]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: prefer boolean data type for bool information
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
7047acc8 4 * Copyright (C) 2022 Gerhard Sittig <gerhard.sittig@gmx.net>
f2cd2deb
FS
5 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
6 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
7 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
8 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24#include <config.h>
a7740b06 25
f2cd2deb 26#include <libsigrok/libsigrok.h>
a7740b06
GS
27#include <string.h>
28
f2cd2deb
FS
29#include "libsigrok-internal.h"
30#include "protocol.h"
31
d466f61c
GS
32/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
33#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
34#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
35
36/*
37 * List of supported devices and their features. See @ref kingst_model
38 * for the fields' type and meaning. Table is sorted by EEPROM magic.
39 *
40 * TODO
41 * - Below LA1016 properties were guessed, need verification.
42 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
43 * - Does LA1010 fit the driver implementation? Samplerates vary with
44 * channel counts, lack of local sample memory. Most probably not.
45 */
46static const struct kingst_model models[] = {
47 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
48 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
49 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
50 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
51};
f2cd2deb 52
96dc954e 53/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 54#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
55#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
56#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
57#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
58#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
59#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
60#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 61
42f6dd55 62/*
96dc954e
GS
63 * FPGA register addresses (base addresses when registers span multiple
64 * bytes, in that case data is kept in little endian format). Passed to
65 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
66 * of SPI transfers encoding the read (1) or write (0) direction in the
67 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
68 *
69 * Unfortunately the FPGA registers change their meaning between the
70 * read and write directions of access, or exclusively provide one of
71 * these directions and not the other. This is an arbitrary vendor's
72 * choice, there is nothing which the sigrok driver could do about it.
73 * Values written to registers typically cannot get read back, neither
74 * verified after writing a configuration, nor queried upon startup for
75 * automatic detection of the current configuration. Neither appear to
76 * be there echo registers for presence and communication checks, nor
77 * version identifying registers, as far as we know.
42f6dd55 78 */
96dc954e
GS
79#define REG_RUN 0x00 /* Read capture status, write start capture. */
80#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
81#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
82#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
83#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
3ab60908
GS
84#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
85#define REG_UNKNOWN_30 0x30
96dc954e
GS
86#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
87#define REG_PWM1 0x70 /* Write config for user PWM1. */
88#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 89
972d191b
GS
90/* Bit patterns to write to REG_CAPT_MODE. */
91#define CAPTMODE_TO_RAM 0x00
92#define CAPTMODE_STREAM 0x01
93
852c7d14
GS
94/* Bit patterns to write to REG_RUN, setup run mode. */
95#define RUNMODE_HALT 0x00
96#define RUNMODE_RUN 0x03
97
b711fd8e
GS
98/* Bit patterns when reading from REG_RUN, get run state. */
99#define RUNSTATE_IDLE_BIT (1UL << 0)
100#define RUNSTATE_DRAM_BIT (1UL << 1)
101#define RUNSTATE_TRGD_BIT (1UL << 2)
102#define RUNSTATE_POST_BIT (1UL << 3)
103
f2cd2deb 104static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
105 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
106 void *data, uint16_t wLength)
f2cd2deb
FS
107{
108 struct sr_usb_dev_inst *usb;
109 int ret;
110
111 usb = sdi->conn;
112
411ad77c
GS
113 ret = libusb_control_transfer(usb->devhdl,
114 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
115 bRequest, wValue, wIndex, data, wLength,
116 DEFAULT_TIMEOUT_MS);
117 if (ret != wLength) {
91f73872
GS
118 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
119 wLength, bRequest, wValue, wIndex,
120 libusb_error_name(ret));
121 sr_err("Cannot read %d bytes from USB: %s.",
122 wLength, libusb_error_name(ret));
286b3e13 123 return SR_ERR_IO;
f2cd2deb
FS
124 }
125
126 return SR_OK;
127}
128
129static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
130 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
131 void *data, uint16_t wLength)
f2cd2deb
FS
132{
133 struct sr_usb_dev_inst *usb;
134 int ret;
135
136 usb = sdi->conn;
137
411ad77c
GS
138 ret = libusb_control_transfer(usb->devhdl,
139 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
140 bRequest, wValue, wIndex, data, wLength,
141 DEFAULT_TIMEOUT_MS);
142 if (ret != wLength) {
91f73872
GS
143 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
144 wLength, bRequest, wValue, wIndex,
145 libusb_error_name(ret));
146 sr_err("Cannot write %d bytes to USB: %s.",
147 wLength, libusb_error_name(ret));
286b3e13 148 return SR_ERR_IO;
f2cd2deb
FS
149 }
150
151 return SR_OK;
152}
153
33020165
GS
154/* HACK Experiment to spot FPGA registers of interest. */
155static void la2016_dump_fpga_registers(const struct sr_dev_inst *sdi,
156 const char *caption, size_t reg_lower, size_t reg_upper)
157{
158 static const size_t dump_chunk_len = 16;
159
160 size_t rdlen;
161 uint8_t rdbuf[0x80 - 0x00]; /* Span all FPGA registers. */
162 const uint8_t *rdptr;
163 int ret;
164 size_t dump_addr, indent, dump_len;
165 GString *txt;
166
167 if (sr_log_loglevel_get() < SR_LOG_SPEW)
168 return;
169
170 if (!reg_lower && !reg_upper) {
171 reg_lower = 0;
172 reg_upper = sizeof(rdbuf);
173 }
174 if (reg_upper - reg_lower > sizeof(rdbuf))
175 reg_upper = sizeof(rdbuf) - reg_lower;
176
177 rdlen = reg_upper - reg_lower;
178 ret = ctrl_in(sdi, CMD_FPGA_SPI, reg_lower, 0, rdbuf, rdlen);
179 if (ret != SR_OK) {
180 sr_err("Cannot get registers space.");
181 return;
182 }
183 rdptr = rdbuf;
184
185 sr_spew("FPGA registers dump: %s", caption ? : "for fun");
186 dump_addr = reg_lower;
187 while (rdlen) {
188 dump_len = rdlen;
189 indent = dump_addr % dump_chunk_len;
190 if (dump_len > dump_chunk_len)
191 dump_len = dump_chunk_len;
192 if (dump_len + indent > dump_chunk_len)
193 dump_len = dump_chunk_len - indent;
194 txt = sr_hexdump_new(rdptr, dump_len);
195 sr_spew(" %04zx %*s%s",
196 dump_addr, (int)(3 * indent), "", txt->str);
197 sr_hexdump_free(txt);
198 dump_addr += dump_len;
199 rdptr += dump_len;
200 rdlen -= dump_len;
201 }
202}
203
d6f89d4b
GS
204/*
205 * Check the necessity for FPGA bitstream upload, because another upload
206 * would take some 600ms which is undesirable after program startup. Try
207 * to access some FPGA registers and check the values' plausibility. The
208 * check should fail on the safe side, request another upload when in
209 * doubt. A positive response (the request to continue operation with the
210 * currently active bitstream) should be conservative. Accessing multiple
211 * registers is considered cheap compared to the cost of bitstream upload.
212 *
213 * It helps though that both the vendor software and the sigrok driver
214 * use the same bundle of MCU firmware and FPGA bitstream for any of the
215 * supported models. We don't expect to successfully communicate to the
216 * device yet disagree on its protocol. Ideally we would access version
217 * identifying registers for improved robustness, but are not aware of
218 * any. A bitstream reload can always be forced by a power cycle.
