]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: Use monotonic time not wallclock time
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a 28
b1648dea
MV
29/*
30 * The ASIX Sigma supports arbitrary integer frequency divider in
31 * the 50MHz mode. The divider is in range 1...256 , allowing for
32 * very precise sampling rate selection. This driver supports only
33 * a subset of the sampling rates.
34 */
3ba56876 35SR_PRIV const uint64_t samplerates[] = {
b1648dea
MV
36 SR_KHZ(200), /* div=250 */
37 SR_KHZ(250), /* div=200 */
38 SR_KHZ(500), /* div=100 */
39 SR_MHZ(1), /* div=50 */
40 SR_MHZ(5), /* div=10 */
41 SR_MHZ(10), /* div=5 */
42 SR_MHZ(25), /* div=2 */
43 SR_MHZ(50), /* div=1 */
44 SR_MHZ(100), /* Special FW needed */
45 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
46};
47
4154a516 48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 49
8e2d6c9d 50static const char sigma_firmware_files[][24] = {
499b17e9 51 /* 50 MHz, supports 8 bit fractions */
8e2d6c9d 52 "asix-sigma-50.fw",
499b17e9 53 /* 100 MHz */
8e2d6c9d 54 "asix-sigma-100.fw",
499b17e9 55 /* 200 MHz */
8e2d6c9d 56 "asix-sigma-200.fw",
499b17e9 57 /* Synchronous clock from pin */
8e2d6c9d 58 "asix-sigma-50sync.fw",
499b17e9 59 /* Frequency counter */
8e2d6c9d 60 "asix-sigma-phasor.fw",
f6564c8d
HE
61};
62
0e1357e8 63static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
64{
65 int ret;
fefa1800 66
0e1357e8 67 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 68 if (ret < 0) {
47f4f073 69 sr_err("ftdi_read_data failed: %s",
0e1357e8 70 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
71 }
72
73 return ret;
74}
75
0e1357e8 76static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
77{
78 int ret;
fefa1800 79
0e1357e8 80 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 81 if (ret < 0) {
47f4f073 82 sr_err("ftdi_write_data failed: %s",
0e1357e8 83 ftdi_get_error_string(&devc->ftdic));
fefa1800 84 } else if ((size_t) ret != size) {
47f4f073 85 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
86 }
87
88 return ret;
89}
90
e8686e3a
AG
91/*
92 * NOTE: We chose the buffer size to be large enough to hold any write to the
93 * device. We still print a message just in case.
94 */
3ba56876 95SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
96 struct dev_context *devc)
28a35d8a
HE
97{
98 size_t i;
e8686e3a 99 uint8_t buf[80];
28a35d8a
HE
100 int idx = 0;
101
7c86d853 102 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 103 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 104 len);
e8686e3a
AG
105 return SR_ERR_BUG;
106 }
107
28a35d8a
HE
108 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
109 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
110
0a1f7b09 111 for (i = 0; i < len; i++) {
28a35d8a
HE
112 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
113 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
114 }
115
0e1357e8 116 return sigma_write(buf, idx, devc);
28a35d8a
HE
117}
118
3ba56876 119SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 120{
0e1357e8 121 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
122}
123
99965709 124static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 125 struct dev_context *devc)
28a35d8a
HE
126{
127 uint8_t buf[3];
fefa1800 128
28a35d8a
HE
129 buf[0] = REG_ADDR_LOW | (reg & 0xf);
130 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
131 buf[2] = REG_READ_ADDR;
132
0e1357e8 133 sigma_write(buf, sizeof(buf), devc);
28a35d8a 134
0e1357e8 135 return sigma_read(data, len, devc);
28a35d8a
HE
136}
137
0e1357e8 138static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
28a35d8a
HE
139{
140 uint8_t value;
fefa1800 141
0e1357e8 142 if (1 != sigma_read_register(reg, &value, 1, devc)) {
47f4f073 143 sr_err("sigma_get_register: 1 byte expected");
28a35d8a
HE
144 return 0;
145 }
146
147 return value;
148}
149
99965709 150static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 151 struct dev_context *devc)
28a35d8a
HE
152{
153 uint8_t buf[] = {
154 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
155
156 REG_READ_ADDR | NEXT_REG,
157 REG_READ_ADDR | NEXT_REG,
158 REG_READ_ADDR | NEXT_REG,
159 REG_READ_ADDR | NEXT_REG,
160 REG_READ_ADDR | NEXT_REG,
161 REG_READ_ADDR | NEXT_REG,
162 };
28a35d8a
HE
163 uint8_t result[6];
164
0e1357e8 165 sigma_write(buf, sizeof(buf), devc);
28a35d8a 166
0e1357e8 167 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
168
169 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
170 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
171
57bbf56b
HE
172 /* Not really sure why this must be done, but according to spec. */
173 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 174 *stoppos -= 64;
57bbf56b
HE
175
176 if ((*--triggerpos & 0x1ff) == 0x1ff)
382cb19f 177 *triggerpos -= 64;
57bbf56b 178
28a35d8a
HE
179 return 1;
180}
181
99965709 182static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 183 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
184{
185 size_t i;
186 uint8_t buf[4096];
f06fb3e9 187 int idx;
28a35d8a 188
fefa1800 189 /* Send the startchunk. Index start with 1. */
f06fb3e9
GS
190 idx = 0;
191 buf[idx++] = startchunk >> 8;
192 buf[idx++] = startchunk & 0xff;
193 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
