static int cleanup(void)
28a35d8a 807{
3b412e3a 808 return dev_clear();
28a35d8a
HE
809}
810
584560f1 811static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 812 const struct sr_channel_group *cg)
28a35d8a 813{
0e1357e8 814 struct dev_context *devc;
99965709 815
53b4680f 816 (void)cg;
8f996b89 817
fb2e6de7
BV
818 if (!sdi)
819 return SR_ERR;
820 devc = sdi->priv;
821
584560f1 822 switch (key) {
123e1313 823 case SR_CONF_SAMPLERATE:
fb2e6de7
BV
824 *data = g_variant_new_uint64(devc->cur_samplerate);
825 break;
826 case SR_CONF_LIMIT_MSEC:
827 *data = g_variant_new_uint64(devc->limit_msec);
828 break;
829 case SR_CONF_CAPTURE_RATIO:
830 *data = g_variant_new_uint64(devc->capture_ratio);
28a35d8a 831 break;
d7bbecfd 832 default:
bd6fbf62 833 return SR_ERR_NA;
28a35d8a
HE
834 }
835
41479605 836 return SR_OK;
28a35d8a
HE
837}
838
584560f1 839static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
53b4680f 840 const struct sr_channel_group *cg)
28a35d8a 841{
0e1357e8 842 struct dev_context *devc;
6b2d3385
BV
843 uint64_t tmp;
844 int ret;
f6564c8d 845
53b4680f 846 (void)cg;
8f996b89 847
e73ffd42
BV
848 if (sdi->status != SR_ST_ACTIVE)
849 return SR_ERR_DEV_CLOSED;
850
0e1357e8 851 devc = sdi->priv;
99965709 852
6b2d3385 853 ret = SR_OK;
584560f1 854 switch (key) {
6868626b 855 case SR_CONF_SAMPLERATE:
2c9c0df8 856 ret = set_samplerate(sdi, g_variant_get_uint64(data));
6868626b
BV
857 break;
858 case SR_CONF_LIMIT_MSEC:
6b2d3385
BV
859 tmp = g_variant_get_uint64(data);
860 if (tmp > 0)
861 devc->limit_msec = g_variant_get_uint64(data);
94ba4bd6 862 else
e46b8fb1 863 ret = SR_ERR;
6868626b
BV
864 break;
865 case SR_CONF_LIMIT_SAMPLES:
6b2d3385
BV
866 tmp = g_variant_get_uint64(data);
867 devc->limit_msec = tmp * 1000 / devc->cur_samplerate;
6868626b
BV
868 break;
869 case SR_CONF_CAPTURE_RATIO:
6b2d3385
BV
870 tmp = g_variant_get_uint64(data);
871 if (tmp <= 100)
872 devc->capture_ratio = tmp;
94ba4bd6 873 else
6b2d3385 874 ret = SR_ERR;
6868626b
BV
875 break;
876 default:
bd6fbf62 877 ret = SR_ERR_NA;
28a35d8a
HE
878 }
879
880 return ret;
881}
882
584560f1 883static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
53b4680f 884 const struct sr_channel_group *cg)
a1c743fc 885{
2c9c0df8
BV
886 GVariant *gvar;
887 GVariantBuilder gvb;
a1c743fc
BV
888
889 (void)sdi;
53b4680f 890 (void)cg;
a1c743fc
BV
891
892 switch (key) {
9a6517d1 893 case SR_CONF_DEVICE_OPTIONS:
e7ba5a99
BV
894 if (!sdi)
895 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
2ff11e50 896 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
e7ba5a99
BV
897 else
898 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
2ff11e50 899 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
9a6517d1 900 break;
a1c743fc 901 case SR_CONF_SAMPLERATE:
2c9c0df8
BV
902 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
903 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
904 ARRAY_SIZE(samplerates), sizeof(uint64_t));
905 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
906 *data = g_variant_builder_end(&gvb);
a1c743fc 907 break;
39c64c6a 908 case SR_CONF_TRIGGER_MATCH:
af945a66 909 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
39c64c6a
BV
910 trigger_matches, ARRAY_SIZE(trigger_matches),
911 sizeof(int32_t));
c50277a6 912 break;
a1c743fc 913 default:
bd6fbf62 914 return SR_ERR_NA;
a1c743fc
BV
915 }
916
917 return SR_OK;
918}
919
36b1c8e6 920/* Software trigger to determine exact trigger position. */