219 */
220static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
221{
222 uint8_t init_rsp;
3ab60908 223 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
d6f89d4b
GS
224 int ret;
225 uint16_t run_state;
226 uint8_t pwm_en;
227 size_t read_len;
d6f89d4b
GS
228 const uint8_t *rdptr;
229
230 sr_dbg("Checking operation of the FPGA bitstream.");
33020165 231 la2016_dump_fpga_registers(sdi, "bitstream check", 0, 0);
d6f89d4b 232
852c7d14 233 init_rsp = ~0;
d6f89d4b
GS
234 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
235 if (ret != SR_OK || init_rsp != 0) {
236 sr_dbg("FPGA init query failed, or unexpected response.");
237 return SR_ERR_IO;
238 }
239
240 read_len = sizeof(run_state);
241 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
242 if (ret != SR_OK) {
243 sr_dbg("FPGA register access failed (run state).");
244 return SR_ERR_IO;
245 }
246 rdptr = buff;
247 run_state = read_u16le_inc(&rdptr);
248 sr_spew("FPGA register: run state 0x%04x.", run_state);
249 if (run_state && (run_state & 0x3) != 0x1) {
250 sr_dbg("Unexpected FPGA register content (run state).");
251 return SR_ERR_DATA;
252 }
253 if (run_state && (run_state & ~0xf) != 0x85e0) {
254 sr_dbg("Unexpected FPGA register content (run state).");
255 return SR_ERR_DATA;
256 }
257
258 read_len = sizeof(pwm_en);
259 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
260 if (ret != SR_OK) {
261 sr_dbg("FPGA register access failed (PWM enable).");
262 return SR_ERR_IO;
263 }
264 rdptr = buff;
265 pwm_en = read_u8_inc(&rdptr);
266 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
267 if ((pwm_en & 0x3) != 0x0) {
268 sr_dbg("Unexpected FPGA register content (PWM enable).");
269 return SR_ERR_DATA;
270 }
271
272 sr_info("Could re-use current FPGA bitstream. No upload required.");
273 return SR_OK;
274}
275
1ed93110
GS
276static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
277 const char *bitstream_fname)
f2cd2deb
FS
278{
279 struct drv_context *drvc;
280 struct sr_usb_dev_inst *usb;
281 struct sr_resource bitstream;
b0d0131e 282 uint32_t bitstream_size;
c3d40037
HK
283 uint8_t buffer[sizeof(uint32_t)];
284 uint8_t *wrptr;
f2cd2deb 285 uint8_t block[4096];
3f48ab02
FS
286 int len, act_len;
287 unsigned int pos;
f2cd2deb 288 int ret;
b0d0131e 289 unsigned int zero_pad_to;
f2cd2deb
FS
290
291 drvc = sdi->driver->context;
292 usb = sdi->conn;
293
9de389b1 294 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 295
411ad77c
GS
296 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
297 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 298 if (ret != SR_OK) {
91f73872 299 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
300 return ret;
301 }
302
b0d0131e 303 bitstream_size = (uint32_t)bitstream.size;
c3d40037 304 wrptr = buffer;
b0d0131e 305 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
306 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
307 if (ret != SR_OK) {
91f73872 308 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
309 sr_resource_close(drvc->sr_ctx, &bitstream);
310 return ret;
311 }
b0d0131e
GS
312 zero_pad_to = bitstream_size;
313 zero_pad_to += LA2016_EP2_PADDING - 1;
314 zero_pad_to /= LA2016_EP2_PADDING;
315 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
316
317 pos = 0;
318 while (1) {
3f48ab02 319 if (pos < bitstream.size) {
411ad77c
GS
320 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
321 block, sizeof(block));
3f48ab02 322 if (len < 0) {
91f73872 323 sr_err("Cannot read FPGA bitstream.");
3f48ab02 324 sr_resource_close(drvc->sr_ctx, &bitstream);
286b3e13 325 return SR_ERR_IO;
3f48ab02
FS
326 }
327 } else {
96dc954e 328 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
329 len = zero_pad_to - pos;
330 if ((unsigned)len > sizeof(block))
331 len = sizeof(block);
332 memset(&block, 0, len);
f2cd2deb
FS
333 }
334 if (len == 0)
335 break;
336
852c7d14 337 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 338 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 339 if (ret != 0) {
91f73872
GS
340 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
341 pos, (int)len, libusb_error_name(ret));
286b3e13 342 ret = SR_ERR_IO;
f2cd2deb
FS
343 break;
344 }
345 if (act_len != len) {
91f73872
GS
346 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
347 pos, (int)len, act_len);
286b3e13 348 ret = SR_ERR_IO;
f2cd2deb
FS
349 break;
350 }
351 pos += len;
352 }
353 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 354 if (ret != SR_OK)
f2cd2deb 355 return ret;
91f73872
GS
356 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
357 bitstream.size);
f2cd2deb 358
d6f89d4b
GS
359 return SR_OK;
360}
361
362static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
363{
364 int ret;
411ad77c 365 uint8_t resp;
d6f89d4b 366
411ad77c
GS
367 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
368 if (ret != SR_OK) {
91f73872 369 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
370 return ret;
371 }
411ad77c 372 if (resp != 0) {
91f73872 373 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 374 resp);
286b3e13 375 return SR_ERR_DATA;
3f48ab02 376 }
852c7d14 377 g_usleep(30 * 1000);
f2cd2deb 378
411ad77c
GS
379 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
380 if (ret != SR_OK) {
91f73872 381 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
382 return ret;
383 }
852c7d14 384 g_usleep(40 * 1000);
d6f89d4b 385
f2cd2deb
FS
386 return SR_OK;
387}
388
389static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
390{
f2cd2deb 391 int ret;
1ed93110 392 uint16_t duty_R79, duty_R56;
3ab60908 393 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
f2ad79d1
KG
394 uint8_t *wrptr;
395
96dc954e 396 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
397 if (voltage > LA2016_THR_VOLTAGE_MAX) {
398 voltage = LA2016_THR_VOLTAGE_MAX;
399 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
400 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
401 }
402
403 /*
96dc954e
GS
404 * Two PWM output channels feed one DAC which generates a bias
405 * voltage, which offsets the input probe's voltage level, and
406 * in combination with the FPGA pins' fixed threshold result in
407 * a programmable input threshold from the user's perspective.
408 * The PWM outputs can be seen on R79 and R56 respectively, the
409 * frequency is 100kHz and the duty cycle varies. The R79 PWM
410 * uses three discrete settings. The R56 PWM varies with desired
411 * thresholds and depends on the R79 PWM configuration. See the
412 * schematics comments which discuss the formulae.
f2ad79d1
KG
413 */
414 if (voltage >= 2.9) {
96dc954e 415 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 416 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 417 } else if (voltage > -0.4) {
96dc954e 418 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 419 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
420 } else {
421 duty_R79 = 0x02d7; /* 72% duty cycle. */
422 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
423 }
424
96dc954e 425 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
426 if (duty_R56 < 10) {
427 duty_R56 = 10;
1ed93110 428 } else if (duty_R56 > 1100) {
f2ad79d1
KG
429 duty_R56 = 1100;
430 }
431
91f73872
GS
432 sr_dbg("Set threshold voltage %.2fV.", voltage);
433 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
434
435 wrptr = buf;
436 write_u16le_inc(&wrptr, duty_R56);
437 write_u16le_inc(&wrptr, duty_R79);
438
439 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 440 if (ret != SR_OK) {
91f73872 441 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
442 return ret;
443 }
f2cd2deb
FS
444
445 return SR_OK;
446}
447
08a49848
GS
448/*
449 * Communicates a channel's configuration to the device after the
450 * parameters may have changed. Configuration of one channel may
451 * interfere with other channels since they share FPGA registers.
452 */
453static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 454{
08a49848 455 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 456
f2cd2deb 457 struct dev_context *devc;
08a49848
GS
458 struct pwm_setting *params;
459 uint8_t reg_base;
460 double val_f;
461 uint32_t val_u;
462 uint32_t period, duty;
463 size_t ch;
f2cd2deb 464 int ret;
08a49848
GS
465 uint8_t enable_all, enable_cfg, reg_val;
466 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 467 uint8_t *wrptr;
f2cd2deb
FS
468
469 devc = sdi->priv;
08a49848
GS
470 if (idx >= ARRAY_SIZE(devc->pwm_setting))
471 return SR_ERR_ARG;
472 params = &devc->pwm_setting[idx];
473 if (idx >= ARRAY_SIZE(reg_bases))
474 return SR_ERR_ARG;
475 reg_base = reg_bases[idx];
f2cd2deb 476
08a49848
GS
477 /*
478 * Map application's specs to hardware register values. Do math
479 * in floating point initially, but convert to u32 eventually.
480 */
481 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
482 idx, params->enabled ? 1 : 0, params->freq, params->duty);
483 val_f = PWM_CLOCK;
484 val_f /= params->freq;
485 val_u = val_f;
486 period = val_u;
487 val_f = period;
488 val_f *= params->duty;
489 val_f /= 100.0;
490 val_f += 0.5;
491 val_u = val_f;
492 duty = val_u;
493 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
494 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
495
496 /* Get the "enabled" state of all supported PWM channels. */
497 enable_all = 0;
498 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
499 if (!devc->pwm_setting[ch].enabled)
500 continue;
501 enable_all |= 1U << ch;
f2cd2deb 502 }
08a49848
GS
503 enable_cfg = 1U << idx;
504 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
505 enable_all, enable_cfg);
f2cd2deb 506
08a49848
GS
507 /*
508 * Disable the to-get-configured channel before its parameters
509 * will change. Or disable and exit when the channel is supposed
510 * to get turned off.