28a35d8a 194
fefa1800 195 /* Read the DRAM. */
f06fb3e9 196 idx = 0;
28a35d8a
HE
197 buf[idx++] = REG_DRAM_BLOCK;
198 buf[idx++] = REG_DRAM_WAIT_ACK;
199
0a1f7b09 200 for (i = 0; i < numchunks; i++) {
fefa1800
UH
201 /* Alternate bit to copy from DRAM to cache. */
202 if (i != (numchunks - 1))
203 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
204
205 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
206
fefa1800 207 if (i != (numchunks - 1))
28a35d8a
HE
208 buf[idx++] = REG_DRAM_WAIT_ACK;
209 }
210
0e1357e8 211 sigma_write(buf, idx, devc);
28a35d8a 212
0e1357e8 213 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
214}
215
4ae1f451 216/* Upload trigger look-up tables to Sigma. */
3ba56876 217SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
218{
219 int i;
220 uint8_t tmp[2];
221 uint16_t bit;
222
223 /* Transpose the table and send to Sigma. */
0a1f7b09 224 for (i = 0; i < 16; i++) {
ee492173
HE
225 bit = 1 << i;
226
227 tmp[0] = tmp[1] = 0;
228
229 if (lut->m2d[0] & bit)
230 tmp[0] |= 0x01;
231 if (lut->m2d[1] & bit)
232 tmp[0] |= 0x02;
233 if (lut->m2d[2] & bit)
234 tmp[0] |= 0x04;
235 if (lut->m2d[3] & bit)
236 tmp[0] |= 0x08;
237
238 if (lut->m3 & bit)
239 tmp[0] |= 0x10;
240 if (lut->m3s & bit)
241 tmp[0] |= 0x20;
242 if (lut->m4 & bit)
243 tmp[0] |= 0x40;
244
245 if (lut->m0d[0] & bit)
246 tmp[1] |= 0x01;
247 if (lut->m0d[1] & bit)
248 tmp[1] |= 0x02;
249 if (lut->m0d[2] & bit)
250 tmp[1] |= 0x04;
251 if (lut->m0d[3] & bit)
252 tmp[1] |= 0x08;
253
254 if (lut->m1d[0] & bit)
255 tmp[1] |= 0x10;
256 if (lut->m1d[1] & bit)
257 tmp[1] |= 0x20;
258 if (lut->m1d[2] & bit)
259 tmp[1] |= 0x40;
260 if (lut->m1d[3] & bit)
261 tmp[1] |= 0x80;
262
99965709 263 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
264 devc);
265 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
266 }
267
268 /* Send the parameters */
269 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 270 sizeof(lut->params), devc);
ee492173 271
e46b8fb1 272 return SR_OK;
ee492173
HE
273}
274
3ba56876 275SR_PRIV void sigma_clear_helper(void *priv)
0448d110 276{
0e1357e8 277 struct dev_context *devc;
ce4d26dd 278
3678cf73 279 devc = priv;
0e1357e8 280
3678cf73
UH
281 ftdi_deinit(&devc->ftdic);
282}
0448d110 283
d5fa188a
MV
284/*
285 * Configure the FPGA for bitbang mode.
286 * This sequence is documented in section 2. of the ASIX Sigma programming
287 * manual. This sequence is necessary to configure the FPGA in the Sigma
288 * into Bitbang mode, in which it can be programmed with the firmware.
289 */
290static int sigma_fpga_init_bitbang(struct dev_context *devc)
291{
292 uint8_t suicide[] = {
293 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
294 };
295 uint8_t init_array[] = {
296 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
297 0x01, 0x01,
298 };
1a46cc62 299 int i, ret, timeout = (10 * 1000);
d5fa188a
MV
300 uint8_t data;
301
302 /* Section 2. part 1), do the FPGA suicide. */
303 sigma_write(suicide, sizeof(suicide), devc);
304 sigma_write(suicide, sizeof(suicide), devc);
305 sigma_write(suicide, sizeof(suicide), devc);
306 sigma_write(suicide, sizeof(suicide), devc);
307
308 /* Section 2. part 2), do pulse on D1. */
309 sigma_write(init_array, sizeof(init_array), devc);
310 ftdi_usb_purge_buffers(&devc->ftdic);
311
312 /* Wait until the FPGA asserts D6/INIT_B. */
313 for (i = 0; i < timeout; i++) {
314 ret = sigma_read(&data, 1, devc);
315 if (ret < 0)
316 return ret;
317 /* Test if pin D6 got asserted. */
318 if (data & (1 << 5))
319 return 0;
320 /* The D6 was not asserted yet, wait a bit. */
1a46cc62 321 g_usleep(10 * 1000);
d5fa188a
MV
322 }
323
324 return SR_ERR_TIMEOUT;
325}
326
64fe661b
MV
327/*
328 * Configure the FPGA for logic-analyzer mode.
329 */
330static int sigma_fpga_init_la(struct dev_context *devc)
331{
332 /* Initialize the logic analyzer mode. */
22f64ed8 333 uint8_t mode_regval = WMR_SDRAMINIT;
64fe661b 334 uint8_t logic_mode_start[] = {
011f1091 335 REG_ADDR_LOW | (READ_ID & 0xf),
84a6ed1a 336 REG_ADDR_HIGH | (READ_ID >> 4),
011f1091
MV
337 REG_READ_ADDR, /* Read ID register. */
338
339 REG_ADDR_LOW | (WRITE_TEST & 0xf),
340 REG_DATA_LOW | 0x5,
341 REG_DATA_HIGH_WRITE | 0x5,
342 REG_READ_ADDR, /* Read scratch register. */
343
344 REG_DATA_LOW | 0xa,
345 REG_DATA_HIGH_WRITE | 0xa,
346 REG_READ_ADDR, /* Read scratch register. */
347
348 REG_ADDR_LOW | (WRITE_MODE & 0xf),
22f64ed8
GS
349 REG_DATA_LOW | (mode_regval & 0xf),
350 REG_DATA_HIGH_WRITE | (mode_regval >> 4),
64fe661b
MV
351 };
352
353 uint8_t result[3];
354 int ret;
355
356 /* Initialize the logic analyzer mode. */
357 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
358
011f1091 359 /* Expect a 3 byte reply since we issued three READ requests. */
64fe661b
MV
360 ret = sigma_read(result, 3, devc);
361 if (ret != 3)
362 goto err;
363
364 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
365 goto err;
366
367 return SR_OK;
368err:
369 sr_err("Configuration failed. Invalid reply received.");
370 return SR_ERR;
371}
372
a80226bb
MV
373/*
374 * Read the firmware from a file and transform it into a series of bitbang
375 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
376 * by the caller of this function.