5fc01191 921static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
922 struct sigma_trigger *t)
923{
924 int i;
5fc01191 925 uint16_t sample = 0;
36b1c8e6
HE
926
927 for (i = 0; i < 8; ++i) {
928 if (i > 0)
5fc01191
MV
929 last_sample = sample;
930 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
931
932 /* Simple triggers. */
5fc01191 933 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
934 continue;
935
936 /* Rising edge. */
5fc01191
MV
937 if (((last_sample & t->risingmask) != 0) ||
938 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
939 continue;
940
941 /* Falling edge. */
bdfc7a89 942 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 943 (sample & t->fallingmask) != 0)
36b1c8e6
HE
944 continue;
945
946 break;
947 }
948
949 /* If we did not match, return original trigger pos. */
950 return i & 0x7;
951}
952
3513d965
MV
953
954/*
955 * Return the timestamp of "DRAM cluster".
956 */
957static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
958{
959 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
960}
961
23239b5c
MV
962static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
963 unsigned int events_in_cluster,
1e23158b 964 unsigned int triggered,
23239b5c
MV
965 struct sr_dev_inst *sdi)
966{
967 struct dev_context *devc = sdi->priv;
968 struct sigma_state *ss = &devc->state;
969 struct sr_datafeed_packet packet;
970 struct sr_datafeed_logic logic;
971 uint16_t tsdiff, ts;
972 uint8_t samples[2048];
973 unsigned int i;
974
23239b5c
MV
975 ts = sigma_dram_cluster_ts(dram_cluster);
976 tsdiff = ts - ss->lastts;
977 ss->lastts = ts;
978
979 packet.type = SR_DF_LOGIC;
980 packet.payload = &logic;
981 logic.unitsize = 2;
982 logic.data = samples;
983
984 /*
985 * First of all, send Sigrok a copy of the last sample from
986 * previous cluster as many times as needed to make up for
987 * the differential characteristics of data we get from the
988 * Sigma. Sigrok needs one sample of data per period.
989 *
990 * One DRAM cluster contains a timestamp and seven samples,
991 * the units of timestamp are "devc->period_ps" , the first
992 * sample in the cluster happens at the time of the timestamp
993 * and the remaining samples happen at timestamp +1...+6 .
994 */
995 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
996 i = ts % 1024;
997 samples[2 * i + 0] = ss->lastsample & 0xff;
998 samples[2 * i + 1] = ss->lastsample >> 8;
999
1000 /*
1001 * If we have 1024 samples ready or we're at the
1002 * end of submitting the padding samples, submit
1003 * the packet to Sigrok.
1004 */
1005 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
1006 logic.length = (i + 1) * logic.unitsize;
102f1239 1007 sr_session_send(sdi, &packet);
23239b5c
MV
1008 }
1009 }
1010
1011 /*
1012 * Parse the samples in current cluster and prepare them
1013 * to be submitted to Sigrok.
1014 */
1015 for (i = 0; i < events_in_cluster; i++) {
1016 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
1017 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
1018 }
1019
1020 /* Send data up to trigger point (if triggered). */
1021 int trigger_offset = 0;
1e23158b 1022 if (triggered) {
23239b5c
MV
1023 /*
1024 * Trigger is not always accurate to sample because of
1025 * pipeline delay. However, it always triggers before
1026 * the actual event. We therefore look at the next
1027 * samples to pinpoint the exact position of the trigger.