511 */
512 sr_spew("PWM config, disabling before param change.");
513 reg_val = enable_all & ~enable_cfg;
514 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
515 &reg_val, sizeof(reg_val));
f2cd2deb 516 if (ret != SR_OK) {
08a49848 517 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
518 return ret;
519 }
08a49848
GS
520 if (!params->enabled)
521 return SR_OK;
86d77b75 522
08a49848
GS
523 /* Write register values to device. */
524 sr_spew("PWM config, sending new parameters.");
525 wrptr = buf;
526 write_u32le_inc(&wrptr, period);
527 write_u32le_inc(&wrptr, duty);
528 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
529 if (ret != SR_OK) {
530 sr_err("Cannot change PWM parameters.");
f2cd2deb 531 return ret;
08a49848 532 }
f2cd2deb 533
08a49848
GS
534 /* Enable configured channel after write completion. */
535 sr_spew("PWM config, enabling after param change.");
536 reg_val = enable_all | enable_cfg;
537 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
538 &reg_val, sizeof(reg_val));
539 if (ret != SR_OK) {
540 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 541 return ret;
08a49848 542 }
f2cd2deb
FS
543
544 return SR_OK;
545}
546
0fbb464b
GS
547/*
548 * Determine the number of enabled channels as well as their bitmask
549 * representation. Derive data here which later simplifies processing
550 * of raw capture data memory content in streaming mode.
551 */
552static void la2016_prepare_stream(const struct sr_dev_inst *sdi)
ea436ba7 553{
0fbb464b
GS
554 struct dev_context *devc;
555 struct stream_state_t *stream;
556 size_t channel_mask;
ea436ba7
GS
557 GSList *l;
558 struct sr_channel *ch;
559
0fbb464b
GS
560 devc = sdi->priv;
561 stream = &devc->stream;
562 memset(stream, 0, sizeof(*stream));
563
564 stream->enabled_count = 0;
ea436ba7
GS
565 for (l = sdi->channels; l; l = l->next) {
566 ch = l->data;
567 if (ch->type != SR_CHANNEL_LOGIC)
568 continue;
569 if (!ch->enabled)
570 continue;
0fbb464b
GS
571 channel_mask = 1UL << ch->index;
572 stream->enabled_mask |= channel_mask;
573 stream->channel_masks[stream->enabled_count++] = channel_mask;
ea436ba7 574 }
0fbb464b 575 stream->channel_index = 0;
ea436ba7
GS
576}
577
0fbb464b
GS
578/*
579 * This routine configures the set of enabled channels, as well as the
580 * trigger condition (if one was specified). Also prepares the capture
581 * data processing in stream mode, where the memory layout dramatically
582 * differs from normal mode.
583 */
f2cd2deb
FS
584static int set_trigger_config(const struct sr_dev_inst *sdi)
585{
586 struct dev_context *devc;
587 struct sr_trigger *trigger;
edb13f41 588 struct trigger_cfg {
972d191b
GS
589 uint32_t channels; /* Actually: Enabled channels? */
590 uint32_t enabled; /* Actually: Triggering channels? */
edb13f41
GS
591 uint32_t level;
592 uint32_t high_or_falling;
593 } cfg;
f2cd2deb
FS
594 GSList *stages;
595 GSList *channel;
596 struct sr_trigger_stage *stage1;
597 struct sr_trigger_match *match;
4276ca94 598 uint32_t ch_mask;
f2cd2deb 599 int ret;
3ab60908 600 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
c3d40037 601 uint8_t *wrptr;
f2cd2deb
FS
602
603 devc = sdi->priv;
f2cd2deb 604
0fbb464b 605 la2016_prepare_stream(sdi);
f2cd2deb 606
0fbb464b
GS
607 memset(&cfg, 0, sizeof(cfg));
608 cfg.channels = devc->stream.enabled_mask;
609 if (!cfg.channels) {
610 sr_err("Need at least one enabled logic channel.");
611 return SR_ERR_ARG;
612 }
613 trigger = sr_session_trigger_get(sdi->session);
f2cd2deb
FS
614 if (trigger && trigger->stages) {
615 stages = trigger->stages;
616 stage1 = stages->data;
617 if (stages->next) {
618 sr_err("Only one trigger stage supported for now.");
286b3e13 619 return SR_ERR_ARG;
f2cd2deb
FS
620 }
621 channel = stage1->matches;
622 while (channel) {
623 match = channel->data;
cf057ac4 624 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
625
626 switch (match->match) {
627 case SR_TRIGGER_ZERO:
628 cfg.level |= ch_mask;
629 cfg.high_or_falling &= ~ch_mask;
630 break;
631 case SR_TRIGGER_ONE:
632 cfg.level |= ch_mask;
633 cfg.high_or_falling |= ch_mask;
634 break;
635 case SR_TRIGGER_RISING:
636 if ((cfg.enabled & ~cfg.level)) {
91f73872 637 sr_err("Device only supports one edge trigger.");
286b3e13 638 return SR_ERR_ARG;
f2cd2deb
FS
639 }
640 cfg.level &= ~ch_mask;
641 cfg.high_or_falling &= ~ch_mask;
642 break;
643 case SR_TRIGGER_FALLING:
644 if ((cfg.enabled & ~cfg.level)) {
91f73872 645 sr_err("Device only supports one edge trigger.");
286b3e13 646 return SR_ERR_ARG;
f2cd2deb
FS
647 }
648 cfg.level &= ~ch_mask;
649 cfg.high_or_falling |= ch_mask;
650 break;
651 default:
91f73872 652 sr_err("Unknown trigger condition.");
286b3e13 653 return SR_ERR_ARG;
f2cd2deb
FS
654 }
655 cfg.enabled |= ch_mask;
656 channel = channel->next;
657 }
658 }
91f73872 659 sr_dbg("Set trigger config: "
972d191b 660 "enabled-channels 0x%04x, triggering-channels 0x%04x, "
91f73872
GS
661 "level-triggered 0x%04x, high/falling 0x%04x.",
662 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 663
0fbb464b
GS
664 /*
665 * Don't configure hardware trigger parameters in streaming mode
666 * or when the device lacks local memory. Yet the above dump of
667 * derived parameters from user specs is considered valueable.
668 *
669 * TODO Add support for soft triggers when hardware triggers in
670 * the device are not used or are not available at all.
671 */
672 if (!devc->model->memory_bits || devc->continuous) {
673 if (!devc->model->memory_bits)
674 sr_dbg("Device without memory. No hardware triggers.");
675 else if (devc->continuous)
676 sr_dbg("Streaming mode. No hardware triggers.");
677 cfg.enabled = 0;
678 cfg.level = 0;
679 cfg.high_or_falling = 0;
680 }
681
cf057ac4 682 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 683
c3d40037
HK
684 wrptr = buf;
685 write_u32le_inc(&wrptr, cfg.channels);
686 write_u32le_inc(&wrptr, cfg.enabled);
687 write_u32le_inc(&wrptr, cfg.level);
688 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
689 /* TODO
690 * Comment on this literal 16. Origin, meaning? Cannot be the
691 * register offset, nor the transfer length. Is it a channels
692 * count that is relevant for 16 and 32 channel models? Is it
693 * an obsolete experiment?
694 */
42f6dd55 695 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 696 if (ret != SR_OK) {
91f73872 697 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
698 return ret;
699 }
700
701 return SR_OK;
702}
703
0fbb464b
GS
704/*
705 * This routine communicates the sample configuration to the device:
706 * Total samples count and samplerate, pre-trigger configuration.
707 */
f2cd2deb
FS
708static int set_sample_config(const struct sr_dev_inst *sdi)
709{
710 struct dev_context *devc;
d8fbfcd9 711 uint64_t min_samplerate, eff_samplerate;
0fbb464b 712 uint64_t stream_bandwidth;
adab4d91 713 uint16_t divider_u16;
a38f0f5e 714 uint64_t limit_samples;
adab4d91
GS
715 uint64_t pre_trigger_samples;
716 uint64_t pre_trigger_memory;
717 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 718 uint8_t *wrptr;
adab4d91 719 int ret;
f2cd2deb
FS
720
721 devc = sdi->priv;
f2cd2deb 722
edc0b015 723 if (devc->samplerate > devc->model->samplerate) {
91f73872 724 sr_err("Too high a sample rate: %" PRIu64 ".",
edc0b015 725 devc->samplerate);
ea436ba7
GS
726 return SR_ERR_ARG;
727 }
d8fbfcd9
GS
728 min_samplerate = devc->model->samplerate;
729 min_samplerate /= 65536;
edc0b015 730 if (devc->samplerate < min_samplerate) {
ea436ba7 731 sr_err("Too low a sample rate: %" PRIu64 ".",
edc0b015 732 devc->samplerate);
ea436ba7 733 return SR_ERR_ARG;
f2cd2deb 734 }
edc0b015 735 divider_u16 = devc->model->samplerate / devc->samplerate;
d8fbfcd9 736 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 737
a38f0f5e
GS
738 ret = sr_sw_limits_get_remain(&devc->sw_limits,
739 &limit_samples, NULL, NULL, NULL);
740 if (ret != SR_OK) {
741 sr_err("Cannot get acquisition limits.");
742 return ret;
f2cd2deb 743 }
a38f0f5e 744 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
745 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
746 limit_samples);
747 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 748 }
d8fbfcd9
GS
749 if (limit_samples == 0) {
750 limit_samples = LA2016_NUM_SAMPLES_MAX;
751 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
752 limit_samples);
ea436ba7 753 }
f2cd2deb 754
adab4d91
GS
755 /*
756 * The acquisition configuration communicates "pre-trigger"
757 * specs in several formats. sigrok users provide a percentage
758 * (0-100%), which translates to a pre-trigger samples count
759 * (assuming that a total samples count limit was specified).