377 */
8e2d6c9d 378static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
379 uint8_t **bb_cmd, gsize *bb_cmd_size)
380{
8e2d6c9d
DE
381 size_t i, file_size, bb_size;
382 char *firmware;
a80226bb
MV
383 uint8_t *bb_stream, *bbs;
384 uint32_t imm;
385 int bit, v;
386 int ret = SR_OK;
387
387825dc 388 /* Retrieve the on-disk firmware file content. */
8e2d6c9d
DE
389 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
390 name, &file_size, 256 * 1024);
391 if (!firmware)
392 return SR_ERR;
a80226bb 393
387825dc 394 /* Unscramble the file content (XOR with "random" sequence). */
a80226bb
MV
395 imm = 0x3f6df2ab;
396 for (i = 0; i < file_size; i++) {
397 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
398 firmware[i] ^= imm & 0xff;
399 }
400
401 /*
387825dc
GS
402 * Generate a sequence of bitbang samples. With two samples per
403 * FPGA configuration bit, providing the level for the DIN signal
404 * as well as two edges for CCLK. See Xilinx UG332 for details
405 * ("slave serial" mode).
406 *
407 * Note that CCLK is inverted in hardware. That's why the
408 * respective bit is first set and then cleared in the bitbang
409 * sample sets. So that the DIN level will be stable when the
410 * data gets sampled at the rising CCLK edge, and the signals'
411 * setup time constraint will be met.
412 *
413 * The caller will put the FPGA into download mode, will send
414 * the bitbang samples, and release the allocated memory.
a80226bb 415 */
a80226bb
MV
416 bb_size = file_size * 8 * 2;
417 bb_stream = (uint8_t *)g_try_malloc(bb_size);
418 if (!bb_stream) {
419 sr_err("%s: Failed to allocate bitbang stream", __func__);
420 ret = SR_ERR_MALLOC;
421 goto exit;
422 }
a80226bb
MV
423 bbs = bb_stream;
424 for (i = 0; i < file_size; i++) {
425 for (bit = 7; bit >= 0; bit--) {
426 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
427 *bbs++ = v | 0x01;
428 *bbs++ = v;
429 }
430 }
431
432 /* The transformation completed successfully, return the result. */
433 *bb_cmd = bb_stream;
434 *bb_cmd_size = bb_size;
435
436exit:
8e2d6c9d 437 g_free(firmware);
a80226bb
MV
438 return ret;
439}
440
8e2d6c9d
DE
441static int upload_firmware(struct sr_context *ctx,
442 int firmware_idx, struct dev_context *devc)
28a35d8a
HE
443{
444 int ret;
445 unsigned char *buf;
446 unsigned char pins;
447 size_t buf_size;
a9016883
GS
448 const char *firmware;
449 struct ftdi_context *ftdic;
450
451 /* Avoid downloading the same firmware multiple times. */
452 firmware = sigma_firmware_files[firmware_idx];
453 if (devc->cur_firmware == firmware_idx) {
454 sr_info("Not uploading firmware file '%s' again.", firmware);
455 return SR_OK;
456 }
28a35d8a 457
fefa1800 458 /* Make sure it's an ASIX SIGMA. */
a9016883 459 ftdic = &devc->ftdic;
8bbf7627
MV
460 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
461 USB_DESCRIPTION, NULL);
462 if (ret < 0) {
47f4f073 463 sr_err("ftdi_usb_open failed: %s",
8bbf7627 464 ftdi_get_error_string(ftdic));
28a35d8a
HE
465 return 0;
466 }
467
8bbf7627
MV
468 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
469 if (ret < 0) {
47f4f073 470 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 471 ftdi_get_error_string(ftdic));
28a35d8a
HE
472 return 0;
473 }
474
fefa1800 475 /* Four times the speed of sigmalogan - Works well. */
1a46cc62 476 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
8bbf7627 477 if (ret < 0) {
47f4f073 478 sr_err("ftdi_set_baudrate failed: %s",
8bbf7627 479 ftdi_get_error_string(ftdic));
28a35d8a
HE
480 return 0;
481 }
482
d5fa188a
MV
483 /* Initialize the FPGA for firmware upload. */
484 ret = sigma_fpga_init_bitbang(devc);
485 if (ret)
486 return ret;
28a35d8a 487
9ddb2a12 488 /* Prepare firmware. */
8e2d6c9d 489 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 490 if (ret != SR_OK) {
f3f19d11 491 sr_err("An error occurred while reading the firmware: %s",
499b17e9 492 firmware);
b53738ba 493 return ret;
28a35d8a
HE
494 }
495
f3f19d11 496 /* Upload firmware. */
499b17e9 497 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 498 sigma_write(buf, buf_size, devc);
28a35d8a
HE
499
500 g_free(buf);
501
8bbf7627
MV
502 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
503 if (ret < 0) {
47f4f073 504 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 505 ftdi_get_error_string(ftdic));
e46b8fb1 506 return SR_ERR;
28a35d8a
HE
507 }
508
8bbf7627 509 ftdi_usb_purge_buffers(ftdic);
28a35d8a 510
fefa1800 511 /* Discard garbage. */
29b66a2e 512 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
513 ;
514
64fe661b
MV
515 /* Initialize the FPGA for logic-analyzer mode. */
516 ret = sigma_fpga_init_la(devc);
517 if (ret != SR_OK)
518 return ret;
28a35d8a 519
0e1357e8 520 devc->cur_firmware = firmware_idx;
f6564c8d 521
47f4f073 522 sr_info("Firmware uploaded.");
e3fff420 523
e46b8fb1 524 return SR_OK;
f6564c8d
HE
525}
526
9a0a606a
GS
527/*
528 * Sigma doesn't support limiting the number of samples, so we have to
529 * translate the number and the samplerate to an elapsed time.
