]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: data type nits, minor variable renames
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
9334ed6c 7 * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
28a35d8a
HE
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
911f1834 23/*
6352d030 24 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
25 */
26
6ec6c43b 27#include <config.h>
3ba56876 28#include "protocol.h"
28a35d8a 29
b1648dea 30/*
b65649f6
GS
31 * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
32 * (by means of separate firmware images). As well as 50MHz divided by
33 * an integer divider in the 1..256 range (by the "typical" firmware).
34 * Which translates to a strict lower boundary of around 195kHz.
35 *
36 * This driver "suggests" a subset of the available rates by listing a
37 * few discrete values, while setter routines accept any user specified
38 * rate that is supported by the hardware.
b1648dea 39 */
abcd4771 40static const uint64_t samplerates[] = {
b65649f6
GS
41 /* 50MHz and integer divider. 1/2/5 steps (where possible). */
42 SR_KHZ(200), SR_KHZ(500),
43 SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
44 SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
45 /* 100MHz/200MHz, fixed rates in special firmware. */
46 SR_MHZ(100), SR_MHZ(200),
28a35d8a
HE
47};
48
abcd4771
GS
49SR_PRIV GVariant *sigma_get_samplerates_list(void)
50{
51 return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
52}
39c64c6a 53
742368a2 54static const char *firmware_files[] = {
80e717b3
GS
55 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
56 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
57 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
58 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
59 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
60};
61
742368a2
GS
62#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
63
7fe1f91f
GS
64static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
65{
66 struct dev_context *devc;
67 int vid, pid;
68 const char *serno;
69 int ret;
70
71 devc = sdi->priv;
72 if (!devc)
73 return SR_ERR_ARG;
74
75 if (devc->ftdi.is_open)
76 return SR_OK;
77
78 vid = devc->id.vid;
79 pid = devc->id.pid;
80 serno = sdi->serial_num;
81 if (!vid || !pid || !serno || !*serno)
82 return SR_ERR_ARG;
83
84 ret = ftdi_init(&devc->ftdi.ctx);
85 if (ret < 0) {
86 sr_err("Cannot initialize FTDI context (%d): %s.",
87 ret, ftdi_get_error_string(&devc->ftdi.ctx));
88 return SR_ERR_IO;
89 }
90 ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
91 vid, pid, NULL, serno, 0);
92 if (ret < 0) {
93 sr_err("Cannot open device (%d): %s.",
94 ret, ftdi_get_error_string(&devc->ftdi.ctx));
95 return SR_ERR_IO;
96 }
97 devc->ftdi.is_open = TRUE;
98
99 return SR_OK;
100}
101
102static int sigma_ftdi_close(struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_usb_close(&devc->ftdi.ctx);
107 devc->ftdi.is_open = FALSE;
108 devc->ftdi.must_close = FALSE;
109 ftdi_deinit(&devc->ftdi.ctx);
110
111 return ret == 0 ? SR_OK : SR_ERR_IO;
112}
113
114SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
115{
116 struct dev_context *devc;
117 int ret;
118
119 if (!sdi)
120 return SR_ERR_ARG;
121 devc = sdi->priv;
122 if (!devc)
123 return SR_ERR_ARG;
124
125 if (devc->ftdi.is_open)
126 return SR_OK;
127
128 ret = sigma_ftdi_open(sdi);
129 if (ret != SR_OK)
130 return ret;
131 devc->ftdi.must_close = TRUE;
132
133 return ret;
134}
135
136SR_PRIV int sigma_check_close(struct dev_context *devc)
137{
138 int ret;
139
140 if (!devc)
141 return SR_ERR_ARG;
142
143 if (devc->ftdi.must_close) {
144 ret = sigma_ftdi_close(devc);
145 if (ret != SR_OK)
146 return ret;
147 devc->ftdi.must_close = FALSE;
148 }
149
150 return SR_OK;
151}
152
153SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
154{
155 struct dev_context *devc;
156 int ret;
157
158 if (!sdi)
159 return SR_ERR_ARG;
160 devc = sdi->priv;
161 if (!devc)
162 return SR_ERR_ARG;
163
164 ret = sigma_ftdi_open(sdi);
165 if (ret != SR_OK)
166 return ret;
167 devc->ftdi.must_close = FALSE;
168
169 return SR_OK;
170}
171
172SR_PRIV int sigma_force_close(struct dev_context *devc)
173{
174 return sigma_ftdi_close(devc);
175}
176
88a5f9ea
GS
177/*
178 * BEWARE! Error propagation is important, as are kinds of return values.
179 *
180 * - Raw USB tranport communicates the number of sent or received bytes,
181 * or negative error codes in the external library's(!) range of codes.
182 * - Internal routines at the "sigrok driver level" communicate success
183 * or failure in terms of SR_OK et al error codes.
184 * - Main loop style receive callbacks communicate booleans which arrange
185 * for repeated calls to drive progress during acquisition.
186 *
187 * Careful consideration by maintainers is essential, because all of the
188 * above kinds of values are assignment compatbile from the compiler's
189 * point of view. Implementation errors will go unnoticed at build time.
190 */
191
192static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
28a35d8a
HE
193{
194 int ret;
fefa1800 195
7fe1f91f 196 ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
28a35d8a 197 if (ret < 0) {
88a5f9ea 198 sr_err("USB data read failed: %s",
7fe1f91f 199 ftdi_get_error_string(&devc->ftdi.ctx));
28a35d8a
HE
200 }
201
202 return ret;
203}
204
88a5f9ea 205static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
28a35d8a
HE
206{
207 int ret;
fefa1800 208
7fe1f91f 209 ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
88a5f9ea
GS
210 if (ret < 0) {
211 sr_err("USB data write failed: %s",
7fe1f91f 212 ftdi_get_error_string(&devc->ftdi.ctx));
88a5f9ea
GS
213 } else if ((size_t)ret != size) {
214 sr_err("USB data write length mismatch.");
215 }
28a35d8a
HE
216
217 return ret;
218}
219
88a5f9ea
GS
220static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
221{
222 int ret;
223
224 ret = sigma_read_raw(devc, buf, size);
225 if (ret < 0 || (size_t)ret != size)
226 return SR_ERR_IO;
227
228 return SR_OK;
229}
230
231static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
232{
233 int ret;
234
235 ret = sigma_write_raw(devc, buf, size);
236 if (ret < 0 || (size_t)ret != size)
237 return SR_ERR_IO;
238
239 return SR_OK;
240}
241
e8686e3a 242/*
88a5f9ea
GS
243 * Implementor's note: The local write buffer's size shall suffice for
244 * any know FPGA register transaction that is involved in the supported
245 * feature set of this sigrok device driver. If the length check trips,
246 * that's a programmer's error and needs adjustment in the complete call
247 * stack of the respective code path.
e8686e3a 248 */
0f017b7d
GS
249#define SIGMA_MAX_REG_DEPTH 32
250
251/*
252 * Implementor's note: The FPGA command set supports register access
253 * with automatic address adjustment. This operation is documented to
254 * wrap within a 16-address range, it cannot cross boundaries where the
255 * register address' nibble overflows. An internal helper assumes that
256 * callers remain within this auto-adjustment range, and thus multi
257 * register access requests can never exceed that count.
258 */
259#define SIGMA_MAX_REG_COUNT 16
260
9b4d261f
GS
261SR_PRIV int sigma_write_register(struct dev_context *devc,
262 uint8_t reg, uint8_t *data, size_t len)
28a35d8a 263{
0f017b7d 264 uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
88a5f9ea 265 size_t idx;
28a35d8a 266
0f017b7d 267 if (len > SIGMA_MAX_REG_DEPTH) {
88a5f9ea 268 sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
e8686e3a
AG
269 return SR_ERR_BUG;
270 }
271
a53b8e4d 272 wrptr = buf;
0f017b7d
GS
273 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
274 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
a53b8e4d 275 for (idx = 0; idx < len; idx++) {
0f017b7d
GS
276 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
277 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
28a35d8a
HE
278 }
279
88a5f9ea 280 return sigma_write_sr(devc, buf, wrptr - buf);
28a35d8a
HE
281}
282
9b4d261f
GS
283SR_PRIV int sigma_set_register(struct dev_context *devc,
284 uint8_t reg, uint8_t value)
28a35d8a 285{
9b4d261f 286 return sigma_write_register(devc, reg, &value, sizeof(value));
28a35d8a
HE
287}
288
9b4d261f
GS
289static int sigma_read_register(struct dev_context *devc,
290 uint8_t reg, uint8_t *data, size_t len)
28a35d8a 291{
a53b8e4d 292 uint8_t buf[3], *wrptr;
88a5f9ea 293 int ret;
28a35d8a 294
a53b8e4d 295 wrptr = buf;
0f017b7d
GS
296 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
297 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
a53b8e4d 298 write_u8_inc(&wrptr, REG_READ_ADDR);
88a5f9ea
GS
299 ret = sigma_write_sr(devc, buf, wrptr - buf);
300 if (ret != SR_OK)
301 return ret;
28a35d8a 302
88a5f9ea 303 return sigma_read_sr(devc, data, len);
28a35d8a
HE
304}
305
0f017b7d
GS
306static int sigma_get_register(struct dev_context *devc,
307 uint8_t reg, uint8_t *data)
308{
309 return sigma_read_register(devc, reg, data, sizeof(*data));
310}
311
312static int sigma_get_registers(struct dev_context *devc,
313 uint8_t reg, uint8_t *data, size_t count)
314{
315 uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
316 size_t idx;
317 int ret;
318
319 if (count > SIGMA_MAX_REG_COUNT) {
320 sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
321 return SR_ERR_BUG;
322 }
323
324 wrptr = buf;
325 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
326 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
327 for (idx = 0; idx < count; idx++)
328 write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
329 ret = sigma_write_sr(devc, buf, wrptr - buf);
330 if (ret != SR_OK)
331 return ret;
332
333 return sigma_read_sr(devc, data, count);
334}
335
9b4d261f 336static int sigma_read_pos(struct dev_context *devc,
88a5f9ea 337 uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
28a35d8a 338{
88a5f9ea 339 uint8_t result[7];
0f017b7d 340 const uint8_t *rdptr;
88a5f9ea
GS
341 uint32_t v32;
342 uint8_t v8;
343 int ret;
28a35d8a 344
0f017b7d
GS
345 /*
346 * Read 7 registers starting at trigger position LSB.