760 * The device supports hardware compression, which depends on
761 * slowly changing input data to be effective. Fast changing
762 * input data may occupy more space in sample memory than its
763 * uncompressed form would. This is why a third parameter can
764 * limit the amount of sample memory to use for pre-trigger
765 * data. Only the upper 24 bits of that memory size spec get
766 * communicated to the device (written to its FPGA register).
767 */
0fbb464b
GS
768 if (!devc->model->memory_bits) {
769 sr_dbg("Memory-less device, skipping pre-trigger config.");
770 pre_trigger_samples = 0;
771 pre_trigger_memory = 0;
772 } else if (devc->trigger_involved) {
d8fbfcd9
GS
773 pre_trigger_samples = limit_samples;
774 pre_trigger_samples *= devc->capture_ratio;
775 pre_trigger_samples /= 100;
776 pre_trigger_memory = devc->model->memory_bits;
777 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
778 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
779 pre_trigger_memory *= devc->capture_ratio;
780 pre_trigger_memory /= 100;
781 } else {
782 sr_dbg("No trigger setup, skipping pre-trigger config.");
0fbb464b 783 pre_trigger_samples = 0;
d8fbfcd9
GS
784 pre_trigger_memory = 0;
785 }
786 /* Ensure non-zero value after LSB shift out in HW reg. */
0fbb464b 787 if (pre_trigger_memory < 0x100)
d8fbfcd9 788 pre_trigger_memory = 0x100;
f2cd2deb 789
0fbb464b
GS
790 sr_dbg("Set sample config: %" PRIu64 "kHz (div %" PRIu16 "), %" PRIu64 " samples.",
791 eff_samplerate / SR_KHZ(1), divider_u16, limit_samples);
adab4d91
GS
792 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
793 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 794
0fbb464b
GS
795 if (devc->continuous) {
796 stream_bandwidth = eff_samplerate;
797 stream_bandwidth *= devc->stream.enabled_count;
798 sr_dbg("Streaming: channel count %zu, product %" PRIu64 ".",
799 devc->stream.enabled_count, stream_bandwidth);
800 stream_bandwidth /= 1000 * 1000;
801 if (stream_bandwidth >= LA2016_STREAM_MBPS_MAX) {
802 sr_warn("High USB stream bandwidth: %" PRIu64 "Mbps.",
803 stream_bandwidth);
804 }
805 if (stream_bandwidth < LA2016_STREAM_PUSH_THR) {
806 sr_dbg("Streaming: low Mbps, suggest periodic flush.");
807 devc->stream.flush_period_ms = LA2016_STREAM_PUSH_IVAL;
808 }
809 }
810
b1a17c1a
GS
811 /*
812 * The acquisition configuration occupies a total of 16 bytes:
813 * - A 34bit total samples count limit (up to 10 billions) that
814 * is kept in a 40bit register.
815 * - A 34bit pre-trigger samples count limit (up to 10 billions)
816 * in another 40bit register.
817 * - A 32bit pre-trigger memory space limit (in bytes) of which
818 * the upper 24bits are kept in an FPGA register.
819 * - A 16bit clock divider which gets applied to the maximum
820 * samplerate of the device.
821 * - An 8bit register of unknown meaning. Currently always 0.
822 */
c3d40037 823 wrptr = buf;
a38f0f5e 824 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
825 write_u40le_inc(&wrptr, pre_trigger_samples);
826 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 827 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 828 write_u8_inc(&wrptr, 0);
42f6dd55 829 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 830 if (ret != SR_OK) {
91f73872 831 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
832 return ret;
833 }
834
835 return SR_OK;
836}
837
96dc954e
GS
838/*
839 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
840 * of interest:
841 * bit 0: value 1 = idle
842 * bit 1: value 1 = writing to SDRAM
843 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
844 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
845 * The meaning of other bit fields is unknown.
7601dca7 846 *
96dc954e 847 * Typical values in order of appearance during execution:
b711fd8e
GS
848 * 0x85e1: idle, no acquisition pending
849 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
850 * "In idle state." Takes precedence over all others.
96dc954e
GS
851 * 0x85e2: pre-sampling, samples before the trigger position,
852 * when capture ratio > 0%
b711fd8e
GS
853 * IDLE clear, TRGD clear, POST clear; DRAM don't care
854 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
855 * 0x85ea: pre-sampling complete, now waiting for the trigger
856 * (whilst sampling continuously)
b711fd8e
GS
857 * IDLE clear, TRGD clear, POST set; DRAM don't care
858 * "Post set thus after pre, not triggered yet"
96dc954e 859 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
860 * IDLE clear, TRGD set, POST set; DRAM don't care
861 * "Triggered and in post, not idle yet."
96dc954e 862 * 0x85ed: idle
b711fd8e
GS
863 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
864 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 865 */
b711fd8e
GS
866static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
867static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
868static const uint16_t runstate_mask_step =
869 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
870static const uint16_t runstate_patt_pre_trig = 0;
871static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
872static const uint16_t runstate_patt_post_trig =
873 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
874
f2cd2deb
FS
875static uint16_t run_state(const struct sr_dev_inst *sdi)
876{
21d68fd9
GS
877 static uint16_t previous_state;
878
f2cd2deb 879 int ret;
21d68fd9 880 uint16_t state;
3ab60908 881 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
21d68fd9
GS
882 const uint8_t *rdptr;
883 const char *label;
f2cd2deb 884
411ad77c
GS
885 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
886 if (ret != SR_OK) {
91f73872 887 sr_err("Cannot read run state.");
f2cd2deb
FS
888 return ret;
889 }
21d68fd9
GS
890 rdptr = buff;
891 state = read_u16le_inc(&rdptr);
7601dca7 892
96dc954e
GS
893 /*
894 * Avoid flooding the log, only dump values as they change.
895 * The routine is called about every 50ms.