530 *
531 * In addition we need to ensure that the last data cluster has passed
532 * the hardware pipeline, and became available to the PC side. With RLE
533 * compression up to 327ms could pass before another cluster accumulates
534 * at 200kHz samplerate when input pins don't change.
535 */
536SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
537 uint64_t limit_samples)
538{
539 uint64_t limit_msec;
540 uint64_t worst_cluster_time_ms;
541
542 limit_msec = limit_samples * 1000 / devc->cur_samplerate;
543 worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
544 /*
545 * One cluster time is not enough to flush pipeline when sampling
546 * grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
547 */
548 return limit_msec + 2 * worst_cluster_time_ms;
549}
550
3ba56876 551SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 552{
2c9c0df8 553 struct dev_context *devc;
8e2d6c9d 554 struct drv_context *drvc;
4154a516 555 size_t i;
2c9c0df8 556 int ret;
f6564c8d 557
2c9c0df8 558 devc = sdi->priv;
8e2d6c9d 559 drvc = sdi->driver->context;
f4abaa9f
UH
560 ret = SR_OK;
561
2f7e529c 562 /* Reject rates that are not in the list of supported rates. */
4154a516 563 for (i = 0; i < samplerates_count; i++) {
2c9c0df8 564 if (samplerates[i] == samplerate)
f6564c8d
HE
565 break;
566 }
4154a516 567 if (i >= samplerates_count || samplerates[i] == 0)
e46b8fb1 568 return SR_ERR_SAMPLERATE;
f6564c8d 569
2f7e529c
GS
570 /*
571 * Depending on the samplerates of 200/100/50- MHz, specific
572 * firmware is required and higher rates might limit the set
573 * of available channels.
574 */
59df0c77 575 if (samplerate <= SR_MHZ(50)) {
8e2d6c9d 576 ret = upload_firmware(drvc->sr_ctx, 0, devc);
ba7dd8bb 577 devc->num_channels = 16;
6b2d3385 578 } else if (samplerate == SR_MHZ(100)) {
8e2d6c9d 579 ret = upload_firmware(drvc->sr_ctx, 1, devc);
ba7dd8bb 580 devc->num_channels = 8;
6b2d3385 581 } else if (samplerate == SR_MHZ(200)) {
8e2d6c9d 582 ret = upload_firmware(drvc->sr_ctx, 2, devc);
ba7dd8bb 583 devc->num_channels = 4;
f78898e9 584 }
f6564c8d 585
2f7e529c
GS
586 /*
587 * Derive the sample period from the sample rate as well as the
588 * number of samples that the device will communicate within
589 * an "event" (memory organization internal to the device).
590 */
6b2d3385
BV
591 if (ret == SR_OK) {
592 devc->cur_samplerate = samplerate;
6b2d3385
BV
593 devc->samples_per_event = 16 / devc->num_channels;
594 devc->state.state = SIGMA_IDLE;
595 }
f6564c8d 596
2f7e529c
GS
597 /*
598 * Support for "limit_samples" is implemented by stopping
599 * acquisition after a corresponding period of time.
600 * Re-calculate that period of time, in case the limit is
601 * set first and the samplerate gets (re-)configured later.
602 */
603 if (ret == SR_OK && devc->limit_samples) {
604 uint64_t msecs;
9a0a606a 605 msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
2f7e529c
GS
606 devc->limit_msec = msecs;
607 }
608
e8397563 609 return ret;
28a35d8a
HE
610}
611
c53d793f
HE
612/*
613 * In 100 and 200 MHz mode, only a single pin rising/falling can be
614 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 615 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
616 *
617 * The Sigma supports complex triggers using boolean expressions, but this
618 * has not been implemented yet.
619 */
3ba56876 620SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 621{
39c64c6a
BV
622 struct dev_context *devc;
623 struct sr_trigger *trigger;
624 struct sr_trigger_stage *stage;
625 struct sr_trigger_match *match;
626 const GSList *l, *m;
627 int channelbit, trigger_set;
57bbf56b 628
39c64c6a 629 devc = sdi->priv;
0e1357e8 630 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 631 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
632 return SR_OK;
633
634 trigger_set = 0;
635 for (l = trigger->stages; l; l = l->next) {
636 stage = l->data;
637 for (m = stage->matches; m; m = m->next) {
638 match = m->data;
639 if (!match->channel->enabled)
640 /* Ignore disabled channels with a trigger. */
641 continue;
642 channelbit = 1 << (match->channel->index);
643 if (devc->cur_samplerate >= SR_MHZ(100)) {
644 /* Fast trigger support. */
645 if (trigger_set) {
646 sr_err("Only a single pin trigger is "
647 "supported in 100 and 200MHz mode.");
648 return SR_ERR;
649 }
650 if (match->match == SR_TRIGGER_FALLING)
651 devc->trigger.fallingmask |= channelbit;
652 else if (match->match == SR_TRIGGER_RISING)
653 devc->trigger.risingmask |= channelbit;
654 else {
655 sr_err("Only rising/falling trigger is "
656 "supported in 100 and 200MHz mode.");
657 return SR_ERR;
658 }
eec5275e 659
0a1f7b09 660 trigger_set++;
39c64c6a
BV
661 } else {
662 /* Simple trigger support (event). */
663 if (match->match == SR_TRIGGER_ONE) {
664 devc->trigger.simplevalue |= channelbit;
665 devc->trigger.simplemask |= channelbit;
666 }
667 else if (match->match == SR_TRIGGER_ZERO) {
668 devc->trigger.simplevalue &= ~channelbit;
669 devc->trigger.simplemask |= channelbit;
670 }
671 else if (match->match == SR_TRIGGER_FALLING) {
672 devc->trigger.fallingmask |= channelbit;
0a1f7b09 673 trigger_set++;
39c64c6a
BV
674 }
675 else if (match->match == SR_TRIGGER_RISING) {
676 devc->trigger.risingmask |= channelbit;
0a1f7b09 677 trigger_set++;
39c64c6a
BV
678 }
679
680 /*
681 * Actually, Sigma supports 2 rising/falling triggers,
682 * but they are ORed and the current trigger syntax
683 * does not permit ORed triggers.