347 * Which yields two 24bit counter values, and mode flags.
348 */
349 ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
350 result, sizeof(result));
88a5f9ea
GS
351 if (ret != SR_OK)
352 return ret;
28a35d8a 353
a53b8e4d 354 rdptr = &result[0];
88a5f9ea
GS
355 v32 = read_u24le_inc(&rdptr);
356 if (triggerpos)
357 *triggerpos = v32;
358 v32 = read_u24le_inc(&rdptr);
359 if (stoppos)
360 *stoppos = v32;
361 v8 = read_u8_inc(&rdptr);
362 if (mode)
363 *mode = v8;
28a35d8a 364
dc400817 365 /*
a53b8e4d
GS
366 * These positions consist of "the memory row" in the MSB fields,
367 * and "an event index" within the row in the LSB fields. Part
368 * of the memory row's content is sample data, another part is
369 * timestamps.
2c33b092 370 *
a53b8e4d
GS
371 * The retrieved register values point to after the captured
372 * position. So they need to get decremented, and adjusted to
373 * cater for the timestamps when the decrement carries over to
374 * a different memory row.
dc400817 375 */
88a5f9ea 376 if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
a53b8e4d 377 *stoppos -= CLUSTERS_PER_ROW;
88a5f9ea 378 if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
a53b8e4d 379 *triggerpos -= CLUSTERS_PER_ROW;
57bbf56b 380
a53b8e4d 381 return SR_OK;
28a35d8a
HE
382}
383
9b4d261f 384static int sigma_read_dram(struct dev_context *devc,
3d9373af 385 size_t startchunk, size_t numchunks, uint8_t *data)
28a35d8a 386{
0f017b7d 387 uint8_t buf[128], *wrptr, regval;
07411a60 388 size_t chunk;
88a5f9ea 389 int sel, ret;
07411a60 390 gboolean is_last;
28a35d8a 391
a53b8e4d 392 if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
88a5f9ea 393 sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
a53b8e4d
GS
394 return SR_ERR_BUG;
395 }
396
07411a60 397 /* Communicate DRAM start address (memory row, aka samples line). */
a53b8e4d 398 wrptr = buf;
0f017b7d 399 write_u16be_inc(&wrptr, startchunk);
88a5f9ea
GS
400 ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
401 if (ret != SR_OK)
402 return ret;
28a35d8a 403
07411a60
GS
404 /*
405 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
406 * then transfer via USB. Interleave the FPGA's DRAM access and
407 * USB transfer, use alternating buffers (0/1) in the process.
408 */
a53b8e4d
GS
409 wrptr = buf;
410 write_u8_inc(&wrptr, REG_DRAM_BLOCK);
411 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
07411a60
GS
412 for (chunk = 0; chunk < numchunks; chunk++) {
413 sel = chunk % 2;
414 is_last = chunk == numchunks - 1;
0f017b7d
GS
415 if (!is_last) {
416 regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
417 write_u8_inc(&wrptr, regval);
418 }
419 regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
420 write_u8_inc(&wrptr, regval);
07411a60 421 if (!is_last)
a53b8e4d 422 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
28a35d8a 423 }
88a5f9ea
GS
424 ret = sigma_write_sr(devc, buf, wrptr - buf);
425 if (ret != SR_OK)
426 return ret;
28a35d8a 427
88a5f9ea 428 return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
28a35d8a
HE
429}
430
4ae1f451 431/* Upload trigger look-up tables to Sigma. */
9b4d261f
GS
432SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
433 struct triggerlut *lut)
ee492173 434{
3d9373af 435 size_t lut_addr;
ee492173 436 uint16_t bit;
72ea3b84 437 uint8_t m3d, m2d, m1d, m0d;
3d9373af 438 uint8_t buf[6], *wrptr, v8;
16791da9 439 uint16_t selreg;
88a5f9ea 440 int ret;
ee492173 441
72ea3b84
GS
442 /*
443 * Translate the LUT part of the trigger configuration from the
444 * application's perspective to the hardware register's bitfield
445 * layout. Send the LUT to the device. This configures the logic
446 * which combines pin levels or edges.
447 */
0f017b7d
GS
448 for (lut_addr = 0; lut_addr < 16; lut_addr++) {
449 bit = 1 << lut_addr;
ee492173 450
72ea3b84
GS
451 /* - M4 M3S M3Q */
452 m3d = 0;
453 if (lut->m4 & bit)
454 m3d |= 1 << 2;
455 if (lut->m3s & bit)
456 m3d |= 1 << 1;
16791da9 457 if (lut->m3q & bit)
72ea3b84 458 m3d |= 1 << 0;
ee492173 459
72ea3b84
GS
460 /* M2D3 M2D2 M2D1 M2D0 */
461 m2d = 0;
ee492173 462 if (lut->m2d[3] & bit)
72ea3b84
GS
463 m2d |= 1 << 3;
464 if (lut->m2d[2] & bit)
465 m2d |= 1 << 2;
466 if (lut->m2d[1] & bit)
467 m2d |= 1 << 1;
468 if (lut->m2d[0] & bit)
469 m2d |= 1 << 0;
ee492173 470
72ea3b84
GS
471 /* M1D3 M1D2 M1D1 M1D0 */
472 m1d = 0;
473 if (lut->m1d[3] & bit)
474 m1d |= 1 << 3;
475 if (lut->m1d[2] & bit)
476 m1d |= 1 << 2;
477 if (lut->m1d[1] & bit)
478 m1d |= 1 << 1;
479 if (lut->m1d[0] & bit)
480 m1d |= 1 << 0;
ee492173 481
72ea3b84
GS
482 /* M0D3 M0D2 M0D1 M0D0 */
483 m0d = 0;
ee492173 484 if (lut->m0d[3] & bit)
72ea3b84
GS
485 m0d |= 1 << 3;
486 if (lut->m0d[2] & bit)
487 m0d |= 1 << 2;
488 if (lut->m0d[1] & bit)
489 m0d |= 1 << 1;
490 if (lut->m0d[0] & bit)
491 m0d |= 1 << 0;
ee492173 492
a53b8e4d 493 /*
72ea3b84
GS
494 * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
495 * TriggerSelect register, then strobe the LUT write by
496 * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
497 * programming.
a53b8e4d
GS
498 */
499 wrptr = buf;
72ea3b84
GS
500 write_u8_inc(&wrptr, (m3d << 4) | (m2d << 0));
501 write_u8_inc(&wrptr, (m1d << 4) | (m0d << 0));
419f1095
GS
502 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
503 buf, wrptr - buf);
88a5f9ea
GS
504 if (ret != SR_OK)
505 return ret;
3d9373af
GS
506 v8 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
507 (lut_addr & TRGSEL2_LUT_ADDR_MASK);
508 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, v8);
88a5f9ea
GS
509 if (ret != SR_OK)
510 return ret;
ee492173
HE
511 }
512
72ea3b84
GS
513 /*
514 * Send the parameters. This covers counters and durations.
515 */
a53b8e4d 516 wrptr = buf;
16791da9
GS
517 selreg = 0;
518 selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
519 selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
520 selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
521 selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
522 selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
523 selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
524 write_u16be_inc(&wrptr, selreg);
0f017b7d
GS
525 write_u16be_inc(&wrptr, lut->params.cmpb);
526 write_u16be_inc(&wrptr, lut->params.cmpa);
88a5f9ea
GS
527 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
528 if (ret != SR_OK)
529 return ret;
ee492173 530
e46b8fb1 531 return SR_OK;
ee492173
HE
532}
533
d5fa188a 534/*
dc0906e2
GS
535 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
536 * uses FTDI bitbang mode for netlist download in slave serial mode.
537 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
538 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
539 * compatible bitbang mode? For maximum code re-use and reduced libftdi
540 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
541 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
542 *
543 * 750kbps rate (four times the speed of sigmalogan) works well for
544 * netlist download. All pins except INIT_B are output pins during
545 * configuration download.
546 *
547 * Some pins are inverted as a byproduct of level shifting circuitry.
548 * That's why high CCLK level (from the cable's point of view) is idle
549 * from the FPGA's perspective.