7601dca7 896 */
b711fd8e
GS
897 if (state == previous_state)
898 return state;
899
900 previous_state = state;
901 label = NULL;
902 if ((state & runstate_mask_idle) == runstate_patt_idle)
903 label = "idle";
904 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
905 label = "pre-trigger sampling";
906 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
907 label = "sampling, waiting for trigger";
908 if ((state & runstate_mask_step) == runstate_patt_post_trig)
909 label = "post-trigger sampling";
910 if (label && *label)
911 sr_dbg("Run state: 0x%04x (%s).", state, label);
912 else
913 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
914
915 return state;
916}
917
7a38cdf7 918static gboolean la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
919{
920 uint16_t state;
921
922 state = run_state(sdi);
b711fd8e 923 if ((state & runstate_mask_idle) == runstate_patt_idle)
7a38cdf7 924 return TRUE;
c34f4a89 925
7a38cdf7 926 return FALSE;
c34f4a89
GS
927}
928
929static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
930{
931 int ret;
932
411ad77c
GS
933 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
934 if (ret != SR_OK) {
c34f4a89 935 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
936 return ret;
937 }
938
939 return SR_OK;
940}
941
942static int get_capture_info(const struct sr_dev_inst *sdi)
943{
944 struct dev_context *devc;
945 int ret;
3ab60908 946 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 947 const uint8_t *rdptr;
f2cd2deb
FS
948
949 devc = sdi->priv;
950
411ad77c
GS
951 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
952 if (ret != SR_OK) {
91f73872 953 sr_err("Cannot read capture info.");
f2cd2deb
FS
954 return ret;
955 }
c3d40037
HK
956
957 rdptr = buf;
958 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
959 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
960 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 961
cf057ac4 962 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
963 devc->info.n_rep_packets, devc->info.n_rep_packets,
964 devc->info.n_rep_packets_before_trigger,
965 devc->info.n_rep_packets_before_trigger,
966 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 967
038e65c1
GS
968 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
969 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
852c7d14 970 (unsigned long)devc->info.n_rep_packets,
038e65c1 971 (unsigned long)devc->packets_per_chunk);
91f73872 972 }
f2cd2deb
FS
973
974 return SR_OK;
975}
976
d466f61c 977SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
91aa0f04 978 struct sr_context *sr_ctx, libusb_device *dev, gboolean skip_upload)
f2cd2deb 979{
d466f61c 980 struct dev_context *devc;
91aa0f04
GS
981 uint16_t pid;
982 char *fw;
d466f61c
GS
983 int ret;
984
985 devc = sdi ? sdi->priv : NULL;
91aa0f04
GS
986 if (!devc || !devc->usb_pid)
987 return SR_ERR_ARG;
988 pid = devc->usb_pid;
d466f61c 989
91aa0f04
GS
990 fw = g_strdup_printf(MCU_FWFILE_FMT, pid);
991 sr_info("USB PID %04hx, MCU firmware '%s'.", pid, fw);
992 devc->mcu_firmware = g_strdup(fw);
d466f61c 993
91aa0f04
GS
994 if (skip_upload)
995 ret = SR_OK;
996 else
997 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw);
998 g_free(fw);
999 if (ret != SR_OK)
d466f61c 1000 return ret;
d466f61c
GS
1001
1002 return SR_OK;
f2cd2deb
FS
1003}
1004
1291ea43
GS
1005static void LIBUSB_CALL receive_transfer(struct libusb_transfer *xfer);
1006
796ce0bf
GS
1007static void la2016_usbxfer_release_cb(gpointer p)
1008{
1009 struct libusb_transfer *xfer;
1010
1011 xfer = p;
1012 g_free(xfer->buffer);
1013 libusb_free_transfer(xfer);
1014}
1015
1291ea43
GS
1016static int la2016_usbxfer_release(const struct sr_dev_inst *sdi)
1017{
1018 struct dev_context *devc;
1291ea43
GS
1019
1020 devc = sdi ? sdi->priv : NULL;
1021 if (!devc)
1022 return SR_ERR_ARG;
1023
1024 /* Release all USB transfers. */
796ce0bf
GS
1025 g_slist_free_full(devc->transfers, la2016_usbxfer_release_cb);
1026 devc->transfers = NULL;
1291ea43
GS
1027
1028 return SR_OK;
1029}
1030
1031static int la2016_usbxfer_allocate(const struct sr_dev_inst *sdi)
1032{
1033 struct dev_context *devc;
796ce0bf 1034 size_t bufsize, xfercount;
1291ea43
GS
1035 uint8_t *buffer;
1036 struct libusb_transfer *xfer;
1037
1038 devc = sdi ? sdi->priv : NULL;
1039 if (!devc)
1040 return SR_ERR_ARG;
1041
1042 /* Transfers were already allocated before? */
796ce0bf 1043 if (devc->transfers)
1291ea43
GS
1044 return SR_OK;
1045
1046 /*
1047 * Allocate all USB transfers and their buffers. Arrange for a
1048 * buffer size which is within the device's capabilities, and
1049 * is a multiple of the USB endpoint's size, to make use of the
1050 * RAW_IO performance feature.
1051 *
1052 * Implementation detail: The LA2016_USB_BUFSZ value happens
1053 * to match all those constraints. No additional arithmetics is
1054 * required in this location.
1055 */
1056 bufsize = LA2016_USB_BUFSZ;
796ce0bf
GS
1057 xfercount = LA2016_USB_XFER_COUNT;
1058 while (xfercount--) {
1059 buffer = g_try_malloc(bufsize);
1060 if (!buffer) {
1061 sr_err("Cannot allocate USB transfer buffer.");
1062 return SR_ERR_MALLOC;
1063 }
1064 xfer = libusb_alloc_transfer(0);
1065 if (!xfer) {
1066 sr_err("Cannot allocate USB transfer.");
1067 g_free(buffer);
1068 return SR_ERR_MALLOC;
1069 }
1070 xfer->buffer = buffer;
1071 devc->transfers = g_slist_append(devc->transfers, xfer);
1291ea43 1072 }
1291ea43
GS
1073 devc->transfer_bufsize = bufsize;
1074
1075 return SR_OK;
1076}
1077
1078static int la2016_usbxfer_cancel_all(const struct sr_dev_inst *sdi)
1079{
1080 struct dev_context *devc;
796ce0bf 1081 GSList *l;
1291ea43
GS
1082 struct libusb_transfer *xfer;
1083
1084 devc = sdi ? sdi->priv : NULL;
1085 if (!devc)
1086 return SR_ERR_ARG;
1087
1088 /* Unconditionally cancel the transfer. Ignore errors. */
796ce0bf
GS
1089 for (l = devc->transfers; l; l = l->next) {
1090 xfer = l->data;
1091 if (!xfer)
1092 continue;
1291ea43 1093 libusb_cancel_transfer(xfer);
796ce0bf 1094 }
1291ea43
GS
1095
1096 return SR_OK;
1097}
1098
1099static int la2016_usbxfer_resubmit(const struct sr_dev_inst *sdi,
1100 struct libusb_transfer *xfer)
1101{
1102 struct dev_context *devc;
1103 struct sr_usb_dev_inst *usb;
1104 libusb_transfer_cb_fn cb;
1105 int ret;
1106
1107 devc = sdi ? sdi->priv : NULL;
1108 usb = sdi ? sdi->conn : NULL;
1109 if (!devc || !usb)
1110 return SR_ERR_ARG;
1111
1112 if (!xfer)
1113 return SR_ERR_ARG;
1114
1115 cb = receive_transfer;
1116 libusb_fill_bulk_transfer(xfer, usb->devhdl,
1117 USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1118 xfer->buffer, devc->transfer_bufsize,
1119 cb, (void *)sdi, CAPTURE_TIMEOUT_MS);
1120 ret = libusb_submit_transfer(xfer);
1121 if (ret != 0) {
1122 sr_err("Cannot submit USB transfer: %s.",
1123 libusb_error_name(ret));
1124 return SR_ERR_IO;
1125 }
1126
1127 return SR_OK;
1128}
1129
1130static int la2016_usbxfer_submit_all(const struct sr_dev_inst *sdi)
1131{
1132 struct dev_context *devc;
796ce0bf
GS
1133 GSList *l;
1134 struct libusb_transfer *xfer;
1291ea43
GS
1135 int ret;
1136
1137 devc = sdi ? sdi->priv : NULL;
1138 if (!devc)
1139 return SR_ERR_ARG;
1140
796ce0bf
GS
1141 for (l = devc->transfers; l; l = l->next) {
1142 xfer = l->data;
1143 if (!xfer)
1144 return SR_ERR_ARG;
1145 ret = la2016_usbxfer_resubmit(sdi, xfer);
1146 if (ret != SR_OK)
1147 return ret;
1148 }
1291ea43
GS
1149
1150 return SR_OK;
1151}
1152
9270f8f4
GS
1153SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
1154 double voltage)
f2cd2deb 1155{
0fbb464b 1156 struct dev_context *devc;
f2cd2deb
FS
1157 int ret;
1158 uint8_t cmd;
1159
0fbb464b
GS
1160 devc = sdi->priv;
1161
9270f8f4 1162 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
1163 if (ret != SR_OK)
1164 return ret;
1165
0fbb464b 1166 cmd = devc->continuous ? CAPTMODE_STREAM : CAPTMODE_TO_RAM;
411ad77c
GS
1167 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
1168 if (ret != SR_OK) {
91f73872 1169 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
1170 return ret;
1171 }
1172
1173 ret = set_trigger_config(sdi);
1174 if (ret != SR_OK)
1175 return ret;
1176
1177 ret = set_sample_config(sdi);
1178 if (ret != SR_OK)
1179 return ret;
1180
1181 return SR_OK;
1182}
1183
1184SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
1185{
0fbb464b 1186 struct dev_context *devc;
3ebc1cb2
GS
1187 int ret;
1188
0fbb464b
GS
1189 devc = sdi->priv;
1190
1291ea43
GS
1191 ret = la2016_usbxfer_allocate(sdi);
1192 if (ret != SR_OK)
1193 return ret;
1194
0fbb464b
GS
1195 if (devc->continuous) {
1196 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1197 if (ret != SR_OK)
1198 return ret;
1199
1200 ret = la2016_usbxfer_submit_all(sdi);
1201 if (ret != SR_OK)
1202 return ret;
1203
1204 /*
1205 * Periodic receive callback will set runmode. This
1206 * activity MUST be close to data reception, a pause
1207 * between these steps breaks the stream's operation.