684 */
685 if (trigger_set > 1) {
686 sr_err("Only 1 rising/falling trigger "
687 "is supported.");
688 return SR_ERR;
689 }
ee492173 690 }
ee492173 691 }
57bbf56b
HE
692 }
693
e46b8fb1 694 return SR_OK;
57bbf56b
HE
695}
696
a1c743fc 697
36b1c8e6 698/* Software trigger to determine exact trigger position. */
5fc01191 699static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
700 struct sigma_trigger *t)
701{
702 int i;
5fc01191 703 uint16_t sample = 0;
36b1c8e6 704
0a1f7b09 705 for (i = 0; i < 8; i++) {
36b1c8e6 706 if (i > 0)
5fc01191
MV
707 last_sample = sample;
708 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
709
710 /* Simple triggers. */
5fc01191 711 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
712 continue;
713
714 /* Rising edge. */
5fc01191
MV
715 if (((last_sample & t->risingmask) != 0) ||
716 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
717 continue;
718
719 /* Falling edge. */
bdfc7a89 720 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 721 (sample & t->fallingmask) != 0)
36b1c8e6
HE
722 continue;
723
724 break;
725 }
726
727 /* If we did not match, return original trigger pos. */
728 return i & 0x7;
729}
730
3513d965
MV
731/*
732 * Return the timestamp of "DRAM cluster".
733 */
734static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
735{
736 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
737}
738
0498f743
GS
739/*
740 * Return one 16bit data entity of a DRAM cluster at the specified index.
741 */
742static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
743{
744 uint16_t sample;
745
746 sample = 0;
747 sample |= cl->samples[idx].sample_lo << 0;
748 sample |= cl->samples[idx].sample_hi << 8;
3281cf59 749 sample = (sample >> 8) | (sample << 8);
0498f743
GS
750 return sample;
751}
752
85c032e4
GS
753/*
754 * Deinterlace sample data that was retrieved at 100MHz samplerate.
755 * One 16bit item contains two samples of 8bits each. The bits of
756 * multiple samples are interleaved.
757 */
758static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
759{
760 uint16_t outdata;
761
762 indata >>= idx;
763 outdata = 0;
764 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
765 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
766 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
767 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
768 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
769 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
770 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
771 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
772 return outdata;
773}
774
775/*
776 * Deinterlace sample data that was retrieved at 200MHz samplerate.
777 * One 16bit item contains four samples of 4bits each. The bits of
778 * multiple samples are interleaved.
779 */
780static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
781{
782 uint16_t outdata;
783
784 indata >>= idx;
785 outdata = 0;
786 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
787 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
788 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
789 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
790 return outdata;
791}
792
0498f743
GS
793static void store_sr_sample(uint8_t *samples, int idx, uint16_t data)
794{
795 samples[2 * idx + 0] = (data >> 0) & 0xff;
796 samples[2 * idx + 1] = (data >> 8) & 0xff;
797}
798
735ed8a1
GS
799/*
800 * Local wrapper around sr_session_send() calls. Make sure to not send
801 * more samples to the session's datafeed than what was requested by a
802 * previously configured (optional) sample count.
803 */
804static void sigma_session_send(struct sr_dev_inst *sdi,
805 struct sr_datafeed_packet *packet)
806{
807 struct dev_context *devc;
808 struct sr_datafeed_logic *logic;
809 uint64_t send_now;
810
811 devc = sdi->priv;
812 if (devc->limit_samples) {
813 logic = (void *)packet->payload;
814 send_now = logic->length / logic->unitsize;
815 if (devc->sent_samples + send_now > devc->limit_samples) {
816 send_now = devc->limit_samples - devc->sent_samples;
817 logic->length = send_now * logic->unitsize;
818 }
819 if (!send_now)
820 return;
821 devc->sent_samples += send_now;
822 }
823
824 sr_session_send(sdi, packet);
825}
826
85c032e4
GS
827/*
828 * This size translates to: event count (1K events per cluster), times
829 * the sample width (unitsize, 16bits per event), times the maximum
830 * number of samples per event.
831 */
832#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4)
833
23239b5c
MV
834static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
835 unsigned int events_in_cluster,
1e23158b 836 unsigned int triggered,
23239b5c
MV
837 struct sr_dev_inst *sdi)
838{
839 struct dev_context *devc = sdi->priv;
840 struct sigma_state *ss = &devc->state;
841 struct sr_datafeed_packet packet;
842 struct sr_datafeed_logic logic;
85c032e4
GS
843 uint16_t tsdiff, ts, sample, item16;
844 uint8_t samples[SAMPLES_BUFFER_SIZE];
845 uint8_t *send_ptr;
846 size_t send_count, trig_count;
23239b5c 847 unsigned int i;
85c032e4 848 int j;
23239b5c 849
23239b5c
MV
850 ts = sigma_dram_cluster_ts(dram_cluster);
851 tsdiff = ts - ss->lastts;
a44b3b3f 852 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
853
854 packet.type = SR_DF_LOGIC;
855 packet.payload = &logic;
856 logic.unitsize = 2;
857 logic.data = samples;
858
859 /*
468f17f2
GS
860 * If this cluster is not adjacent to the previously received
861 * cluster, then send the appropriate number of samples with the
862 * previous values to the sigrok session. This "decodes RLE".
23239b5c 863 */
a44b3b3f 864 for (ts = 0; ts < tsdiff; ts++) {
23239b5c 865 i = ts % 1024;
0498f743 866 store_sr_sample(samples, i, ss->lastsample);
23239b5c
MV
867
868 /*
869 * If we have 1024 samples ready or we're at the
870 * end of submitting the padding samples, submit
85c032e4
GS
871 * the packet to Sigrok. Since constant data is
872 * sent, duplication of data for rates above 50MHz
873 * is simple.
