]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: symbolic names for capture mode, trigger config comments
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
3ab60908
GS
83#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
84#define REG_UNKNOWN_30 0x30
96dc954e
GS
85#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
86#define REG_PWM1 0x70 /* Write config for user PWM1. */
87#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 88
972d191b
GS
89/* Bit patterns to write to REG_CAPT_MODE. */
90#define CAPTMODE_TO_RAM 0x00
91#define CAPTMODE_STREAM 0x01
92
852c7d14
GS
93/* Bit patterns to write to REG_RUN, setup run mode. */
94#define RUNMODE_HALT 0x00
95#define RUNMODE_RUN 0x03
96
b711fd8e
GS
97/* Bit patterns when reading from REG_RUN, get run state. */
98#define RUNSTATE_IDLE_BIT (1UL << 0)
99#define RUNSTATE_DRAM_BIT (1UL << 1)
100#define RUNSTATE_TRGD_BIT (1UL << 2)
101#define RUNSTATE_POST_BIT (1UL << 3)
102
f2cd2deb 103static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
104 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
105 void *data, uint16_t wLength)
f2cd2deb
FS
106{
107 struct sr_usb_dev_inst *usb;
108 int ret;
109
110 usb = sdi->conn;
111
411ad77c
GS
112 ret = libusb_control_transfer(usb->devhdl,
113 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
114 bRequest, wValue, wIndex, data, wLength,
115 DEFAULT_TIMEOUT_MS);
116 if (ret != wLength) {
91f73872
GS
117 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
118 wLength, bRequest, wValue, wIndex,
119 libusb_error_name(ret));
120 sr_err("Cannot read %d bytes from USB: %s.",
121 wLength, libusb_error_name(ret));
286b3e13 122 return SR_ERR_IO;
f2cd2deb
FS
123 }
124
125 return SR_OK;
126}
127
128static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
129 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
130 void *data, uint16_t wLength)
f2cd2deb
FS
131{
132 struct sr_usb_dev_inst *usb;
133 int ret;
134
135 usb = sdi->conn;
136
411ad77c
GS
137 ret = libusb_control_transfer(usb->devhdl,
138 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
139 bRequest, wValue, wIndex, data, wLength,
140 DEFAULT_TIMEOUT_MS);
141 if (ret != wLength) {
91f73872
GS
142 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
143 wLength, bRequest, wValue, wIndex,
144 libusb_error_name(ret));
145 sr_err("Cannot write %d bytes to USB: %s.",
146 wLength, libusb_error_name(ret));
286b3e13 147 return SR_ERR_IO;
f2cd2deb
FS
148 }
149
150 return SR_OK;
151}
152
d6f89d4b
GS
153/*
154 * Check the necessity for FPGA bitstream upload, because another upload
155 * would take some 600ms which is undesirable after program startup. Try
156 * to access some FPGA registers and check the values' plausibility. The
157 * check should fail on the safe side, request another upload when in
158 * doubt. A positive response (the request to continue operation with the
159 * currently active bitstream) should be conservative. Accessing multiple
160 * registers is considered cheap compared to the cost of bitstream upload.
161 *
162 * It helps though that both the vendor software and the sigrok driver
163 * use the same bundle of MCU firmware and FPGA bitstream for any of the
164 * supported models. We don't expect to successfully communicate to the
165 * device yet disagree on its protocol. Ideally we would access version
166 * identifying registers for improved robustness, but are not aware of
167 * any. A bitstream reload can always be forced by a power cycle.
168 */
169static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
170{
171 uint8_t init_rsp;
3ab60908 172 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
d6f89d4b
GS
173 int ret;
174 uint16_t run_state;
175 uint8_t pwm_en;
176 size_t read_len;
d6f89d4b
GS
177 const uint8_t *rdptr;
178
179 sr_dbg("Checking operation of the FPGA bitstream.");
180
852c7d14 181 init_rsp = ~0;
d6f89d4b
GS
182 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
183 if (ret != SR_OK || init_rsp != 0) {
184 sr_dbg("FPGA init query failed, or unexpected response.");
185 return SR_ERR_IO;
186 }
187
188 read_len = sizeof(run_state);
189 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
190 if (ret != SR_OK) {
191 sr_dbg("FPGA register access failed (run state).");
192 return SR_ERR_IO;
193 }
194 rdptr = buff;
195 run_state = read_u16le_inc(&rdptr);
196 sr_spew("FPGA register: run state 0x%04x.", run_state);
197 if (run_state && (run_state & 0x3) != 0x1) {
198 sr_dbg("Unexpected FPGA register content (run state).");
199 return SR_ERR_DATA;
200 }
201 if (run_state && (run_state & ~0xf) != 0x85e0) {
202 sr_dbg("Unexpected FPGA register content (run state).");
203 return SR_ERR_DATA;
204 }
205
206 read_len = sizeof(pwm_en);
207 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
208 if (ret != SR_OK) {
209 sr_dbg("FPGA register access failed (PWM enable).");
210 return SR_ERR_IO;
211 }
212 rdptr = buff;
213 pwm_en = read_u8_inc(&rdptr);
214 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