1028 */
1029 trigger_offset = get_trigger_offset(samples,
1030 ss->lastsample, &devc->trigger);
1031
1032 if (trigger_offset > 0) {
1033 packet.type = SR_DF_LOGIC;
1034 logic.length = trigger_offset * logic.unitsize;
102f1239 1035 sr_session_send(sdi, &packet);
23239b5c
MV
1036 events_in_cluster -= trigger_offset;
1037 }
1038
1039 /* Only send trigger if explicitly enabled. */
1040 if (devc->use_triggers) {
1041 packet.type = SR_DF_TRIGGER;
102f1239 1042 sr_session_send(sdi, &packet);
23239b5c
MV
1043 }
1044 }
1045
1046 if (events_in_cluster > 0) {
1047 packet.type = SR_DF_LOGIC;
1048 logic.length = events_in_cluster * logic.unitsize;
1049 logic.data = samples + (trigger_offset * logic.unitsize);
102f1239 1050 sr_session_send(sdi, &packet);
23239b5c
MV
1051 }
1052
1053 ss->lastsample =
1054 samples[2 * (events_in_cluster - 1) + 0] |
1055 (samples[2 * (events_in_cluster - 1) + 1] << 8);
1056
1057}
1058
28a35d8a 1059/*
fefa1800
UH
1060 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1061 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
1062 *
1063 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1064 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1065 * For 50 MHz and below, events contain one sample for each channel,
1066 * spread 20 ns apart.
28a35d8a 1067 */
1e23158b
MV
1068static int decode_chunk_ts(struct sigma_dram_line *dram_line,
1069 uint16_t events_in_line,
1070 uint32_t trigger_event,
102f1239 1071 struct sr_dev_inst *sdi)
28a35d8a 1072{
3628074d 1073 struct sigma_dram_cluster *dram_cluster;
0e1357e8 1074 struct dev_context *devc = sdi->priv;
5fc01191
MV
1075 unsigned int clusters_in_line =
1076 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
1077 unsigned int events_in_cluster;
23239b5c 1078 unsigned int i;
1e23158b 1079 uint32_t trigger_cluster = ~0, triggered = 0;
ee492173 1080
4ae1f451 1081 /* Check if trigger is in this chunk. */
1e23158b
MV
1082 if (trigger_event < (64 * 7)) {
1083 if (devc->cur_samplerate <= SR_MHZ(50)) {
1084 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1085 trigger_event);
1086 }
57bbf56b 1087
ee492173 1088 /* Find in which cluster the trigger occured. */
1e23158b 1089 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1090 }
28a35d8a 1091
5fc01191
MV
1092 /* For each full DRAM cluster. */
1093 for (i = 0; i < clusters_in_line; i++) {
3628074d 1094 dram_cluster = &dram_line->cluster[i];
5fc01191 1095
5fc01191 1096 /* The last cluster might not be full. */
23239b5c
MV
1097 if ((i == clusters_in_line - 1) &&
1098 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1099 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1100 } else {
5fc01191 1101 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1102 }
ee492173 1103
1e23158b
MV
1104 triggered = (i == trigger_cluster);
1105 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1106 triggered, sdi);
28a35d8a
HE
1107 }
1108
e46b8fb1 1109 return SR_OK;
28a35d8a
HE
1110}
1111
6057d9fa 1112static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1113{
6057d9fa 1114 struct dev_context *devc = sdi->priv;
e15e5873 1115 const uint32_t chunks_per_read = 32;
fd830beb 1116 struct sigma_dram_line *dram_line;
c6648b66 1117 int bufsz;
462fe786 1118 uint32_t stoppos, triggerpos;
6057d9fa
MV
1119 struct sr_datafeed_packet packet;
1120 uint8_t modestatus;
1121
c6648b66
MV
1122 uint32_t i;
1123 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
46641fac 1124 uint32_t dl_events_in_line = 64 * 7;
1e23158b 1125 uint32_t trg_line = ~0, trg_event = ~0;
c6648b66 1126
fd830beb
MV
1127 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1128 if (!dram_line)
1129 return FALSE;
1130
6868626b
BV
1131 sr_info("Downloading sample data.");
1132
6057d9fa
MV
1133 /* Stop acquisition. */
1134 sigma_set_register(WRITE_MODE, 0x11, devc);
1135
1136 /* Set SDRAM Read Enable. */
1137 sigma_set_register(WRITE_MODE, 0x02, devc);
1138
1139 /* Get the current position. */
462fe786 1140 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1141
1142 /* Check if trigger has fired. */
1143 modestatus = sigma_get_register(READ_MODE, devc);
1e23158b 1144 if (modestatus & 0x20) {
c6648b66 1145 trg_line = triggerpos >> 9;
1e23158b
MV
1146 trg_event = triggerpos & 0x1ff;
1147 }
6057d9fa 1148
c6648b66
MV
1149 /*
1150 * Determine how many 1024b "DRAM lines" do we need to read from the
1151 * Sigma so we have a complete set of samples. Note that the last
1152 * line can be only partial, containing less than 64 clusters.