23239b5c 874 */
a44b3b3f 875 if ((i == 1023) || (ts == tsdiff - 1)) {
23239b5c 876 logic.length = (i + 1) * logic.unitsize;
85c032e4 877 for (j = 0; j < devc->samples_per_event; j++)
735ed8a1 878 sigma_session_send(sdi, &packet);
23239b5c
MV
879 }
880 }
881
882 /*
883 * Parse the samples in current cluster and prepare them
85c032e4
GS
884 * to be submitted to Sigrok. Cope with memory layouts that
885 * vary with the samplerate.
23239b5c 886 */
85c032e4
GS
887 send_ptr = &samples[0];
888 send_count = 0;
0498f743 889 sample = 0;
23239b5c 890 for (i = 0; i < events_in_cluster; i++) {
85c032e4
GS
891 item16 = sigma_dram_cluster_data(dram_cluster, i);
892 if (devc->cur_samplerate == SR_MHZ(200)) {
893 sample = sigma_deinterlace_200mhz_data(item16, 0);
894 store_sr_sample(samples, send_count++, sample);
895 sample = sigma_deinterlace_200mhz_data(item16, 1);
896 store_sr_sample(samples, send_count++, sample);
897 sample = sigma_deinterlace_200mhz_data(item16, 2);
898 store_sr_sample(samples, send_count++, sample);
899 sample = sigma_deinterlace_200mhz_data(item16, 3);
900 store_sr_sample(samples, send_count++, sample);
901 } else if (devc->cur_samplerate == SR_MHZ(100)) {
902 sample = sigma_deinterlace_100mhz_data(item16, 0);
903 store_sr_sample(samples, send_count++, sample);
904 sample = sigma_deinterlace_100mhz_data(item16, 1);
905 store_sr_sample(samples, send_count++, sample);
906 } else {
907 sample = item16;
908 store_sr_sample(samples, send_count++, sample);
909 }
23239b5c
MV
910 }
911
de3f7acb
GS
912 /*
913 * If a trigger position applies, then provide the datafeed with
914 * the first part of data up to that position, then send the
915 * trigger marker.
916 */
23239b5c 917 int trigger_offset = 0;
1e23158b 918 if (triggered) {
23239b5c
MV
919 /*
920 * Trigger is not always accurate to sample because of
921 * pipeline delay. However, it always triggers before
922 * the actual event. We therefore look at the next
923 * samples to pinpoint the exact position of the trigger.
924 */
925 trigger_offset = get_trigger_offset(samples,
926 ss->lastsample, &devc->trigger);
927
928 if (trigger_offset > 0) {
85c032e4 929 trig_count = trigger_offset * devc->samples_per_event;
23239b5c 930 packet.type = SR_DF_LOGIC;
85c032e4 931 logic.length = trig_count * logic.unitsize;
735ed8a1 932 sigma_session_send(sdi, &packet);
85c032e4
GS
933 send_ptr += trig_count * logic.unitsize;
934 send_count -= trig_count;
23239b5c
MV
935 }
936
937 /* Only send trigger if explicitly enabled. */
938 if (devc->use_triggers) {
939 packet.type = SR_DF_TRIGGER;
102f1239 940 sr_session_send(sdi, &packet);
23239b5c
MV
941 }
942 }
943
de3f7acb
GS
944 /*
945 * Send the data after the trigger, or all of the received data
946 * if no trigger position applies.
947 */
85c032e4 948 if (send_count) {
23239b5c 949 packet.type = SR_DF_LOGIC;
85c032e4
GS
950 logic.length = send_count * logic.unitsize;
951 logic.data = send_ptr;
735ed8a1 952 sigma_session_send(sdi, &packet);
23239b5c
MV
953 }
954
0498f743 955 ss->lastsample = sample;
23239b5c
MV
956}
957
28a35d8a 958/*
fefa1800
UH
959 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
960 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
961 *
962 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
963 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
964 * For 50 MHz and below, events contain one sample for each channel,
965 * spread 20 ns apart.
28a35d8a 966 */
1e23158b
MV
967static int decode_chunk_ts(struct sigma_dram_line *dram_line,
968 uint16_t events_in_line,
969 uint32_t trigger_event,
102f1239 970 struct sr_dev_inst *sdi)
28a35d8a 971{
3628074d 972 struct sigma_dram_cluster *dram_cluster;
f06fb3e9
GS
973 struct dev_context *devc;
974 unsigned int clusters_in_line;
5fc01191 975 unsigned int events_in_cluster;
23239b5c 976 unsigned int i;
f06fb3e9
GS
977 uint32_t trigger_cluster, triggered;
978
979 devc = sdi->priv;
980 clusters_in_line = events_in_line;
981 clusters_in_line += EVENTS_PER_CLUSTER - 1;
982 clusters_in_line /= EVENTS_PER_CLUSTER;
983 trigger_cluster = ~0;
984 triggered = 0;
ee492173 985
4ae1f451 986 /* Check if trigger is in this chunk. */
1e23158b
MV
987 if (trigger_event < (64 * 7)) {
988 if (devc->cur_samplerate <= SR_MHZ(50)) {
989 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
990 trigger_event);
991 }
57bbf56b 992
f3f19d11 993 /* Find in which cluster the trigger occurred. */
1e23158b 994 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 995 }
28a35d8a 996
5fc01191
MV
997 /* For each full DRAM cluster. */
998 for (i = 0; i < clusters_in_line; i++) {
3628074d 999 dram_cluster = &dram_line->cluster[i];
5fc01191 1000
5fc01191 1001 /* The last cluster might not be full. */
23239b5c
MV
1002 if ((i == clusters_in_line - 1) &&
1003 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1004 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1005 } else {
5fc01191 1006 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1007 }
ee492173 1008
1e23158b
MV
1009 triggered = (i == trigger_cluster);
1010 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1011 triggered, sdi);
28a35d8a
HE
1012 }
1013
e46b8fb1 1014 return SR_OK;
28a35d8a
HE
1015}
1016
6057d9fa 1017static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1018{
e15e5873 1019 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1020
1021 struct dev_context *devc;
fd830beb 1022 struct sigma_dram_line *dram_line;
c6648b66 1023 int bufsz;
462fe786 1024 uint32_t stoppos, triggerpos;
6057d9fa 1025 uint8_t modestatus;
c6648b66
MV
1026 uint32_t i;
1027 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1028 uint32_t dl_first_line, dl_line;
f06fb3e9
GS
1029 uint32_t dl_events_in_line;
1030 uint32_t trg_line, trg_event;
1031
1032 devc = sdi->priv;
1033 dl_events_in_line = 64 * 7;
1034 trg_line = ~0;
1035 trg_event = ~0;
c6648b66 1036
fd830beb
MV
1037 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1038 if (!dram_line)
1039 return FALSE;
1040
6868626b
BV
1041 sr_info("Downloading sample data.");
1042
22f64ed8
GS
1043 /*
1044 * Ask the hardware to stop data acquisition. Reception of the
1045 * FORCESTOP request makes the hardware "disable RLE" (store
1046 * clusters to DRAM regardless of whether pin state changes) and
1047 * raise the POSTTRIGGERED flag.