550 *
551 * The vendor's literature discusses a "suicide sequence" which ends
552 * regular FPGA execution and should be sent before entering bitbang
553 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
554 * a few times.
555 */
556#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
557#define BB_PIN_PROG (1 << 1) /* D1, PROG */
558#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
559#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
560#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
561#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
562#define BB_PIN_DIN (1 << 6) /* D6, DIN */
563#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
564
565#define BB_BITRATE (750 * 1000)
566#define BB_PINMASK (0xff & ~BB_PIN_INIT)
567
568/*
569 * Initiate slave serial mode for configuration download. Which is done
570 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
c749d1ca
GS
571 * initiating the configuration download.
572 *
573 * Run a "suicide sequence" first to terminate the regular FPGA operation
574 * before reconfiguration. The FTDI cable is single channel, and shares
575 * pins which are used for data communication in FIFO mode with pins that
576 * are used for FPGA configuration in bitbang mode. Hardware defaults for
577 * unconfigured hardware, and runtime conditions after FPGA configuration
578 * need to cooperate such that re-configuration of the FPGA can start.
d5fa188a 579 */
c749d1ca 580static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
d5fa188a 581{
a53b8e4d 582 const uint8_t suicide[] = {
dc0906e2
GS
583 BB_PIN_D7 | BB_PIN_D2,
584 BB_PIN_D7 | BB_PIN_D2,
585 BB_PIN_D7 | BB_PIN_D3,
586 BB_PIN_D7 | BB_PIN_D2,
587 BB_PIN_D7 | BB_PIN_D3,
588 BB_PIN_D7 | BB_PIN_D2,
589 BB_PIN_D7 | BB_PIN_D3,
590 BB_PIN_D7 | BB_PIN_D2,
d5fa188a 591 };
a53b8e4d 592 const uint8_t init_array[] = {
dc0906e2
GS
593 BB_PIN_CCLK,
594 BB_PIN_CCLK | BB_PIN_PROG,
595 BB_PIN_CCLK | BB_PIN_PROG,
596 BB_PIN_CCLK,
597 BB_PIN_CCLK,
598 BB_PIN_CCLK,
599 BB_PIN_CCLK,
600 BB_PIN_CCLK,
601 BB_PIN_CCLK,
602 BB_PIN_CCLK,
d5fa188a 603 };
3d9373af
GS
604 size_t retries;
605 int ret;
d5fa188a
MV
606 uint8_t data;
607
608 /* Section 2. part 1), do the FPGA suicide. */
88a5f9ea
GS
609 ret = SR_OK;
610 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
611 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
612 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
613 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
614 if (ret != SR_OK)
615 return SR_ERR_IO;
c749d1ca 616 g_usleep(10 * 1000);
d5fa188a 617
dc0906e2 618 /* Section 2. part 2), pulse PROG. */
88a5f9ea
GS
619 ret = sigma_write_sr(devc, init_array, sizeof(init_array));
620 if (ret != SR_OK)
621 return ret;
c749d1ca 622 g_usleep(10 * 1000);
7fe1f91f 623 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
d5fa188a 624
88a5f9ea
GS
625 /*
626 * Wait until the FPGA asserts INIT_B. Check in a maximum number
627 * of bursts with a given delay between them. Read as many pin
628 * capture results as the combination of FTDI chip and FTID lib
629 * may provide. Cope with absence of pin capture data in a cycle.
630 * This approach shall result in fast reponse in case of success,
631 * low cost of execution during wait, reliable error handling in
632 * the transport layer, and robust response to failure or absence
633 * of result data (hardware inactivity after stimulus).
634 */
dc0906e2
GS
635 retries = 10;
636 while (retries--) {
88a5f9ea
GS
637 do {
638 ret = sigma_read_raw(devc, &data, sizeof(data));
639 if (ret < 0)
640 return SR_ERR_IO;
641 if (ret == sizeof(data) && (data & BB_PIN_INIT))
642 return SR_OK;
643 } while (ret == sizeof(data));
644 if (retries)
645 g_usleep(10 * 1000);
d5fa188a
MV
646 }
647
648 return SR_ERR_TIMEOUT;
649}
650
c749d1ca
GS
651/*
652 * This is belt and braces. Re-run the bitbang initiation sequence a few
653 * times should first attempts fail. Failure is rare but can happen (was
654 * observed during driver development).
655 */
656static int sigma_fpga_init_bitbang(struct dev_context *devc)
657{
658 size_t retries;
659 int ret;
660
661 retries = 10;
662 while (retries--) {
663 ret = sigma_fpga_init_bitbang_once(devc);
664 if (ret == SR_OK)
665 return ret;
666 if (ret != SR_ERR_TIMEOUT)
667 return ret;
668 }
669 return ret;
670}
671
64fe661b
MV
672/*
673 * Configure the FPGA for logic-analyzer mode.
674 */
675static int sigma_fpga_init_la(struct dev_context *devc)
676{
0f017b7d 677 uint8_t buf[20], *wrptr;
a53b8e4d 678 uint8_t data_55, data_aa, mode;
64fe661b 679 uint8_t result[3];
a53b8e4d 680 const uint8_t *rdptr;
64fe661b
MV
681 int ret;
682
a53b8e4d
GS
683 wrptr = buf;
684
685 /* Read ID register. */
0f017b7d
GS
686 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
687 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
a53b8e4d
GS
688 write_u8_inc(&wrptr, REG_READ_ADDR);
689
690 /* Write 0x55 to scratch register, read back. */
691 data_55 = 0x55;
0f017b7d
GS
692 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
693 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
694 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
695 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
a53b8e4d
GS
696 write_u8_inc(&wrptr, REG_READ_ADDR);
697
698 /* Write 0xaa to scratch register, read back. */
699 data_aa = 0xaa;
0f017b7d
GS
700 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
701 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
702 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
703 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
a53b8e4d
GS
704 write_u8_inc(&wrptr, REG_READ_ADDR);
705
706 /* Initiate SDRAM initialization in mode register. */
707 mode = WMR_SDRAMINIT;
0f017b7d
GS
708 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
709 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
710 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
711 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
a53b8e4d 712
dc0906e2
GS
713 /*
714 * Send the command sequence which contains 3 READ requests.
715 * Expect to see the corresponding 3 response bytes.
716 */
88a5f9ea
GS
717 ret = sigma_write_sr(devc, buf, wrptr - buf);
718 if (ret != SR_OK) {
719 sr_err("Could not request LA start response.");
720 return ret;
721 }
722 ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
723 if (ret != SR_OK) {
724 sr_err("Could not receive LA start response.");
a53b8e4d
GS
725 return SR_ERR_IO;
726 }
727 rdptr = result;
728 if (read_u8_inc(&rdptr) != 0xa6) {
729 sr_err("Unexpected ID response.");
730 return SR_ERR_DATA;
731 }
732 if (read_u8_inc(&rdptr) != data_55) {
733 sr_err("Unexpected scratch read-back (55).");
734 return SR_ERR_DATA;
735 }
736 if (read_u8_inc(&rdptr) != data_aa) {
737 sr_err("Unexpected scratch read-back (aa).");
738 return SR_ERR_DATA;
739 }
64fe661b
MV
740
741 return SR_OK;
64fe661b
MV
742}
743
a80226bb
MV
744/*
745 * Read the firmware from a file and transform it into a series of bitbang
746 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
747 * by the caller of this function.
748 */
8e2d6c9d 749static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
3d9373af 750 uint8_t **bb_cmd, size_t *bb_cmd_size)
a80226bb 751{
dc0906e2
GS
752 uint8_t *firmware;
753 size_t file_size;
754 uint8_t *p;
755 size_t l;
a80226bb 756 uint32_t imm;
dc0906e2
GS
757 size_t bb_size;
758 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 759
387825dc 760 /* Retrieve the on-disk firmware file content. */
742368a2
GS
761 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
762 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 763 if (!firmware)
dc0906e2 764 return SR_ERR_IO;
a80226bb 765
387825dc 766 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
767 p = firmware;
768 l = file_size;
a80226bb 769 imm = 0x3f6df2ab;
dc0906e2 770 while (l--) {
a80226bb 771 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 772 *p++ ^= imm & 0xff;
a80226bb
MV
773 }
774
775 /*
387825dc
GS
776 * Generate a sequence of bitbang samples. With two samples per
777 * FPGA configuration bit, providing the level for the DIN signal
778 * as well as two edges for CCLK. See Xilinx UG332 for details
779 * ("slave serial" mode).
780 *
781 * Note that CCLK is inverted in hardware. That's why the
782 * respective bit is first set and then cleared in the bitbang
783 * sample sets. So that the DIN level will be stable when the
784 * data gets sampled at the rising CCLK edge, and the signals'
785 * setup time constraint will be met.