1153 */
1154 dl_lines_total = (stoppos >> 9) + 1;
6868626b 1155
c6648b66 1156 dl_lines_done = 0;
6868626b 1157
c6648b66
MV
1158 while (dl_lines_total > dl_lines_done) {
1159 /* We can download only up-to 32 DRAM lines in one go! */
1160 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
6868626b 1161
f41a4cae
MV
1162 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
1163 (uint8_t *)dram_line, devc);
c6648b66
MV
1164 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1165 (void)bufsz;
6868626b 1166
c6648b66
MV
1167 /* This is the first DRAM line, so find the initial timestamp. */
1168 if (dl_lines_done == 0) {
3513d965
MV
1169 devc->state.lastts =
1170 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1171 devc->state.lastsample = 0;
6868626b
BV
1172 }
1173
c6648b66 1174 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1175 uint32_t trigger_event = ~0;
c6648b66
MV
1176 /* The last "DRAM line" can be only partially full. */
1177 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1178 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1179
e69ad48e 1180 /* Test if the trigger happened on this line. */
c6648b66 1181 if (dl_lines_done + i == trg_line)
1e23158b 1182 trigger_event = trg_event;
e69ad48e 1183
1e23158b
MV
1184 decode_chunk_ts(dram_line + i, dl_events_in_line,
1185 trigger_event, sdi);
c6648b66 1186 }
6868626b 1187
c6648b66 1188 dl_lines_done += dl_lines_curr;
6868626b
BV
1189 }
1190
6057d9fa
MV
1191 /* All done. */
1192 packet.type = SR_DF_END;
1193 sr_session_send(sdi, &packet);
1194
1195 dev_acquisition_stop(sdi, sdi);
1196
fd830beb
MV
1197 g_free(dram_line);
1198
6057d9fa 1199 return TRUE;
6868626b
BV
1200}
1201
d4051930
MV
1202/*
1203 * Handle the Sigma when in CAPTURE mode. This function checks:
1204 * - Sampling time ended
1205 * - DRAM capacity overflow
1206 * This function triggers download of the samples from Sigma
1207 * in case either of the above conditions is true.
1208 */
1209static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1210{
d4051930
MV
1211 struct dev_context *devc = sdi->priv;
1212
94ba4bd6 1213 uint64_t running_msec;
28a35d8a 1214 struct timeval tv;
28a35d8a 1215
00c86508 1216 uint32_t stoppos, triggerpos;
28a35d8a 1217
00c86508 1218 /* Check if the selected sampling duration passed. */
d4051930
MV
1219 gettimeofday(&tv, 0);
1220 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
00c86508
MV
1221 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1222 if (running_msec >= devc->limit_msec)
6057d9fa 1223 return download_capture(sdi);
00c86508
MV
1224
1225 /* Get the position in DRAM to which the FPGA is writing now. */
1226 sigma_read_pos(&stoppos, &triggerpos, devc);
1227 /* Test if DRAM is full and if so, download the data. */
1228 if ((stoppos >> 9) == 32767)
6057d9fa 1229 return download_capture(sdi);
28a35d8a 1230
d4051930
MV
1231 return TRUE;
1232}
28a35d8a 1233
d4051930
MV
1234static int receive_data(int fd, int revents, void *cb_data)
1235{
1236 struct sr_dev_inst *sdi;
1237 struct dev_context *devc;
88c51afe 1238