1208 */
1209 } else {
1210 ret = set_run_mode(sdi, RUNMODE_RUN);
1211 if (ret != SR_OK)
1212 return ret;
1213 }
3ebc1cb2
GS
1214
1215 return SR_OK;
f2cd2deb
FS
1216}
1217
3ebc1cb2 1218static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 1219{
0fbb464b 1220 struct dev_context *devc;
3ebc1cb2
GS
1221 int ret;
1222
852c7d14 1223 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
1224 if (ret != SR_OK)
1225 return ret;
1226
0fbb464b
GS
1227 devc = sdi->priv;
1228 if (devc->continuous)
1229 devc->download_finished = TRUE;
1230
3ebc1cb2 1231 return SR_OK;
f2cd2deb
FS
1232}
1233
1234SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
1235{
3ebc1cb2 1236 int ret;
3ebc1cb2
GS
1237
1238 ret = la2016_stop_acquisition(sdi);
1239 if (ret != SR_OK)
1240 return ret;
1241
1291ea43 1242 (void)la2016_usbxfer_cancel_all(sdi);
3ebc1cb2
GS
1243
1244 return SR_OK;
f2cd2deb
FS
1245}
1246
1291ea43 1247static int la2016_start_download(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1248{
1249 struct dev_context *devc;
f2cd2deb 1250 int ret;
3ab60908 1251 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
c3d40037 1252 uint8_t *wrptr;
f2cd2deb
FS
1253
1254 devc = sdi->priv;
f2cd2deb 1255
411ad77c
GS
1256 ret = get_capture_info(sdi);
1257 if (ret != SR_OK)
f2cd2deb
FS
1258 return ret;
1259
038e65c1
GS
1260 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
1261 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
1262 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
1263 devc->n_bytes_to_read *= TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
1264 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
1265 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
1266
91f73872 1267 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 1268 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 1269
411ad77c
GS
1270 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1271 if (ret != SR_OK) {
91f73872 1272 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
1273 return ret;
1274 }
91f73872
GS
1275 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
1276 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
1277 wrptr = wrbuf;
1278 write_u32le_inc(&wrptr, devc->read_pos);
1279 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
1280 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
1281 if (ret != SR_OK) {
91f73872 1282 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
1283 return ret;
1284 }
1291ea43
GS
1285
1286 ret = la2016_usbxfer_submit_all(sdi);
411ad77c 1287 if (ret != SR_OK) {
1291ea43 1288 sr_err("Cannot submit USB bulk transfers.");
f2cd2deb
FS
1289 return ret;
1290 }
1291
1291ea43
GS
1292 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1293 if (ret != SR_OK) {
1294 sr_err("Cannot start USB bulk transfers.");
1295 return ret;
f2cd2deb
FS
1296 }
1297
1298 return SR_OK;
1299}
1300
480efba2
GS
1301/*
1302 * A chunk (received via USB) contains a number of transfers (USB length
1303 * divided by 16) which contain a number of packets (5 per transfer) which
1304 * contain a number of samples (8bit repeat count per 16bit sample data).
1305 */
dfac9592 1306static void send_chunk(struct sr_dev_inst *sdi,
c7d14e31 1307 const uint8_t *data_buffer, size_t data_length)
dfac9592
GS
1308{
1309 struct dev_context *devc;
c7d14e31 1310 size_t num_xfers, num_pkts;
dfac9592 1311 const uint8_t *rp;
4276ca94 1312 uint32_t sample_value;
480efba2
GS
1313 size_t repetitions;
1314 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1315
1316 devc = sdi->priv;
1317
a38f0f5e
GS
1318 /* Ignore incoming USB data after complete sample data download. */
1319 if (devc->download_finished)
1320 return;
dfac9592 1321
cf057ac4 1322 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1323 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1324 devc->trigger_marked = TRUE;
dfac9592
GS
1325 }
1326
c7d14e31
GS
1327 /*
1328 * Adjust the number of remaining bytes to read from the device
1329 * before the processing of the currently received chunk affects
1330 * the variable which holds the number of received bytes.
1331 */
1332 if (data_length > devc->n_bytes_to_read)
1333 devc->n_bytes_to_read = 0;
1334 else
1335 devc->n_bytes_to_read -= data_length;
1336
1337 /* Process the received chunk of capture data. */
4276ca94 1338 sample_value = 0;
c7d14e31
GS
1339 rp = data_buffer;
1340 num_xfers = data_length / TRANSFER_PACKET_LENGTH;
480efba2 1341 while (num_xfers--) {
038e65c1 1342 num_pkts = devc->packets_per_chunk;
480efba2 1343 while (num_pkts--) {
dfac9592 1344
4276ca94
GS
1345 /* TODO Verify 32channel layout. */
1346 if (devc->model->channel_count == 32)
1347 sample_value = read_u32le_inc(&rp);
1348 else if (devc->model->channel_count == 16)
1349 sample_value = read_u16le_inc(&rp);
dfac9592 1350 repetitions = read_u8_inc(&rp);
dfac9592 1351
dfac9592 1352 devc->total_samples += repetitions;
480efba2 1353
4276ca94 1354 write_u32le(sample_buff, sample_value);
a38f0f5e
GS
1355 feed_queue_logic_submit(devc->feed_queue,
1356 sample_buff, repetitions);
1357 sr_sw_limits_update_samples_read(&devc->sw_limits,
1358 repetitions);
480efba2 1359
cf057ac4
GS
1360 if (devc->trigger_involved && !devc->trigger_marked) {
1361 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1362 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1363 devc->trigger_marked = TRUE;
91f73872 1364 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110 1365 devc->total_samples,
edc0b015 1366 (double)devc->total_samples / devc->samplerate * 1e3);
dfac9592
GS
1367 }
1368 }
1369 }
1370 (void)read_u8_inc(&rp); /* Skip sequence number. */
1371 }
a38f0f5e 1372
c7d14e31
GS
1373 /*
1374 * Check for several conditions which shall terminate the
1375 * capture data download: When the amount of capture data in
1376 * the device is exhausted. When the user specified samples
1377 * count limit is reached.
1378 */
1379 if (!devc->n_bytes_to_read) {
1380 devc->download_finished = TRUE;
1381 } else {
1382 sr_dbg("%" PRIu32 " more bytes to download from the device.",
1383 devc->n_bytes_to_read);
1384 }
a38f0f5e
GS
1385 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1386 sr_dbg("Acquisition limit reached.");
1387 devc->download_finished = TRUE;
1388 }
1389 if (devc->download_finished) {
1390 sr_dbg("Download finished, flushing session feed queue.");
1391 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1392 }
a38f0f5e 1393 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1394}
1395
0fbb464b
GS
1396/*
1397 * Process a chunk of capture data in streaming mode. The memory layout
1398 * is rather different from "normal mode" (see the send_chunk() routine
1399 * above). In streaming mode data is not compressed, and memory cells
1400 * neither contain raw sampled pin values at a given point in time. The
1401 * memory content needs transformation.
1402 * - The memory content can be seen as a sequence of memory cells.
1403 * - Each cell contains samples that correspond to the same channel.
1404 * The next cell contains samples for the next channel, etc.
1405 * - Only enabled channels occupy memory cells. Disabled channels are
1406 * not part of the capture data memory layout.
1407 * - The LSB bit position in a cell is the sample which was taken first
1408 * for this channel. Upper bit positions were taken later.
1409 *
1410 * Implementor's note: This routine is inspired by convert_sample_data()
1411 * in the https://github.com/AlexUg/sigrok implementation. Which in turn
1412 * appears to have been derived from the saleae-logic16 sigrok driver.
1413 * The code is phrased conservatively to verify the layout as discussed
1414 * above, performance was not a priority. Operation was verified with an
1415 * LA2016 device. The memory layout of 32 channel models is yet to get
1416 * determined.
1417 */
1418static void stream_data(struct sr_dev_inst *sdi,
1419 const uint8_t *data_buffer, size_t data_length)
1420{
1421 struct dev_context *devc;
1422 struct stream_state_t *stream;
1423 size_t bit_count;
1424 const uint8_t *rp;
1425 uint32_t sample_value;
1426 uint8_t sample_buff[sizeof(sample_value)];
1427 size_t bit_idx;
1428 uint32_t ch_mask;
1429
1430 devc = sdi->priv;
1431 stream = &devc->stream;
1432
1433 /* Ignore incoming USB data after complete sample data download. */
1434 if (devc->download_finished)
1435 return;
1436 sr_dbg("Stream mode, got another chunk: %p, length %zu.",
1437 data_buffer, data_length);
1438
1439 /* TODO Add soft trigger support when in stream mode? */
1440
1441 /*
1442 * TODO Are memory cells always as wide as the channel count?