786 *
787 * The caller will put the FPGA into download mode, will send
788 * the bitbang samples, and release the allocated memory.
a80226bb 789 */
a80226bb 790 bb_size = file_size * 8 * 2;
dc0906e2 791 bb_stream = g_try_malloc(bb_size);
a80226bb 792 if (!bb_stream) {
88a5f9ea 793 sr_err("Memory allocation failed during firmware upload.");
dc0906e2
GS
794 g_free(firmware);
795 return SR_ERR_MALLOC;
a80226bb 796 }
a80226bb 797 bbs = bb_stream;
dc0906e2
GS
798 p = firmware;
799 l = file_size;
800 while (l--) {
801 byte = *p++;
802 mask = 0x80;
803 while (mask) {
804 v = (byte & mask) ? BB_PIN_DIN : 0;
805 mask >>= 1;
806 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
807 *bbs++ = v;
808 }
809 }
dc0906e2 810 g_free(firmware);
a80226bb
MV
811
812 /* The transformation completed successfully, return the result. */
813 *bb_cmd = bb_stream;
814 *bb_cmd_size = bb_size;
815
dc0906e2 816 return SR_OK;
a80226bb
MV
817}
818
9b4d261f
GS
819static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
820 enum sigma_firmware_idx firmware_idx)
28a35d8a
HE
821{
822 int ret;
a53b8e4d
GS
823 uint8_t *buf;
824 uint8_t pins;
28a35d8a 825 size_t buf_size;
a9016883 826 const char *firmware;
a9016883 827
80e717b3
GS
828 /* Check for valid firmware file selection. */
829 if (firmware_idx >= ARRAY_SIZE(firmware_files))
830 return SR_ERR_ARG;
4b25cbff 831 firmware = firmware_files[firmware_idx];
80e717b3
GS
832 if (!firmware || !*firmware)
833 return SR_ERR_ARG;
834
835 /* Avoid downloading the same firmware multiple times. */
836 if (devc->firmware_idx == firmware_idx) {
a9016883
GS
837 sr_info("Not uploading firmware file '%s' again.", firmware);
838 return SR_OK;
839 }
28a35d8a 840
1bb9dc82
GS
841 devc->state.state = SIGMA_CONFIG;
842
dc0906e2 843 /* Set the cable to bitbang mode. */
7fe1f91f 844 ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 845 if (ret < 0) {
88a5f9ea 846 sr_err("Could not setup cable mode for upload: %s",
7fe1f91f 847 ftdi_get_error_string(&devc->ftdi.ctx));
7bcf2168 848 return SR_ERR;
28a35d8a 849 }
7fe1f91f 850 ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
8bbf7627 851 if (ret < 0) {
88a5f9ea 852 sr_err("Could not setup bitrate for upload: %s",
7fe1f91f 853 ftdi_get_error_string(&devc->ftdi.ctx));
7bcf2168 854 return SR_ERR;
28a35d8a
HE
855 }
856
dc0906e2 857 /* Initiate FPGA configuration mode. */
d5fa188a 858 ret = sigma_fpga_init_bitbang(devc);
88a5f9ea
GS
859 if (ret) {
860 sr_err("Could not initiate firmware upload to hardware");
d5fa188a 861 return ret;
88a5f9ea 862 }
28a35d8a 863
dc0906e2 864 /* Prepare wire format of the firmware image. */
8e2d6c9d 865 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 866 if (ret != SR_OK) {
88a5f9ea 867 sr_err("Could not prepare file %s for upload.", firmware);
b53738ba 868 return ret;
28a35d8a
HE
869 }
870
dc0906e2 871 /* Write the FPGA netlist to the cable. */
499b17e9 872 sr_info("Uploading firmware file '%s'.", firmware);
88a5f9ea 873 ret = sigma_write_sr(devc, buf, buf_size);
28a35d8a 874 g_free(buf);
88a5f9ea
GS
875 if (ret != SR_OK) {
876 sr_err("Could not upload firmware file '%s'.", firmware);
877 return ret;
878 }
28a35d8a 879
dc0906e2 880 /* Leave bitbang mode and discard pending input data. */
7fe1f91f 881 ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
8bbf7627 882 if (ret < 0) {
88a5f9ea 883 sr_err("Could not setup cable mode after upload: %s",
7fe1f91f 884 ftdi_get_error_string(&devc->ftdi.ctx));
e46b8fb1 885 return SR_ERR;
28a35d8a 886 }
7fe1f91f 887 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
88a5f9ea 888 while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
28a35d8a
HE
889 ;
890
64fe661b
MV
891 /* Initialize the FPGA for logic-analyzer mode. */
892 ret = sigma_fpga_init_la(devc);
88a5f9ea
GS
893 if (ret != SR_OK) {
894 sr_err("Hardware response after firmware upload failed.");
64fe661b 895 return ret;
88a5f9ea 896 }
28a35d8a 897
dc0906e2 898 /* Keep track of successful firmware download completion. */
1bb9dc82 899 devc->state.state = SIGMA_IDLE;
80e717b3 900 devc->firmware_idx = firmware_idx;
47f4f073 901 sr_info("Firmware uploaded.");
e3fff420 902
e46b8fb1 903 return SR_OK;
f6564c8d
HE
904}
905
9a0a606a 906/*
5e78a564
GS
907 * The driver supports user specified time or sample count limits. The
908 * device's hardware supports neither, and hardware compression prevents
909 * reliable detection of "fill levels" (currently reached sample counts)
910 * from register values during acquisition. That's why the driver needs
911 * to apply some heuristics:
9a0a606a 912 *
5e78a564
GS
913 * - The (optional) sample count limit and the (normalized) samplerate
914 * get mapped to an estimated duration for these samples' acquisition.
915 * - The (optional) time limit gets checked as well. The lesser of the
916 * two limits will terminate the data acquisition phase. The exact
917 * sample count limit gets enforced in session feed submission paths.
918 * - Some slack needs to be given to account for hardware pipelines as
919 * well as late storage of last chunks after compression thresholds
920 * are tripped. The resulting data set will span at least the caller
921 * specified period of time, which shall be perfectly acceptable.
922 *
923 * With RLE compression active, up to 64K sample periods can pass before
924 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
925 * times that period for good measure, one is not enough to flush the
926 * hardware pipeline (observation from an earlier experiment).
9a0a606a 927 */
5e78a564 928SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
9a0a606a 929{
5e78a564
GS
930 int ret;
931 GVariant *data;
932 uint64_t user_count, user_msecs;
9a0a606a 933 uint64_t worst_cluster_time_ms;
5e78a564 934 uint64_t count_msecs, acquire_msecs;
9a0a606a 935
5e78a564
GS
936 sr_sw_limits_init(&devc->acq_limits);
937
938 /* Get sample count limit, convert to msecs. */
939 ret = sr_sw_limits_config_get(&devc->cfg_limits,
940 SR_CONF_LIMIT_SAMPLES, &data);
941 if (ret != SR_OK)
942 return ret;
943 user_count = g_variant_get_uint64(data);
944 g_variant_unref(data);
945 count_msecs = 0;
946 if (user_count)
2d8a5089 947 count_msecs = 1000 * user_count / devc->clock.samplerate + 1;
5e78a564
GS
948
949 /* Get time limit, which is in msecs. */
950 ret = sr_sw_limits_config_get(&devc->cfg_limits,
951 SR_CONF_LIMIT_MSEC, &data);
952 if (ret != SR_OK)
953 return ret;
954 user_msecs = g_variant_get_uint64(data);
955 g_variant_unref(data);
956
957 /* Get the lesser of them, with both being optional. */
958 acquire_msecs = ~0ull;
959 if (user_count && count_msecs < acquire_msecs)
960 acquire_msecs = count_msecs;
961 if (user_msecs && user_msecs < acquire_msecs)
962 acquire_msecs = user_msecs;
963 if (acquire_msecs == ~0ull)
964 return SR_OK;
965
966 /* Add some slack, and use that timeout for acquisition. */
2d8a5089 967 worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate;
5e78a564
GS
968 acquire_msecs += 2 * worst_cluster_time_ms;
969 data = g_variant_new_uint64(acquire_msecs);
970 ret = sr_sw_limits_config_set(&devc->acq_limits,
971 SR_CONF_LIMIT_MSEC, data);
972 g_variant_unref(data);
973 if (ret != SR_OK)
974 return ret;
975
976 sr_sw_limits_acquisition_start(&devc->acq_limits);
977 return SR_OK;
9a0a606a
GS
978}
979
5e78a564
GS
980/*
981 * Check whether a caller specified samplerate matches the device's
982 * hardware constraints (can be used for acquisition). Optionally yield
983 * a value that approximates the original spec.
984 *
985 * This routine assumes that input specs are in the 200kHz to 200MHz
986 * range of supported rates, and callers typically want to normalize a
987 * given value to the hardware capabilities. Values in the 50MHz range
988 * get rounded up by default, to avoid a more expensive check for the
989 * closest match, while higher sampling rate is always desirable during
990 * measurement. Input specs which exactly match hardware capabilities
991 * remain unaffected. Because 100/200MHz rates also limit the number of
992 * available channels, they are not suggested by this routine, instead
993 * callers need to pick them consciously.