1048 */
1049 sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
1050 do {
1051 modestatus = sigma_get_register(READ_MODE, devc);
1052 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1053
1054 /* Set SDRAM Read Enable. */
22f64ed8 1055 sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
6057d9fa
MV
1056
1057 /* Get the current position. */
462fe786 1058 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1059
1060 /* Check if trigger has fired. */
1061 modestatus = sigma_get_register(READ_MODE, devc);
22f64ed8 1062 if (modestatus & RMR_TRIGGERED) {
c6648b66 1063 trg_line = triggerpos >> 9;
1e23158b
MV
1064 trg_event = triggerpos & 0x1ff;
1065 }
6057d9fa 1066
735ed8a1
GS
1067 devc->sent_samples = 0;
1068
c6648b66 1069 /*
74d453ab
GS
1070 * Determine how many "DRAM lines" of 1024 bytes each we need to
1071 * retrieve from the Sigma hardware, so that we have a complete
1072 * set of samples. Note that the last line need not contain 64
1073 * clusters, it might be partially filled only.
1074 *
1075 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1076 * around. Since the status of the very next line is uncertain in
1077 * that case, we skip it and start reading from the next line. The
1078 * circular buffer has 32K lines (0x8000).
c6648b66
MV
1079 */
1080 dl_lines_total = (stoppos >> 9) + 1;
74d453ab
GS
1081 if (modestatus & RMR_ROUND) {
1082 dl_first_line = dl_lines_total + 1;
1083 dl_lines_total = 0x8000 - 2;
1084 } else {
1085 dl_first_line = 0;
1086 }
c6648b66 1087 dl_lines_done = 0;
c6648b66
MV
1088 while (dl_lines_total > dl_lines_done) {
1089 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1090 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1091
74d453ab
GS
1092 dl_line = dl_first_line + dl_lines_done;
1093 dl_line %= 0x8000;
1094 bufsz = sigma_read_dram(dl_line, dl_lines_curr,
f41a4cae 1095 (uint8_t *)dram_line, devc);
c6648b66
MV
1096 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1097 (void)bufsz;
6868626b 1098
c6648b66
MV
1099 /* This is the first DRAM line, so find the initial timestamp. */
1100 if (dl_lines_done == 0) {
3513d965
MV
1101 devc->state.lastts =
1102 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1103 devc->state.lastsample = 0;
6868626b
BV
1104 }
1105
c6648b66 1106 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1107 uint32_t trigger_event = ~0;
c6648b66
MV
1108 /* The last "DRAM line" can be only partially full. */
1109 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1110 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1111
e69ad48e 1112 /* Test if the trigger happened on this line. */
c6648b66 1113 if (dl_lines_done + i == trg_line)
1e23158b 1114 trigger_event = trg_event;
e69ad48e 1115
1e23158b
MV
1116 decode_chunk_ts(dram_line + i, dl_events_in_line,
1117 trigger_event, sdi);
c6648b66 1118 }
6868626b 1119
c6648b66 1120 dl_lines_done += dl_lines_curr;
6868626b
BV
1121 }
1122
bee2b016 1123 std_session_send_df_end(sdi);
6057d9fa 1124
695dc859 1125 sdi->driver->dev_acquisition_stop(sdi);
6057d9fa 1126
fd830beb
MV
1127 g_free(dram_line);
1128
6057d9fa 1129 return TRUE;
6868626b
BV
1130}
1131
d4051930 1132/*
74d453ab
GS
1133 * Periodically check the Sigma status when in CAPTURE mode. This routine
1134 * checks whether the configured sample count or sample time have passed,
1135 * and will stop acquisition and download the acquired samples.
d4051930
MV
1136 */
1137static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1138{
f06fb3e9 1139 struct dev_context *devc;
94ba4bd6 1140 uint64_t running_msec;
2f425a56 1141 uint64_t current_time;
28a35d8a 1142
f06fb3e9
GS
1143 devc = sdi->priv;
1144
74d453ab
GS
1145 /*
1146 * Check if the selected sampling duration passed. Sample count
1147 * limits are covered by this enforced timeout as well.