1443 * Are they always 16bits wide? Verify for 32 channel devices.
1444 */
1445 bit_count = devc->model->channel_count;
1446 if (bit_count == 32) {
1447 data_length /= sizeof(uint32_t);
1448 } else if (bit_count == 16) {
1449 data_length /= sizeof(uint16_t);
1450 } else {
1451 /*
1452 * Unhandled case. Acquisition should not start.
1453 * The statement silences the compiler.
1454 */
1455 return;
1456 }
1457 rp = data_buffer;
1458 sample_value = 0;
1459 while (data_length--) {
1460 /* Get another entity. */
1461 if (bit_count == 32)
1462 sample_value = read_u32le_inc(&rp);
1463 else if (bit_count == 16)
1464 sample_value = read_u16le_inc(&rp);
1465
1466 /* Map the entity's bits to a channel's samples. */
1467 ch_mask = stream->channel_masks[stream->channel_index];
1468 for (bit_idx = 0; bit_idx < bit_count; bit_idx++) {
1469 if (sample_value & (1UL << bit_idx))
1470 stream->sample_data[bit_idx] |= ch_mask;
1471 }
1472
1473 /*
1474 * Advance to the next channel. Submit a block of
1475 * samples when all channels' data was seen.
1476 */
1477 stream->channel_index++;
1478 if (stream->channel_index != stream->enabled_count)
1479 continue;
1480 for (bit_idx = 0; bit_idx < bit_count; bit_idx++) {
1481 sample_value = stream->sample_data[bit_idx];
1482 write_u32le(sample_buff, sample_value);
1483 feed_queue_logic_submit(devc->feed_queue, sample_buff, 1);
1484 }
1485 sr_sw_limits_update_samples_read(&devc->sw_limits, bit_count);
1486 devc->total_samples += bit_count;
1487 memset(stream->sample_data, 0, sizeof(stream->sample_data));
1488 stream->channel_index = 0;
1489 }
1490
1491 /*
1492 * Need we count empty or failed USB transfers? This version
1493 * doesn't, assumes that timeouts are perfectly legal because
1494 * transfers are started early, and slow samplerates or trigger
1495 * support in hardware are plausible causes for empty transfers.
1496 *
1497 * TODO Maybe a good condition would be (rather large) a timeout
1498 * after a previous capture data chunk was seen? So that stalled
1499 * streaming gets detected which _is_ an exceptional condition.
1500 * We have observed these when "runmode" is set early but bulk
1501 * transfers start late with a pause after setting the runmode.
1502 */
1503 if (sr_sw_limits_check(&devc->sw_limits)) {
1504 sr_dbg("Acquisition end reached (sw limits).");
1505 devc->download_finished = TRUE;
1506 }
1507 if (devc->download_finished) {
1508 sr_dbg("Stream receive done, flushing session feed queue.");
1509 feed_queue_logic_flush(devc->feed_queue);
1510 }
1511 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
1512}
1513
dfac9592
GS
1514static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1515{
1516 struct sr_dev_inst *sdi;
1517 struct dev_context *devc;
462a2f0a 1518 gboolean was_cancelled, device_gone;
dfac9592
GS
1519 int ret;
1520
1521 sdi = transfer->user_data;
1522 devc = sdi->priv;
dfac9592 1523
1291ea43 1524 was_cancelled = transfer->status == LIBUSB_TRANSFER_CANCELLED;
462a2f0a 1525 device_gone = transfer->status == LIBUSB_TRANSFER_NO_DEVICE;
dfac9592 1526 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1527 libusb_error_name(transfer->status), transfer->actual_length);
462a2f0a
GS
1528 if (device_gone) {
1529 sr_warn("Lost communication to USB device.");
1530 devc->download_finished = TRUE;
1531 return;
1532 }
1533
a38f0f5e
GS
1534 /*
1535 * Implementation detail: A USB transfer timeout is not fatal
1536 * here. We just process whatever was received, empty input is
1537 * perfectly acceptable. Reaching (or exceeding) the sw limits
1538 * or exhausting the device's captured data will complete the
1539 * sample data download.
1540 */
0fbb464b
GS
1541 if (devc->continuous)
1542 stream_data(sdi, transfer->buffer, transfer->actual_length);
1543 else
1544 send_chunk(sdi, transfer->buffer, transfer->actual_length);
c7d14e31 1545
1291ea43
GS
1546 /*
1547 * Re-submit completed transfers (regardless of timeout or
1548 * data reception), unless the transfer was cancelled when
1549 * the acquisition was terminated or has completed.
1550 */
1551 if (!was_cancelled && !devc->download_finished) {
1552 ret = la2016_usbxfer_resubmit(sdi, transfer);
1553 if (ret == SR_OK)
dfac9592 1554 return;
c7d14e31 1555 devc->download_finished = TRUE;
dfac9592 1556 }
dfac9592
GS
1557}
1558
1559SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1560{
1561 const struct sr_dev_inst *sdi;
1562 struct dev_context *devc;
1563 struct drv_context *drvc;
1564 struct timeval tv;
a38f0f5e 1565 int ret;
dfac9592
GS
1566
1567 (void)fd;
1568 (void)revents;
1569
1570 sdi = cb_data;
1571 devc = sdi->priv;
1572 drvc = sdi->driver->context;
1573
0fbb464b
GS
1574 /* Arrange for the start of stream mode when requested. */
1575 if (devc->continuous && !devc->frame_begin_sent) {
1576 sr_dbg("First receive callback in stream mode.");
1577 devc->download_finished = FALSE;
1578 devc->trigger_marked = FALSE;
1579 devc->total_samples = 0;
1580
1581 std_session_send_df_frame_begin(sdi);
1582 devc->frame_begin_sent = TRUE;
1583
1584 ret = set_run_mode(sdi, RUNMODE_RUN);
1585 if (ret != SR_OK) {
1586 sr_err("Cannot set 'runmode' to 'run'.");
1587 return FALSE;
1588 }
1589
1590 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1591 if (ret != SR_OK) {
1592 sr_err("Cannot start USB bulk transfers.");
1593 return FALSE;
1594 }
1595 sr_dbg("Stream data reception initiated.");
1596 }
1597
a38f0f5e
GS
1598 /*
1599 * Wait for the acquisition to complete in hardware.
1600 * Periodically check a potentially configured msecs timeout.
1601 */
0fbb464b 1602 if (!devc->continuous && !devc->completion_seen) {
cf057ac4 1603 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1604 if (sr_sw_limits_check(&devc->sw_limits)) {
1605 devc->sw_limits.limit_msec = 0;
1606 sr_dbg("Limit reached. Stopping acquisition.");
1607 la2016_stop_acquisition(sdi);
1608 }
96dc954e 1609 /* Not yet ready for sample data download. */
dfac9592
GS
1610 return TRUE;
1611 }
a38f0f5e
GS
1612 sr_dbg("Acquisition completion seen (hardware).");
1613 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1614 devc->completion_seen = TRUE;
1615 devc->download_finished = FALSE;
1616 devc->trigger_marked = FALSE;
dfac9592 1617 devc->total_samples = 0;
a38f0f5e 1618
33020165
GS
1619 la2016_dump_fpga_registers(sdi, "acquisition complete", 0, 0);
1620
a38f0f5e
GS
1621 /* Initiate the download of acquired sample data. */
1622 std_session_send_df_frame_begin(sdi);
96a405ab 1623 devc->frame_begin_sent = TRUE;
1291ea43 1624 ret = la2016_start_download(sdi);
a38f0f5e 1625 if (ret != SR_OK) {
91f73872 1626 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1627 return FALSE;
1628 }
91f73872 1629 sr_dbg("Acquisition data download started.");
dfac9592
GS
1630
1631 return TRUE;
1632 }
1633
a38f0f5e 1634 /* Handle USB reception. Drives sample data download. */
1291ea43 1635 memset(&tv, 0, sizeof(tv));
dfac9592
GS
1636 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1637
0fbb464b
GS
1638 /*
1639 * Periodically flush acquisition data in streaming mode.
1640 * Without this nudge, previously received and accumulated data
1641 * keeps sitting in queues and is not seen by applications.