d4051930
MV
1239 (void)fd;
1240 (void)revents;
88c51afe 1241
d4051930
MV
1242 sdi = cb_data;
1243 devc = sdi->priv;
1244
1245 if (devc->state.state == SIGMA_IDLE)
1246 return TRUE;
1247
1248 if (devc->state.state == SIGMA_CAPTURE)
1249 return sigma_capture_mode(sdi);
28a35d8a 1250
28a35d8a
HE
1251 return TRUE;
1252}
1253
c53d793f
HE
1254/* Build a LUT entry used by the trigger functions. */
1255static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1256{
1257 int i, j, k, bit;
1258
ba7dd8bb 1259 /* For each quad channel. */
ee492173 1260 for (i = 0; i < 4; ++i) {
c53d793f 1261 entry[i] = 0xffff;
ee492173 1262
f758d074 1263 /* For each bit in LUT. */
ee492173
HE
1264 for (j = 0; j < 16; ++j)
1265
ba7dd8bb 1266 /* For each channel in quad. */
ee492173
HE
1267 for (k = 0; k < 4; ++k) {
1268 bit = 1 << (i * 4 + k);
1269
c53d793f
HE
1270 /* Set bit in entry */
1271 if ((mask & bit) &&
1272 ((!(value & bit)) !=
4ae1f451 1273 (!(j & (1 << k)))))
c53d793f 1274 entry[i] &= ~(1 << j);
ee492173
HE
1275 }
1276 }
c53d793f 1277}
ee492173 1278
c53d793f
HE
1279/* Add a logical function to LUT mask. */
1280static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1281 int index, int neg, uint16_t *mask)
1282{
1283 int i, j;
1284 int x[2][2], tmp, a, b, aset, bset, rset;
1285
1286 memset(x, 0, 4 * sizeof(int));
1287
1288 /* Trigger detect condition. */
1289 switch (oper) {
1290 case OP_LEVEL:
1291 x[0][1] = 1;
1292 x[1][1] = 1;
1293 break;
1294 case OP_NOT:
1295 x[0][0] = 1;
1296 x[1][0] = 1;
1297 break;
1298 case OP_RISE:
1299 x[0][1] = 1;
1300 break;
1301 case OP_FALL:
1302 x[1][0] = 1;
1303 break;
1304 case OP_RISEFALL:
1305 x[0][1] = 1;
1306 x[1][0] = 1;
1307 break;
1308 case OP_NOTRISE:
1309 x[1][1] = 1;
1310 x[0][0] = 1;
1311 x[1][0] = 1;
1312 break;
1313 case OP_NOTFALL:
1314 x[1][1] = 1;
1315 x[0][0] = 1;
1316 x[0][1] = 1;
1317 break;
1318 case OP_NOTRISEFALL:
1319 x[1][1] = 1;
1320 x[0][0] = 1;
1321 break;
1322 }
1323
1324 /* Transpose if neg is set. */
1325 if (neg) {
ea9cfed7 1326 for (i = 0; i < 2; ++i) {
c53d793f
HE
1327 for (j = 0; j < 2; ++j) {
1328 tmp = x[i][j];
1329 x[i][j] = x[1-i][1-j];
1330 x[1-i][1-j] = tmp;
1331 }
ea9cfed7 1332 }
c53d793f
HE
1333 }
1334
1335 /* Update mask with function. */
1336 for (i = 0; i < 16; ++i) {
1337 a = (i >> (2 * index + 0)) & 1;
1338 b = (i >> (2 * index + 1)) & 1;
1339
1340 aset = (*mask >> i) & 1;
1341 bset = x[b][a];
1342
382cb19f 1343 rset = 0;
c53d793f
HE
1344 if (func == FUNC_AND || func == FUNC_NAND)
1345 rset = aset & bset;
1346 else if (func == FUNC_OR || func == FUNC_NOR)
1347 rset = aset | bset;
1348 else if (func == FUNC_XOR || func == FUNC_NXOR)
1349 rset = aset ^ bset;
1350
1351 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1352 rset = !rset;
1353
1354 *mask &= ~(1 << i);
1355
1356 if (rset)
1357 *mask |= 1 << i;
1358 }
1359}
1360
1361/*
1362 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1363 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1364 * set at any time, but a full mask and value can be set (0/1).