994 */
995SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
996{
997 uint64_t div, rate;
998
999 /* Accept exact matches for 100/200MHz. */
1000 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
1001 if (have_rate)
1002 *have_rate = want_rate;
1003 return SR_OK;
1004 }
1005
1006 /* Accept 200kHz to 50MHz range, and map to near value. */
1007 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
1008 div = SR_MHZ(50) / want_rate;
1009 rate = SR_MHZ(50) / div;
1010 if (have_rate)
1011 *have_rate = rate;
1012 return SR_OK;
1013 }
1014
1015 return SR_ERR_ARG;
1016}
1017
53c8a99c
GS
1018/* Gets called at probe time. Can seed software settings from hardware state. */
1019SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi)
abcd4771 1020{
53c8a99c
GS
1021 struct dev_context *devc;
1022 int ret;
1023 uint8_t regaddr, regval;
1024
1025 devc = sdi->priv;
1026 if (!devc)
1027 return SR_ERR_ARG;
1028
1029 /* Seed configuration values from defaults. */
1030 devc->firmware_idx = SIGMA_FW_NONE;
1031 devc->clock.samplerate = samplerates[0];
1032
1033 /* TODO
1034 * Ideally the device driver could retrieve recently stored
1035 * details from hardware registers, thus re-use user specified
1036 * configuration values across sigrok sessions. Which could
1037 * avoid repeated expensive though unnecessary firmware uploads,
1038 * improve performance and usability. Unfortunately it appears
1039 * that the registers range which is documented as available for
1040 * application use keeps providing 0xff data content. At least
1041 * with the netlist version which ships with sigrok. The same
1042 * was observed with unused registers in the first page.
1043 */
1044 return SR_ERR_NA;
1045
1046 /* This is for research, currently does not work yet. */
1047 ret = sigma_check_open(sdi);
1048 regaddr = 16;
1049 regaddr = 14;
1050 ret = sigma_set_register(devc, regaddr, 'F');
1051 ret = sigma_get_register(devc, regaddr, &regval);
1052 sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret);
1053 ret = sigma_check_close(devc);
1054 return ret;
1055}
1056
1057/* Gets called after successful (volatile) hardware configuration. */
1058SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi)
1059{
1060 /* TODO See above, registers seem to not hold written data. */
abcd4771 1061 (void)sdi;
53c8a99c 1062 return SR_ERR_NA;
abcd4771
GS
1063}
1064
5e78a564 1065SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
f6564c8d 1066{
2c9c0df8 1067 struct dev_context *devc;
8e2d6c9d 1068 struct drv_context *drvc;
5e78a564 1069 uint64_t samplerate;
2c9c0df8 1070 int ret;
3d9373af 1071 size_t num_channels;
f6564c8d 1072
2c9c0df8 1073 devc = sdi->priv;
8e2d6c9d 1074 drvc = sdi->driver->context;
f4abaa9f 1075
5e78a564 1076 /* Accept any caller specified rate which the hardware supports. */
2d8a5089 1077 ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate);
5e78a564
GS
1078 if (ret != SR_OK)
1079 return ret;
f6564c8d 1080
2f7e529c
GS
1081 /*
1082 * Depending on the samplerates of 200/100/50- MHz, specific
1083 * firmware is required and higher rates might limit the set
1084 * of available channels.
1085 */
ac9534f4 1086 num_channels = devc->num_channels;
59df0c77 1087 if (samplerate <= SR_MHZ(50)) {
80e717b3 1088 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
ac9534f4 1089 num_channels = 16;
6b2d3385 1090 } else if (samplerate == SR_MHZ(100)) {
80e717b3 1091 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
ac9534f4 1092 num_channels = 8;
6b2d3385 1093 } else if (samplerate == SR_MHZ(200)) {
80e717b3 1094 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
ac9534f4 1095 num_channels = 4;
f78898e9 1096 }
f6564c8d 1097
2f7e529c 1098 /*
5e78a564
GS
1099 * The samplerate affects the number of available logic channels
1100 * as well as a sample memory layout detail (the number of samples
1101 * which the device will communicate within an "event").
2f7e529c 1102 */
6b2d3385 1103 if (ret == SR_OK) {
ac9534f4 1104 devc->num_channels = num_channels;
6b2d3385 1105 devc->samples_per_event = 16 / devc->num_channels;
6b2d3385 1106 }
f6564c8d 1107
53c8a99c
GS
1108 /*
1109 * Store the firmware type and most recently configured samplerate
1110 * in hardware, such that subsequent sessions can start from there.
1111 * This is a "best effort" approach. Failure is non-fatal.
1112 */
1113 if (ret == SR_OK)
1114 (void)sigma_store_hw_config(sdi);
1115
e8397563 1116 return ret;
28a35d8a
HE
1117}
1118
98b43eb3
GS
1119/*
1120 * Arrange for a session feed submit buffer. A queue where a number of
1121 * samples gets accumulated to reduce the number of send calls. Which
1122 * also enforces an optional sample count limit for data acquisition.
1123 *
1124 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
1125 * driver provides a fixed channel layout regardless of samplerate).
1126 */
1127
1128#define CHUNK_SIZE (4 * 1024 * 1024)
1129
1130struct submit_buffer {
1131 size_t unit_size;
1132 size_t max_samples, curr_samples;
1133 uint8_t *sample_data;
1134 uint8_t *write_pointer;
1135 struct sr_dev_inst *sdi;
1136 struct sr_datafeed_packet packet;
1137 struct sr_datafeed_logic logic;
98b43eb3
GS
1138};
1139
1140static int alloc_submit_buffer(struct sr_dev_inst *sdi)
1141{
1142 struct dev_context *devc;
1143 struct submit_buffer *buffer;
1144 size_t size;
1145
1146 devc = sdi->priv;
1147
1148 buffer = g_malloc0(sizeof(*buffer));
1149 devc->buffer = buffer;
1150
1151 buffer->unit_size = sizeof(uint16_t);
1152 size = CHUNK_SIZE;
1153 size /= buffer->unit_size;
1154 buffer->max_samples = size;
1155 size *= buffer->unit_size;
1156 buffer->sample_data = g_try_malloc0(size);
1157 if (!buffer->sample_data)
1158 return SR_ERR_MALLOC;
1159 buffer->write_pointer = buffer->sample_data;
5e78a564 1160 sr_sw_limits_init(&devc->feed_limits);
98b43eb3
GS
1161
1162 buffer->sdi = sdi;
1163 memset(&buffer->logic, 0, sizeof(buffer->logic));
1164 buffer->logic.unitsize = buffer->unit_size;
1165 buffer->logic.data = buffer->sample_data;
1166 memset(&buffer->packet, 0, sizeof(buffer->packet));
1167 buffer->packet.type = SR_DF_LOGIC;
1168 buffer->packet.payload = &buffer->logic;
1169
1170 return SR_OK;
1171}
1172
5e78a564 1173static int setup_submit_limit(struct dev_context *devc)
98b43eb3 1174{
5e78a564 1175 struct sr_sw_limits *limits;
98b43eb3
GS
1176 int ret;
1177 GVariant *data;
1178 uint64_t total;
1179
5e78a564 1180 limits = &devc->feed_limits;
98b43eb3 1181
5e78a564
GS
1182 ret = sr_sw_limits_config_get(&devc->cfg_limits,
1183 SR_CONF_LIMIT_SAMPLES, &data);
1184 if (ret != SR_OK)
1185 return ret;
1186 total = g_variant_get_uint64(data);
1187 g_variant_unref(data);
1188
1189 sr_sw_limits_init(limits);
98b43eb3
GS
1190 if (total) {
1191 data = g_variant_new_uint64(total);
5e78a564 1192 ret = sr_sw_limits_config_set(limits,
98b43eb3
GS
1193 SR_CONF_LIMIT_SAMPLES, data);
1194 g_variant_unref(data);
1195 if (ret != SR_OK)
1196 return ret;
1197 }
1198
5e78a564 1199 sr_sw_limits_acquisition_start(limits);
98b43eb3
GS
1200
1201 return SR_OK;
1202}
1203
1204static void free_submit_buffer(struct dev_context *devc)
1205{
1206 struct submit_buffer *buffer;
1207
1208 if (!devc)
1209 return;
1210
1211 buffer = devc->buffer;
1212 if (!buffer)
1213 return;
1214 devc->buffer = NULL;
1215
1216 g_free(buffer->sample_data);
1217 g_free(buffer);
1218}
1219
1220static int flush_submit_buffer(struct dev_context *devc)
1221{
1222 struct submit_buffer *buffer;
1223 int ret;
1224
1225 buffer = devc->buffer;
1226
1227 /* Is queued sample data available? */
1228 if (!buffer->curr_samples)
1229 return SR_OK;
1230
1231 /* Submit to the session feed. */
1232 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
1233 ret = sr_session_send(buffer->sdi, &buffer->packet);
1234 if (ret != SR_OK)
1235 return ret;
1236
1237 /* Rewind queue position. */
1238 buffer->curr_samples = 0;
1239 buffer->write_pointer = buffer->sample_data;
1240
1241 return SR_OK;
1242}
1243
1244static int addto_submit_buffer(struct dev_context *devc,
1245 uint16_t sample, size_t count)
1246{
1247 struct submit_buffer *buffer;
5e78a564 1248 struct sr_sw_limits *limits;
98b43eb3
GS
1249 int ret;
1250
1251 buffer = devc->buffer;
5e78a564
GS
1252 limits = &devc->feed_limits;
1253 if (sr_sw_limits_check(limits))
98b43eb3
GS
1254 count = 0;
1255
1256 /*
1257 * Individually accumulate and check each sample, such that
1258 * accumulation between flushes won't exceed local storage, and
1259 * enforcement of user specified limits is exact.