1642 */
1643 if (devc->continuous && devc->stream.flush_period_ms) {
1644 uint64_t now, elapsed;
1645 now = g_get_monotonic_time();
1646 if (!devc->stream.last_flushed)
1647 devc->stream.last_flushed = now;
1648 elapsed = now - devc->stream.last_flushed;
1649 elapsed /= 1000;
1650 if (elapsed >= devc->stream.flush_period_ms) {
1651 sr_dbg("Stream mode, flushing.");
1652 feed_queue_logic_flush(devc->feed_queue);
1653 devc->stream.last_flushed = now;
1654 }
1655 }
1656
a38f0f5e 1657 /* Postprocess completion of sample data download. */
cf057ac4 1658 if (devc->download_finished) {
91f73872 1659 sr_dbg("Download finished, post processing.");
dfac9592
GS
1660
1661 la2016_stop_acquisition(sdi);
a38f0f5e 1662 usb_source_remove(sdi->session, drvc->sr_ctx);
1291ea43
GS
1663
1664 la2016_usbxfer_cancel_all(sdi);
1665 memset(&tv, 0, sizeof(tv));
1666 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
dfac9592 1667
a38f0f5e
GS
1668 feed_queue_logic_flush(devc->feed_queue);
1669 feed_queue_logic_free(devc->feed_queue);
1670 devc->feed_queue = NULL;
96a405ab
GS
1671 if (devc->frame_begin_sent) {
1672 std_session_send_df_frame_end(sdi);
1673 devc->frame_begin_sent = FALSE;
1674 }
a38f0f5e
GS
1675 std_session_send_df_end(sdi);
1676
91f73872 1677 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1678 }
1679
1680 return TRUE;
1681}
1682
d466f61c
GS
1683SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1684 gboolean show_message)
f2cd2deb 1685{
8b172e78 1686 struct dev_context *devc;
3ab60908 1687 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
64172b16 1688 size_t rdoff, rdlen;
43d2e52f
GS
1689 const uint8_t *rdptr;
1690 uint8_t date_yy, date_mm;
1691 uint8_t dinv_yy, dinv_mm;
9de389b1 1692 uint8_t magic;
d466f61c
GS
1693 size_t model_idx;
1694 const struct kingst_model *model;
9de389b1 1695 int ret;
f2cd2deb 1696
8b172e78
KG
1697 devc = sdi->priv;
1698
96dc954e 1699 /*
43d2e52f
GS
1700 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1701 * year and month in BCD format, followed by inverted values for
1702 * consistency checks. For example bytes 20 04 df fb translate
1703 * to 2020-04. This information can help identify the vintage of
1704 * devices when unknown magic numbers are seen.
9de389b1 1705 */
64172b16
GS
1706 rdoff = 0x20;
1707 rdlen = 4 * sizeof(uint8_t);
1708 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1709 if (ret != SR_OK && !show_message) {
64172b16 1710 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1711 sr_dbg("Cannot access EEPROM.");
1712 return SR_ERR_IO;
1713 } else if (ret != SR_OK) {
64172b16 1714 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1715 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1716 } else {
64172b16
GS
1717 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1718 GString *txt;
1719 txt = sr_hexdump_new(buf, rdlen);
1720 sr_spew("Manufacture date bytes %s.", txt->str);
1721 sr_hexdump_free(txt);
1722 }
43d2e52f
GS
1723 rdptr = &buf[0];
1724 date_yy = read_u8_inc(&rdptr);
1725 date_mm = read_u8_inc(&rdptr);
1726 dinv_yy = read_u8_inc(&rdptr);
1727 dinv_mm = read_u8_inc(&rdptr);
1728 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1729 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1730 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1731 }
f2cd2deb 1732
9de389b1 1733 /*
96dc954e
GS
1734 * Several Kingst logic analyzer devices share the same USB VID
1735 * and PID. The product ID determines which MCU firmware to load.
1736 * The MCU firmware provides access to EEPROM content which then
1737 * allows to identify the device model. Which in turn determines
1738 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1739 * to get inspected.
9de389b1 1740 *
96dc954e
GS
1741 * EEPROM content for model identification is kept redundantly
1742 * in memory. The values are stored in verbatim and in inverted
1743 * form, multiple copies are kept at different offsets. Example
1744 * data:
9de389b1 1745 *
96dc954e
GS
1746 * magic 0x08
1747 * | ~magic 0xf7
1748 * | |
1749 * 08f7000008f710ef
1750 * | |
1751 * | ~magic backup
1752 * magic backup
9de389b1 1753 *
96dc954e
GS
1754 * Exclusively inspecting the magic byte appears to be sufficient,
1755 * other fields seem to be 'don't care'.
9de389b1 1756 *
96dc954e
GS
1757 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1758 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1759 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1760 * (latest v1.3.0 PCB, perhaps others)
1761 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1762 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1763 *
96dc954e
GS
1764 * When EEPROM content does not match the hardware configuration
1765 * (the board layout), the software may load but yield incorrect
1766 * results (like swapped channels). The FPGA bitstream itself
1767 * will authenticate with IC U10 and fail when its capabilities
1768 * do not match the hardware model. An LA1016 won't become a
1769 * LA2016 by faking its EEPROM content.
9de389b1 1770 */
d466f61c 1771 devc->identify_magic = 0;
64172b16
GS
1772 rdoff = 0x08;
1773 rdlen = 8 * sizeof(uint8_t);
1774 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1775 if (ret != SR_OK) {
91f73872 1776 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1777 return ret;
1778 }
64172b16
GS
1779 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1780 GString *txt;
1781 txt = sr_hexdump_new(buf, rdlen);
1782 sr_spew("EEPROM magic bytes %s.", txt->str);
1783 sr_hexdump_free(txt);
1784 }
43d2e52f 1785 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1786 /* Primary copy of magic passes complement check. */
9de389b1 1787 magic = buf[0];
64172b16 1788 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1789 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1790 /* Backup copy of magic passes complement check. */
9de389b1 1791 magic = buf[4];
64172b16 1792 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1793 } else {
1794 sr_err("Cannot find consistent device type identification.");
1795 magic = 0;
f2cd2deb 1796 }
d466f61c 1797 devc->identify_magic = magic;
9de389b1 1798
d466f61c
GS
1799 devc->model = NULL;
1800 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1801 model = &models[model_idx];
1802 if (model->magic != magic)
1803 continue;
1804 devc->model = model;
64172b16
GS
1805 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1806 model->name, model->channel_count,
1807 model->samplerate / SR_MHZ(1));
d466f61c
GS
1808 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1809 model->fpga_stem);
d466f61c 1810 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1811 break;
1812 }
d466f61c 1813 if (!devc->model) {
91f73872 1814 sr_err("Cannot identify as one of the supported models.");
286b3e13 1815 return SR_ERR_DATA;
3f48ab02 1816 }
f2cd2deb 1817
d466f61c
GS
1818 return SR_OK;
1819}
1820
6d53e949 1821SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1822{
1823 struct dev_context *devc;
1824 const char *bitstream_fn;
1825 int ret;
1826 uint16_t state;
1827
1828 devc = sdi->priv;
1829 bitstream_fn = devc ? devc->fpga_bitstream : "";
1830
1831 ret = check_fpga_bitstream(sdi);
1832 if (ret != SR_OK) {
d6f89d4b
GS
1833 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1834 if (ret != SR_OK) {
1835 sr_err("Cannot upload FPGA bitstream.");
1836 return ret;
1837 }
1838 }
1839 ret = enable_fpga_bitstream(sdi);
9de389b1 1840 if (ret != SR_OK) {
d6f89d4b 1841 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1842 return ret;
1843 }
1844
f2cd2deb 1845 state = run_state(sdi);
44947217
GS
1846 if ((state & 0xfff0) != 0x85e0) {
1847 sr_warn("Unexpected run state, want 0x85eX, got 0x%04x.", state);
9de389b1 1848 }
f2cd2deb 1849
6d53e949
GS
1850 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1851 if (ret != SR_OK) {
91f73872 1852 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1853 return ret;
1854 }
9de389b1 1855
91f73872 1856 sr_dbg("Device should be initialized.");
f2cd2deb 1857
6d53e949
GS
1858 return SR_OK;
1859}
1860
6d53e949 1861SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1862{
1863 int ret;
1864
6d53e949
GS
1865 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1866 if (ret != SR_OK) {
91f73872 1867 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1868 return ret;
1869 }
1870
1871 return SR_OK;
1872}
08a49848 1873
1291ea43
GS
1874SR_PRIV void la2016_release_resources(const struct sr_dev_inst *sdi)
1875{
1876 (void)la2016_usbxfer_release(sdi);
1877}
1878
08a49848
GS
1879SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1880{
1881 return set_pwm_config(sdi, idx);
1882}