1148 */
2f425a56
GS
1149 current_time = g_get_monotonic_time();
1150 running_msec = (current_time - devc->start_time) / 1000;
00c86508 1151 if (running_msec >= devc->limit_msec)
6057d9fa 1152 return download_capture(sdi);
00c86508 1153
d4051930
MV
1154 return TRUE;
1155}
28a35d8a 1156
3ba56876 1157SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1158{
1159 struct sr_dev_inst *sdi;
1160 struct dev_context *devc;
88c51afe 1161
d4051930
MV
1162 (void)fd;
1163 (void)revents;
88c51afe 1164
d4051930
MV
1165 sdi = cb_data;
1166 devc = sdi->priv;
1167
1168 if (devc->state.state == SIGMA_IDLE)
1169 return TRUE;
1170
1171 if (devc->state.state == SIGMA_CAPTURE)
1172 return sigma_capture_mode(sdi);
28a35d8a 1173
28a35d8a
HE
1174 return TRUE;
1175}
1176
c53d793f
HE
1177/* Build a LUT entry used by the trigger functions. */
1178static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1179{
1180 int i, j, k, bit;
1181
ba7dd8bb 1182 /* For each quad channel. */
0a1f7b09 1183 for (i = 0; i < 4; i++) {
c53d793f 1184 entry[i] = 0xffff;
ee492173 1185
f758d074 1186 /* For each bit in LUT. */
0a1f7b09 1187 for (j = 0; j < 16; j++)
ee492173 1188
ba7dd8bb 1189 /* For each channel in quad. */
0a1f7b09 1190 for (k = 0; k < 4; k++) {
ee492173
HE
1191 bit = 1 << (i * 4 + k);
1192
c53d793f 1193 /* Set bit in entry */
0a1f7b09
UH
1194 if ((mask & bit) && ((!(value & bit)) !=
1195 (!(j & (1 << k)))))
c53d793f 1196 entry[i] &= ~(1 << j);
ee492173
HE
1197 }
1198 }
c53d793f 1199}
ee492173 1200
c53d793f
HE
1201/* Add a logical function to LUT mask. */
1202static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1203 int index, int neg, uint16_t *mask)
1204{
1205 int i, j;
1206 int x[2][2], tmp, a, b, aset, bset, rset;
1207
1208 memset(x, 0, 4 * sizeof(int));
1209
1210 /* Trigger detect condition. */
1211 switch (oper) {
1212 case OP_LEVEL:
1213 x[0][1] = 1;
1214 x[1][1] = 1;
1215 break;
1216 case OP_NOT:
1217 x[0][0] = 1;
1218 x[1][0] = 1;
1219 break;
1220 case OP_RISE:
1221 x[0][1] = 1;
1222 break;
1223 case OP_FALL:
1224 x[1][0] = 1;
1225 break;
1226 case OP_RISEFALL:
1227 x[0][1] = 1;
1228 x[1][0] = 1;
1229 break;
1230 case OP_NOTRISE:
1231 x[1][1] = 1;
1232 x[0][0] = 1;
1233 x[1][0] = 1;
1234 break;
1235 case OP_NOTFALL:
1236 x[1][1] = 1;
1237 x[0][0] = 1;
1238 x[0][1] = 1;
1239 break;
1240 case OP_NOTRISEFALL:
1241 x[1][1] = 1;
1242 x[0][0] = 1;
1243 break;
1244 }
1245
1246 /* Transpose if neg is set. */
1247 if (neg) {
0a1f7b09
UH
1248 for (i = 0; i < 2; i++) {
1249 for (j = 0; j < 2; j++) {
c53d793f 1250 tmp = x[i][j];
0a1f7b09
UH
1251 x[i][j] = x[1 - i][1 - j];
1252 x[1 - i][1 - j] = tmp;
c53d793f 1253 }
ea9cfed7 1254 }
c53d793f
HE
1255 }
1256
1257 /* Update mask with function. */
0a1f7b09 1258 for (i = 0; i < 16; i++) {
c53d793f
HE
1259 a = (i >> (2 * index + 0)) & 1;
1260 b = (i >> (2 * index + 1)) & 1;
1261
1262 aset = (*mask >> i) & 1;
1263 bset = x[b][a];
1264
382cb19f 1265 rset = 0;
c53d793f
HE
1266 if (func == FUNC_AND || func == FUNC_NAND)
1267 rset = aset & bset;
1268 else if (func == FUNC_OR || func == FUNC_NOR)
1269 rset = aset | bset;
1270 else if (func == FUNC_XOR || func == FUNC_NXOR)
1271 rset = aset ^ bset;
1272
1273 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1274 rset = !rset;
1275
1276 *mask &= ~(1 << i);
1277
1278 if (rset)
1279 *mask |= 1 << i;
1280 }
1281}
1282
1283/*
1284 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1285 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1286 * set at any time, but a full mask and value can be set (0/1).
1287 */
3ba56876 1288SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1289{
1290 int i,j;
4ae1f451 1291 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1292
1293 memset(lut, 0, sizeof(struct triggerlut));
1294
f3f19d11 1295 /* Constant for simple triggers. */
c53d793f
HE
1296 lut->m4 = 0xa000;
1297
1298 /* Value/mask trigger support. */
0e1357e8 1299 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1300 lut->m2d);
c53d793f
HE
1301
1302 /* Rise/fall trigger support. */
0a1f7b09 1303 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1304 if (devc->trigger.risingmask & (1 << i) ||
1305 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1306 masks[j++] = 1 << i;
1307 }
1308
1309 build_lut_entry(masks[0], masks[0], lut->m0d);
1310 build_lut_entry(masks[1], masks[1], lut->m1d);
1311
1312 /* Add glue logic */
1313 if (masks[0] || masks[1]) {
1314 /* Transition trigger. */
0e1357e8 1315 if (masks[0] & devc->trigger.risingmask)
c53d793f 1316 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1317 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1318 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1319 if (masks[1] & devc->trigger.risingmask)
c53d793f 1320 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1321 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1322 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1323 } else {
1324 /* Only value/mask trigger. */
1325 lut->m3 = 0xffff;
1326 }
ee492173 1327
c53d793f 1328 /* Triggertype: event. */
ee492173
HE
1329 lut->params.selres = 3;
1330
e46b8fb1 1331 return SR_OK;
ee492173 1332}