1260 */
1261 while (count--) {
a53b8e4d 1262 write_u16le_inc(&buffer->write_pointer, sample);
98b43eb3
GS
1263 buffer->curr_samples++;
1264 if (buffer->curr_samples == buffer->max_samples) {
1265 ret = flush_submit_buffer(devc);
1266 if (ret != SR_OK)
1267 return ret;
1268 }
5e78a564
GS
1269 sr_sw_limits_update_samples_read(limits, 1);
1270 if (sr_sw_limits_check(limits))
98b43eb3
GS
1271 break;
1272 }
1273
1274 return SR_OK;
1275}
1276
c53d793f
HE
1277/*
1278 * In 100 and 200 MHz mode, only a single pin rising/falling can be
1279 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 1280 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
1281 *
1282 * The Sigma supports complex triggers using boolean expressions, but this
1283 * has not been implemented yet.
1284 */
3ba56876 1285SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 1286{
39c64c6a
BV
1287 struct dev_context *devc;
1288 struct sr_trigger *trigger;
1289 struct sr_trigger_stage *stage;
1290 struct sr_trigger_match *match;
1291 const GSList *l, *m;
3d9373af
GS
1292 uint16_t channelbit;
1293 size_t trigger_set;
57bbf56b 1294
39c64c6a 1295 devc = sdi->priv;
5c231fc4
GS
1296 memset(&devc->trigger, 0, sizeof(devc->trigger));
1297 trigger = sr_session_trigger_get(sdi->session);
1298 if (!trigger)
39c64c6a
BV
1299 return SR_OK;
1300
1301 trigger_set = 0;
1302 for (l = trigger->stages; l; l = l->next) {
1303 stage = l->data;
1304 for (m = stage->matches; m; m = m->next) {
1305 match = m->data;
9b4d261f 1306 /* Ignore disabled channels with a trigger. */
39c64c6a 1307 if (!match->channel->enabled)
39c64c6a 1308 continue;
a53b8e4d 1309 channelbit = 1 << match->channel->index;
2d8a5089 1310 if (devc->clock.samplerate >= SR_MHZ(100)) {
39c64c6a
BV
1311 /* Fast trigger support. */
1312 if (trigger_set) {
88a5f9ea 1313 sr_err("100/200MHz modes limited to single trigger pin.");
39c64c6a
BV
1314 return SR_ERR;
1315 }
a53b8e4d 1316 if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 1317 devc->trigger.fallingmask |= channelbit;
a53b8e4d 1318 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 1319 devc->trigger.risingmask |= channelbit;
a53b8e4d 1320 } else {
88a5f9ea 1321 sr_err("100/200MHz modes limited to edge trigger.");
39c64c6a
BV
1322 return SR_ERR;
1323 }
eec5275e 1324
0a1f7b09 1325 trigger_set++;
39c64c6a
BV
1326 } else {
1327 /* Simple trigger support (event). */
1328 if (match->match == SR_TRIGGER_ONE) {
1329 devc->trigger.simplevalue |= channelbit;
1330 devc->trigger.simplemask |= channelbit;
8ebad343 1331 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
1332 devc->trigger.simplevalue &= ~channelbit;
1333 devc->trigger.simplemask |= channelbit;
8ebad343 1334 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 1335 devc->trigger.fallingmask |= channelbit;
0a1f7b09 1336 trigger_set++;
8ebad343 1337 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 1338 devc->trigger.risingmask |= channelbit;
0a1f7b09 1339 trigger_set++;
39c64c6a
BV
1340 }
1341
1342 /*
1343 * Actually, Sigma supports 2 rising/falling triggers,
1344 * but they are ORed and the current trigger syntax
1345 * does not permit ORed triggers.
1346 */
1347 if (trigger_set > 1) {
88a5f9ea 1348 sr_err("Limited to 1 edge trigger.");
39c64c6a
BV
1349 return SR_ERR;
1350 }
ee492173 1351 }
ee492173 1352 }
57bbf56b
HE
1353 }
1354
e46b8fb1 1355 return SR_OK;
57bbf56b
HE
1356}
1357
36b1c8e6 1358/* Software trigger to determine exact trigger position. */
5fc01191 1359static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
9b4d261f 1360 struct sigma_trigger *t)
36b1c8e6 1361{
a53b8e4d 1362 const uint8_t *rdptr;
3d9373af 1363 size_t i;
a53b8e4d 1364 uint16_t sample;
36b1c8e6 1365
a53b8e4d
GS
1366 rdptr = samples;
1367 sample = 0;
0a1f7b09 1368 for (i = 0; i < 8; i++) {
36b1c8e6 1369 if (i > 0)
5fc01191 1370 last_sample = sample;
a53b8e4d 1371 sample = read_u16le_inc(&rdptr);
36b1c8e6
HE
1372
1373 /* Simple triggers. */
5fc01191 1374 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
1375 continue;
1376
1377 /* Rising edge. */
5fc01191
MV
1378 if (((last_sample & t->risingmask) != 0) ||
1379 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
1380 continue;
1381
1382 /* Falling edge. */
bdfc7a89 1383 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 1384 (sample & t->fallingmask) != 0)
36b1c8e6
HE
1385 continue;
1386
1387 break;
1388 }
1389
1390 /* If we did not match, return original trigger pos. */
1391 return i & 0x7;
1392}
1393
98b43eb3
GS
1394static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1395{
1396 /* TODO
1397 * Check whether the combination of this very sample and the
1398 * previous state match the configured trigger condition. This
1399 * improves the resolution of the trigger marker's position.
1400 * The hardware provided position is coarse, and may point to
1401 * a position before the actual match.
1402 *
1403 * See the previous get_trigger_offset() implementation. This
1404 * code needs to get re-used here.
1405 */
1406 (void)devc;
1407 (void)sample;
1408 (void)get_trigger_offset;
1409
1410 return FALSE;
1411}
1412
1413static int check_and_submit_sample(struct dev_context *devc,
1414 uint16_t sample, size_t count, gboolean check_trigger)
1415{
1416 gboolean triggered;
1417 int ret;
1418
1419 triggered = check_trigger && sample_matches_trigger(devc, sample);
1420 if (triggered) {
1421 ret = flush_submit_buffer(devc);
1422 if (ret != SR_OK)
1423 return ret;
1424 ret = std_session_send_df_trigger(devc->buffer->sdi);
1425 if (ret != SR_OK)
1426 return ret;
1427 }
1428
1429 ret = addto_submit_buffer(devc, sample, count);
1430 if (ret != SR_OK)
1431 return ret;
1432
1433 return SR_OK;
1434}
1435
3513d965
MV
1436/*
1437 * Return the timestamp of "DRAM cluster".
1438 */
1439static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1440{
2a62a9c4 1441 return read_u16le((const uint8_t *)&cluster->timestamp);
3513d965
MV
1442}
1443
0498f743
GS
1444/*
1445 * Return one 16bit data entity of a DRAM cluster at the specified index.
1446 */
1447static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1448{
2a62a9c4 1449 return read_u16le((const uint8_t *)&cl->samples[idx]);
0498f743
GS
1450}
1451
85c032e4
GS
1452/*
1453 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1454 * One 16bit item contains two samples of 8bits each. The bits of
1455 * multiple samples are interleaved.
1456 */
1457static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
1458{
1459 uint16_t outdata;
1460
1461 indata >>= idx;
1462 outdata = 0;
1463 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1464 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1465 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1466 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1467 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1468 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1469 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1470 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1471 return outdata;
1472}
1473
1474/*
1475 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1476 * One 16bit item contains four samples of 4bits each. The bits of
1477 * multiple samples are interleaved.
1478 */
1479static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
1480{
1481 uint16_t outdata;
1482
1483 indata >>= idx;
1484 outdata = 0;
1485 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1486 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1487 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1488 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1489 return outdata;
1490}
1491
98b43eb3
GS
1492static void sigma_decode_dram_cluster(struct dev_context *devc,
1493 struct sigma_dram_cluster *dram_cluster,
1494 size_t events_in_cluster, gboolean triggered)
23239b5c 1495{
98b43eb3 1496 struct sigma_state *ss;
85c032e4 1497 uint16_t tsdiff, ts, sample, item16;
3d9373af
GS
1498 size_t count;
1499 size_t evt;
23239b5c 1500
98b43eb3
GS
1501 if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
1502 triggered = FALSE;
23239b5c
MV
1503
1504 /*
468f17f2
GS
1505 * If this cluster is not adjacent to the previously received
1506 * cluster, then send the appropriate number of samples with the
1507 * previous values to the sigrok session. This "decodes RLE".
2c33b092 1508 *
98b43eb3
GS
1509 * These samples cannot match the trigger since they just repeat
1510 * the previously submitted data pattern. (This assumption holds
1511 * for simple level and edge triggers. It would not for timed or
1512 * counted conditions, which currently are not supported.)
23239b5c 1513 */
98b43eb3
GS
1514 ss = &devc->state;
1515 ts = sigma_dram_cluster_ts(dram_cluster);
1516 tsdiff = ts - ss->lastts;
1517 if (tsdiff > 0) {
9b4d261f 1518 sample = ss->lastsample;
98b43eb3 1519 count = tsdiff * devc->samples_per_event;
9b4d261f 1520 (void)check_and_submit_sample(devc, sample, count, FALSE);
23239b5c 1521 }
98b43eb3 1522 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
1523
1524 /*
98b43eb3
GS
1525 * Grab sample data from the current cluster and prepare their
1526 * submission to the session feed. Handle samplerate dependent
1527 * memory layout of sample data. Accumulation of data chunks
1528 * before submission is transparent to this code path, specific
1529 * buffer depth is neither assumed nor required here.