1365 */
0e1357e8 1366static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1367{
1368 int i,j;
4ae1f451 1369 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1370
1371 memset(lut, 0, sizeof(struct triggerlut));
1372
1373 /* Contant for simple triggers. */
1374 lut->m4 = 0xa000;
1375
1376 /* Value/mask trigger support. */
0e1357e8 1377 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1378 lut->m2d);
c53d793f
HE
1379
1380 /* Rise/fall trigger support. */
1381 for (i = 0, j = 0; i < 16; ++i) {
0e1357e8
BV
1382 if (devc->trigger.risingmask & (1 << i) ||
1383 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1384 masks[j++] = 1 << i;
1385 }
1386
1387 build_lut_entry(masks[0], masks[0], lut->m0d);
1388 build_lut_entry(masks[1], masks[1], lut->m1d);
1389
1390 /* Add glue logic */
1391 if (masks[0] || masks[1]) {
1392 /* Transition trigger. */
0e1357e8 1393 if (masks[0] & devc->trigger.risingmask)
c53d793f 1394 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1395 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1396 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1397 if (masks[1] & devc->trigger.risingmask)
c53d793f 1398 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1399 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1400 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1401 } else {
1402 /* Only value/mask trigger. */
1403 lut->m3 = 0xffff;
1404 }
ee492173 1405
c53d793f 1406 /* Triggertype: event. */
ee492173
HE
1407 lut->params.selres = 3;
1408
e46b8fb1 1409 return SR_OK;
ee492173
HE
1410}
1411
6078d2c9 1412static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1413{
0e1357e8 1414 struct dev_context *devc;
9ddb2a12 1415 struct clockselect_50 clockselect;
82957b65 1416 int frac, triggerpin, ret;
f4abaa9f 1417 uint8_t triggerselect = 0;
57bbf56b 1418 struct triggerinout triggerinout_conf;
ee492173 1419 struct triggerlut lut;
28a35d8a 1420
e73ffd42
BV
1421 if (sdi->status != SR_ST_ACTIVE)
1422 return SR_ERR_DEV_CLOSED;
1423
0e1357e8 1424 devc = sdi->priv;
28a35d8a 1425
39c64c6a
BV
1426 if (convert_trigger(sdi) != SR_OK) {
1427 sr_err("Failed to configure triggers.");
014359e3
BV
1428 return SR_ERR;
1429 }
1430
ea9cfed7 1431 /* If the samplerate has not been set, default to 200 kHz. */
0e1357e8 1432 if (devc->cur_firmware == -1) {
82957b65
UH
1433 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1434 return ret;
1435 }
e8397563 1436
eec5275e 1437 /* Enter trigger programming mode. */
0e1357e8 1438 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
28a35d8a 1439
eec5275e 1440 /* 100 and 200 MHz mode. */
0e1357e8
BV
1441 if (devc->cur_samplerate >= SR_MHZ(100)) {
1442 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
57bbf56b 1443
a42aec7f
HE
1444 /* Find which pin to trigger on from mask. */
1445 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
0e1357e8 1446 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
a42aec7f
HE
1447 (1 << triggerpin))
1448 break;
1449
1450 /* Set trigger pin and light LED on trigger. */
1451 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1452
1453 /* Default rising edge. */
0e1357e8 1454 if (devc->trigger.fallingmask)
a42aec7f 1455 triggerselect |= 1 << 3;
57bbf56b 1456
eec5275e 1457 /* All other modes. */
0e1357e8
BV
1458 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1459 build_basic_trigger(&lut, devc);
ee492173 1460
0e1357e8 1461 sigma_write_trigger_lut(&lut, devc);
57bbf56b
HE
1462
1463 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1464 }
1465
eec5275e 1466 /* Setup trigger in and out pins to default values. */
57bbf56b
HE
1467 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1468 triggerinout_conf.trgout_bytrigger = 1;
1469 triggerinout_conf.trgout_enable = 1;
1470
28a35d8a 1471 sigma_write_register(WRITE_TRIGGER_OPTION,
57bbf56b 1472 (uint8_t *) &triggerinout_conf,
0e1357e8 1473 sizeof(struct triggerinout), devc);
28a35d8a 1474
eec5275e 1475 /* Go back to normal mode. */
0e1357e8 1476 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
28a35d8a 1477
edca2c5c 1478 /* Set clock select register. */
0e1357e8 1479 if (devc->cur_samplerate == SR_MHZ(200))
ba7dd8bb 1480 /* Enable 4 channels. */
0e1357e8
BV
1481 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1482 else if (devc->cur_samplerate == SR_MHZ(100))
ba7dd8bb 1483 /* Enable 8 channels. */
0e1357e8 1484 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
edca2c5c
HE
1485 else {
1486 /*
9ddb2a12 1487 * 50 MHz mode (or fraction thereof). Any fraction down to
eec5275e 1488 * 50 MHz / 256 can be used, but is not supported by sigrok API.
edca2c5c 1489 */
0e1357e8 1490 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
edca2c5c 1491
9ddb2a12
UH
1492 clockselect.async = 0;
1493 clockselect.fraction = frac;
ba7dd8bb 1494 clockselect.disabled_channels = 0;
edca2c5c
HE
1495
1496 sigma_write_register(WRITE_CLOCK_SELECT,
9ddb2a12 1497 (uint8_t *) &clockselect,
0e1357e8 1498 sizeof(clockselect), devc);
edca2c5c
HE
1499 }
1500
fefa1800 1501 /* Setup maximum post trigger time. */
99965709 1502 sigma_set_register(WRITE_POST_TRIGGER,
0e1357e8 1503 (devc->capture_ratio * 255) / 100, devc);
28a35d8a 1504
eec5275e 1505 /* Start acqusition. */
0e1357e8
BV
1506 gettimeofday(&devc->start_tv, 0);
1507 sigma_set_register(WRITE_MODE, 0x0d, devc);
99965709 1508
3e9b7f9c 1509 devc->cb_data = cb_data;
28a35d8a 1510
3c36c403 1511 /* Send header packet to the session bus. */
102f1239 1512 std_session_send_df_header(sdi, LOG_PREFIX);
f366e86c 1513
f366e86c 1514 /* Add capture source. */
102f1239 1515 sr_session_source_add(sdi->session, 0, G_IO_IN, 10, receive_data, (void *)sdi);
f366e86c 1516
0e1357e8 1517 devc->state.state = SIGMA_CAPTURE;
6aac7737 1518
e46b8fb1 1519 return SR_OK;
28a35d8a
HE
1520}
1521
6078d2c9 1522static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
28a35d8a 1523{
0e1357e8 1524 struct dev_context *devc;
6aac7737 1525
3cd3a20b 1526 (void)cb_data;
28a35d8a 1527
6868626b
BV
1528 devc = sdi->priv;
1529 devc->state.state = SIGMA_IDLE;
6aac7737 1530
102f1239 1531 sr_session_source_remove(sdi->session, 0);
3010f21c
UH
1532
1533 return SR_OK;
28a35d8a
HE
1534}
1535
c09f0b57 1536SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
e519ba86 1537 .name = "asix-sigma",
6352d030 1538 .longname = "ASIX SIGMA/SIGMA2",
e519ba86 1539 .api_version = 1,
6078d2c9
UH
1540 .init = init,
1541 .cleanup = cleanup,
1542 .scan = scan,
1543 .dev_list = dev_list,
3b412e3a 1544 .dev_clear = dev_clear,
035a1078
BV
1545 .config_get = config_get,
1546 .config_set = config_set,
a1c743fc 1547 .config_list = config_list,
6078d2c9
UH
1548 .dev_open = dev_open,
1549 .dev_close = dev_close,
1550 .dev_acquisition_start = dev_acquisition_start,
1551 .dev_acquisition_stop = dev_acquisition_stop,
0e1357e8 1552 .priv = NULL,
28a35d8a 1553};