23239b5c 1530 */
0498f743 1531 sample = 0;
3d9373af
GS
1532 for (evt = 0; evt < events_in_cluster; evt++) {
1533 item16 = sigma_dram_cluster_data(dram_cluster, evt);
2d8a5089 1534 if (devc->clock.samplerate == SR_MHZ(200)) {
85c032e4 1535 sample = sigma_deinterlace_200mhz_data(item16, 0);
98b43eb3 1536 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1537 sample = sigma_deinterlace_200mhz_data(item16, 1);
98b43eb3 1538 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1539 sample = sigma_deinterlace_200mhz_data(item16, 2);
98b43eb3 1540 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1541 sample = sigma_deinterlace_200mhz_data(item16, 3);
98b43eb3 1542 check_and_submit_sample(devc, sample, 1, triggered);
2d8a5089 1543 } else if (devc->clock.samplerate == SR_MHZ(100)) {
85c032e4 1544 sample = sigma_deinterlace_100mhz_data(item16, 0);
98b43eb3 1545 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1546 sample = sigma_deinterlace_100mhz_data(item16, 1);
98b43eb3 1547 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4
GS
1548 } else {
1549 sample = item16;
98b43eb3 1550 check_and_submit_sample(devc, sample, 1, triggered);
23239b5c 1551 }
23239b5c 1552 }
0498f743 1553 ss->lastsample = sample;
23239b5c
MV
1554}
1555
28a35d8a 1556/*
fefa1800
UH
1557 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1558 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
1559 *
1560 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1561 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1562 * For 50 MHz and below, events contain one sample for each channel,
1563 * spread 20 ns apart.
28a35d8a 1564 */
98b43eb3
GS
1565static int decode_chunk_ts(struct dev_context *devc,
1566 struct sigma_dram_line *dram_line,
1567 size_t events_in_line, size_t trigger_event)
28a35d8a 1568{
3628074d 1569 struct sigma_dram_cluster *dram_cluster;
3d9373af
GS
1570 size_t clusters_in_line;
1571 size_t events_in_cluster;
1572 size_t cluster;
1573 size_t trigger_cluster;
f06fb3e9 1574
f06fb3e9
GS
1575 clusters_in_line = events_in_line;
1576 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1577 clusters_in_line /= EVENTS_PER_CLUSTER;
ee492173 1578
4ae1f451 1579 /* Check if trigger is in this chunk. */
3d9373af 1580 trigger_cluster = ~0UL;
2c33b092 1581 if (trigger_event < EVENTS_PER_ROW) {
2d8a5089 1582 if (devc->clock.samplerate <= SR_MHZ(50)) {
1e23158b
MV
1583 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1584 trigger_event);
1585 }
57bbf56b 1586
f3f19d11 1587 /* Find in which cluster the trigger occurred. */
1e23158b 1588 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1589 }
28a35d8a 1590
5fc01191 1591 /* For each full DRAM cluster. */
3d9373af
GS
1592 for (cluster = 0; cluster < clusters_in_line; cluster++) {
1593 dram_cluster = &dram_line->cluster[cluster];
5fc01191 1594
5fc01191 1595 /* The last cluster might not be full. */
3d9373af 1596 if ((cluster == clusters_in_line - 1) &&
23239b5c 1597 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1598 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1599 } else {
5fc01191 1600 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1601 }
ee492173 1602
98b43eb3 1603 sigma_decode_dram_cluster(devc, dram_cluster,
3d9373af 1604 events_in_cluster, cluster == trigger_cluster);
28a35d8a
HE
1605 }
1606
e46b8fb1 1607 return SR_OK;
28a35d8a
HE
1608}
1609
6057d9fa 1610static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1611{
e15e5873 1612 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1613
1614 struct dev_context *devc;
fd830beb 1615 struct sigma_dram_line *dram_line;
462fe786 1616 uint32_t stoppos, triggerpos;
6057d9fa 1617 uint8_t modestatus;
3d9373af
GS
1618 size_t line_idx;
1619 size_t dl_lines_total, dl_lines_curr, dl_lines_done;
1620 size_t dl_first_line, dl_line;
1621 size_t dl_events_in_line, trigger_event;
1622 size_t trg_line, trg_event;
98b43eb3 1623 int ret;
f06fb3e9
GS
1624
1625 devc = sdi->priv;
c6648b66 1626
6868626b 1627 sr_info("Downloading sample data.");
dde0175d 1628 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1629
22f64ed8
GS
1630 /*
1631 * Ask the hardware to stop data acquisition. Reception of the
1632 * FORCESTOP request makes the hardware "disable RLE" (store
1633 * clusters to DRAM regardless of whether pin state changes) and
1634 * raise the POSTTRIGGERED flag.
1635 */
88a5f9ea
GS
1636 modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
1637 ret = sigma_set_register(devc, WRITE_MODE, modestatus);
1638 if (ret != SR_OK)
1639 return ret;
22f64ed8 1640 do {
0f017b7d 1641 ret = sigma_get_register(devc, READ_MODE, &modestatus);
88a5f9ea
GS
1642 if (ret != SR_OK) {
1643 sr_err("Could not poll for post-trigger state.");
f73b00b6
DT
1644 return FALSE;
1645 }
22f64ed8 1646 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1647
1648 /* Set SDRAM Read Enable. */
88a5f9ea
GS
1649 ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
1650 if (ret != SR_OK)
1651 return ret;
6057d9fa 1652
88a5f9ea
GS
1653 /* Get the current position. Check if trigger has fired. */
1654 ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
1655 if (ret != SR_OK) {
1656 sr_err("Could not query capture positions/state.");
f73b00b6
DT
1657 return FALSE;
1658 }
3d9373af
GS
1659 trg_line = ~0UL;
1660 trg_event = ~0UL;
22f64ed8 1661 if (modestatus & RMR_TRIGGERED) {
a53b8e4d
GS
1662 trg_line = triggerpos >> ROW_SHIFT;
1663 trg_event = triggerpos & ROW_MASK;
1e23158b 1664 }
6057d9fa 1665
c6648b66 1666 /*
74d453ab
GS
1667 * Determine how many "DRAM lines" of 1024 bytes each we need to
1668 * retrieve from the Sigma hardware, so that we have a complete
1669 * set of samples. Note that the last line need not contain 64
1670 * clusters, it might be partially filled only.
1671 *
1672 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1673 * around. Since the status of the very next line is uncertain in
2c33b092 1674 * that case, we skip it and start reading from the next line.
c6648b66 1675 */
2c33b092
GS
1676 dl_first_line = 0;
1677 dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
74d453ab
GS
1678 if (modestatus & RMR_ROUND) {
1679 dl_first_line = dl_lines_total + 1;
2c33b092 1680 dl_lines_total = ROW_COUNT - 2;
74d453ab 1681 }
44081095
DT
1682 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1683 if (!dram_line)
1684 return FALSE;
98b43eb3
GS
1685 ret = alloc_submit_buffer(sdi);
1686 if (ret != SR_OK)
1687 return FALSE;
5e78a564 1688 ret = setup_submit_limit(devc);
98b43eb3
GS
1689 if (ret != SR_OK)
1690 return FALSE;
c6648b66 1691 dl_lines_done = 0;
c6648b66
MV
1692 while (dl_lines_total > dl_lines_done) {
1693 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1694 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1695
74d453ab 1696 dl_line = dl_first_line + dl_lines_done;
2c33b092 1697 dl_line %= ROW_COUNT;
88a5f9ea
GS
1698 ret = sigma_read_dram(devc, dl_line, dl_lines_curr,
1699 (uint8_t *)dram_line);
1700 if (ret != SR_OK)
1701 return FALSE;
6868626b 1702
c6648b66
MV
1703 /* This is the first DRAM line, so find the initial timestamp. */
1704 if (dl_lines_done == 0) {
3513d965
MV
1705 devc->state.lastts =
1706 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1707 devc->state.lastsample = 0;
6868626b
BV
1708 }
1709
3d9373af 1710 for (line_idx = 0; line_idx < dl_lines_curr; line_idx++) {
a53b8e4d 1711 /* The last "DRAM line" need not span its full length. */
5c231fc4 1712 dl_events_in_line = EVENTS_PER_ROW;
3d9373af 1713 if (dl_lines_done + line_idx == dl_lines_total - 1)
a53b8e4d 1714 dl_events_in_line = stoppos & ROW_MASK;
c6648b66 1715
e69ad48e 1716 /* Test if the trigger happened on this line. */
3d9373af
GS
1717 trigger_event = ~0UL;
1718 if (dl_lines_done + line_idx == trg_line)
1e23158b 1719 trigger_event = trg_event;
e69ad48e 1720
3d9373af 1721 decode_chunk_ts(devc, dram_line + line_idx,
98b43eb3 1722 dl_events_in_line, trigger_event);
c6648b66 1723 }
6868626b 1724
c6648b66 1725 dl_lines_done += dl_lines_curr;
6868626b 1726 }
98b43eb3
GS
1727 flush_submit_buffer(devc);
1728 free_submit_buffer(devc);
dde0175d 1729 g_free(dram_line);
6868626b 1730
bee2b016 1731 std_session_send_df_end(sdi);
6057d9fa 1732
dde0175d 1733 devc->state.state = SIGMA_IDLE;
d2f7c417 1734 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1735
1736 return TRUE;
6868626b
BV
1737}
1738
d4051930 1739/*
74d453ab
GS
1740 * Periodically check the Sigma status when in CAPTURE mode. This routine
1741 * checks whether the configured sample count or sample time have passed,
1742 * and will stop acquisition and download the acquired samples.
d4051930
MV
1743 */
1744static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1745{
f06fb3e9 1746 struct dev_context *devc;
28a35d8a 1747
f06fb3e9 1748 devc = sdi->priv;
5e78a564 1749 if (sr_sw_limits_check(&devc->acq_limits))
6057d9fa 1750 return download_capture(sdi);
00c86508 1751
d4051930
MV
1752 return TRUE;
1753}
28a35d8a 1754
3ba56876 1755SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1756{
1757 struct sr_dev_inst *sdi;
1758 struct dev_context *devc;
88c51afe 1759
d4051930
MV
1760 (void)fd;
1761 (void)revents;
88c51afe 1762
d4051930
MV
1763 sdi = cb_data;
1764 devc = sdi->priv;
1765
1766 if (devc->state.state == SIGMA_IDLE)
1767 return TRUE;
1768
dde0175d
GS
1769 /*
1770 * When the application has requested to stop the acquisition,
1771 * then immediately start downloading sample data. Otherwise
1772 * keep checking configured limits which will terminate the
1773 * acquisition and initiate download.
1774 */
1775 if (devc->state.state == SIGMA_STOPPING)
1776 return download_capture(sdi);
d4051930
MV
1777 if (devc->state.state == SIGMA_CAPTURE)
1778 return sigma_capture_mode(sdi);
28a35d8a 1779
28a35d8a
HE
1780 return TRUE;
1781}
1782
c53d793f 1783/* Build a LUT entry used by the trigger functions. */
7dd766e0
GS
1784static void build_lut_entry(uint16_t *lut_entry,
1785 uint16_t spec_value, uint16_t spec_mask)
ee492173 1786{
7dd766e0
GS
1787 size_t quad, bitidx, ch;
1788 uint16_t quadmask, bitmask;
1789 gboolean spec_value_low, bit_idx_low;
ee492173 1790
7dd766e0
GS
1791 /*
1792 * For each quad-channel-group, for each bit in the LUT (each
1793 * bit pattern of the channel signals, aka LUT address), for
1794 * each channel in the quad, setup the bit in the LUT entry.
1795 *
1796 * Start from all-ones in the LUT (true, always matches), then
1797 * "pessimize the truthness" for specified conditions.
1798 */
1799 for (quad = 0; quad < 4; quad++) {
1800 lut_entry[quad] = ~0;
1801 for (bitidx = 0; bitidx < 16; bitidx++) {
1802 for (ch = 0; ch < 4; ch++) {
1803 quadmask = 1 << ch;
1804 bitmask = quadmask << (quad * 4);
1805 if (!(spec_mask & bitmask))
1806 continue;
1807 /*
1808 * This bit is part of the spec. The
1809 * condition which gets checked here
1810 * (got checked in all implementations
1811 * so far) is uncertain. A bit position
1812 * in the current index' number(!) is
1813 * checked?
1814 */
1815 spec_value_low = !(spec_value & bitmask);
1816 bit_idx_low = !(bitidx & quadmask);
1817 if (spec_value_low == bit_idx_low)
1818 continue;
1819 lut_entry[quad] &= ~(1 << bitidx);
ee492173 1820 }
a53b8e4d 1821 }
ee492173 1822 }
c53d793f 1823}
ee492173 1824
c53d793f
HE
1825/* Add a logical function to LUT mask. */
1826static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
3d9373af 1827 size_t index, gboolean neg, uint16_t *mask)
c53d793f 1828{
3d9373af 1829 size_t i, j;
c53d793f
HE
1830 int x[2][2], tmp, a, b, aset, bset, rset;
1831
5c231fc4 1832 memset(x, 0, sizeof(x));
c53d793f
HE
1833
1834 /* Trigger detect condition. */
1835 switch (oper) {
1836 case OP_LEVEL:
1837 x[0][1] = 1;
1838 x[1][1] = 1;
1839 break;
1840 case OP_NOT:
1841 x[0][0] = 1;
1842 x[1][0] = 1;
1843 break;
1844 case OP_RISE:
1845 x[0][1] = 1;
1846 break;
1847 case OP_FALL:
1848 x[1][0] = 1;
1849 break;
1850 case OP_RISEFALL:
1851 x[0][1] = 1;
1852 x[1][0] = 1;
1853 break;
1854 case OP_NOTRISE:
1855 x[1][1] = 1;
1856 x[0][0] = 1;
1857 x[1][0] = 1;
1858 break;
1859 case OP_NOTFALL:
1860 x[1][1] = 1;
1861 x[0][0] = 1;
1862 x[0][1] = 1;
1863 break;
1864 case OP_NOTRISEFALL:
1865 x[1][1] = 1;
1866 x[0][0] = 1;
1867 break;
1868 }
1869
1870 /* Transpose if neg is set. */
1871 if (neg) {
0a1f7b09
UH
1872 for (i = 0; i < 2; i++) {
1873 for (j = 0; j < 2; j++) {
c53d793f 1874 tmp = x[i][j];
0a1f7b09
UH
1875 x[i][j] = x[1 - i][1 - j];
1876 x[1 - i][1 - j] = tmp;
c53d793f 1877 }
ea9cfed7 1878 }
c53d793f
HE
1879 }
1880
1881 /* Update mask with function. */
0a1f7b09 1882 for (i = 0; i < 16; i++) {
c53d793f
HE
1883 a = (i >> (2 * index + 0)) & 1;
1884 b = (i >> (2 * index + 1)) & 1;
1885
1886 aset = (*mask >> i) & 1;
1887 bset = x[b][a];
1888
382cb19f 1889 rset = 0;
c53d793f
HE
1890 if (func == FUNC_AND || func == FUNC_NAND)
1891 rset = aset & bset;
1892 else if (func == FUNC_OR || func == FUNC_NOR)
1893 rset = aset | bset;
1894 else if (func == FUNC_XOR || func == FUNC_NXOR)
1895 rset = aset ^ bset;
1896
1897 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1898 rset = !rset;
1899
1900 *mask &= ~(1 << i);
1901
1902 if (rset)
1903 *mask |= 1 << i;
1904 }
1905}
1906
1907/*
1908 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1909 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1910 * set at any time, but a full mask and value can be set (0/1).
1911 */
9b4d261f
GS
1912SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
1913 struct triggerlut *lut)
c53d793f 1914{
5c231fc4 1915 uint16_t masks[2];
3d9373af 1916 size_t bitidx, condidx;
7dd766e0 1917 uint16_t value, mask;
c53d793f 1918
7dd766e0 1919 /* Start assuming simple triggers. */
5c231fc4 1920 memset(lut, 0, sizeof(*lut));
c53d793f 1921 lut->m4 = 0xa000;
16791da9 1922 lut->m3q = 0xffff;
c53d793f 1923
7dd766e0
GS
1924 /* Process value/mask triggers. */
1925 value = devc->trigger.simplevalue;
1926 mask = devc->trigger.simplemask;
1927 build_lut_entry(lut->m2d, value, mask);
c53d793f 1928
7dd766e0
GS
1929 /* Scan for and process rise/fall triggers. */
1930 memset(&masks, 0, sizeof(masks));
1931 condidx = 0;
1932 for (bitidx = 0; bitidx < 16; bitidx++) {
1933 mask = 1 << bitidx;
1934 value = devc->trigger.risingmask | devc->trigger.fallingmask;
1935 if (!(value & mask))
1936 continue;
1937 if (condidx == 0)
1938 build_lut_entry(lut->m0d, mask, mask);
1939 if (condidx == 1)
1940 build_lut_entry(lut->m1d, mask, mask);
1941 masks[condidx++] = mask;
1942 if (condidx == ARRAY_SIZE(masks))
1943 break;
c53d793f
HE
1944 }
1945
7dd766e0 1946 /* Add glue logic for rise/fall triggers. */
c53d793f 1947 if (masks[0] || masks[1]) {
16791da9 1948 lut->m3q = 0;
0e1357e8 1949 if (masks[0] & devc->trigger.risingmask)
16791da9 1950 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
0e1357e8 1951 if (masks[0] & devc->trigger.fallingmask)
16791da9 1952 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
0e1357e8 1953 if (masks[1] & devc->trigger.risingmask)
16791da9 1954 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
0e1357e8 1955 if (masks[1] & devc->trigger.fallingmask)
16791da9 1956 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
c53d793f 1957 }
ee492173 1958
c53d793f 1959 /* Triggertype: event. */
16791da9
GS
1960 lut->params.selres = TRGSEL_SELCODE_NEVER;
1961 lut->params.selinc = TRGSEL_SELCODE_LEVEL;
1962 lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
1963 lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
ee492173 1964
e46b8fb1 1965 return SR_OK;
ee492173 1966}