215 if ((pwm_en & 0x3) != 0x0) {
216 sr_dbg("Unexpected FPGA register content (PWM enable).");
217 return SR_ERR_DATA;
218 }
219
220 sr_info("Could re-use current FPGA bitstream. No upload required.");
221 return SR_OK;
222}
223
1ed93110
GS
224static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
225 const char *bitstream_fname)
f2cd2deb
FS
226{
227 struct drv_context *drvc;
228 struct sr_usb_dev_inst *usb;
229 struct sr_resource bitstream;
b0d0131e 230 uint32_t bitstream_size;
c3d40037
HK
231 uint8_t buffer[sizeof(uint32_t)];
232 uint8_t *wrptr;
f2cd2deb 233 uint8_t block[4096];
3f48ab02
FS
234 int len, act_len;
235 unsigned int pos;
f2cd2deb 236 int ret;
b0d0131e 237 unsigned int zero_pad_to;
f2cd2deb
FS
238
239 drvc = sdi->driver->context;
240 usb = sdi->conn;
241
9de389b1 242 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 243
411ad77c
GS
244 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
245 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 246 if (ret != SR_OK) {
91f73872 247 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
248 return ret;
249 }
250
b0d0131e 251 bitstream_size = (uint32_t)bitstream.size;
c3d40037 252 wrptr = buffer;
b0d0131e 253 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
254 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
255 if (ret != SR_OK) {
91f73872 256 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
257 sr_resource_close(drvc->sr_ctx, &bitstream);
258 return ret;
259 }
b0d0131e
GS
260 zero_pad_to = bitstream_size;
261 zero_pad_to += LA2016_EP2_PADDING - 1;
262 zero_pad_to /= LA2016_EP2_PADDING;
263 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
264
265 pos = 0;
266 while (1) {
3f48ab02 267 if (pos < bitstream.size) {
411ad77c
GS
268 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
269 block, sizeof(block));
3f48ab02 270 if (len < 0) {
91f73872 271 sr_err("Cannot read FPGA bitstream.");
3f48ab02 272 sr_resource_close(drvc->sr_ctx, &bitstream);
286b3e13 273 return SR_ERR_IO;
3f48ab02
FS
274 }
275 } else {
96dc954e 276 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
277 len = zero_pad_to - pos;
278 if ((unsigned)len > sizeof(block))
279 len = sizeof(block);
280 memset(&block, 0, len);
f2cd2deb
FS
281 }
282 if (len == 0)
283 break;
284
852c7d14 285 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 286 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 287 if (ret != 0) {
91f73872
GS
288 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
289 pos, (int)len, libusb_error_name(ret));
286b3e13 290 ret = SR_ERR_IO;
f2cd2deb
FS
291 break;
292 }
293 if (act_len != len) {
91f73872
GS
294 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
295 pos, (int)len, act_len);
286b3e13 296 ret = SR_ERR_IO;
f2cd2deb
FS
297 break;
298 }
299 pos += len;
300 }
301 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 302 if (ret != SR_OK)
f2cd2deb 303 return ret;
91f73872
GS
304 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
305 bitstream.size);
f2cd2deb 306
d6f89d4b
GS
307 return SR_OK;
308}
309
310static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
311{
312 int ret;
411ad77c 313 uint8_t resp;
d6f89d4b 314
411ad77c
GS
315 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
316 if (ret != SR_OK) {
91f73872 317 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
318 return ret;
319 }
411ad77c 320 if (resp != 0) {
91f73872 321 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 322 resp);
286b3e13 323 return SR_ERR_DATA;
3f48ab02 324 }
852c7d14 325 g_usleep(30 * 1000);
f2cd2deb 326
411ad77c
GS
327 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
328 if (ret != SR_OK) {
91f73872 329 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
330 return ret;
331 }
852c7d14 332 g_usleep(40 * 1000);
d6f89d4b 333
f2cd2deb
FS
334 return SR_OK;
335}
336
337static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
338{
f2cd2deb 339 int ret;
1ed93110 340 uint16_t duty_R79, duty_R56;
3ab60908 341 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
f2ad79d1
KG
342 uint8_t *wrptr;
343
96dc954e 344 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
345 if (voltage > LA2016_THR_VOLTAGE_MAX) {
346 voltage = LA2016_THR_VOLTAGE_MAX;
347 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
348 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
349 }
350
351 /*
96dc954e
GS
352 * Two PWM output channels feed one DAC which generates a bias
353 * voltage, which offsets the input probe's voltage level, and
354 * in combination with the FPGA pins' fixed threshold result in
355 * a programmable input threshold from the user's perspective.
356 * The PWM outputs can be seen on R79 and R56 respectively, the
357 * frequency is 100kHz and the duty cycle varies. The R79 PWM
358 * uses three discrete settings. The R56 PWM varies with desired
359 * thresholds and depends on the R79 PWM configuration. See the
360 * schematics comments which discuss the formulae.
f2ad79d1
KG
361 */
362 if (voltage >= 2.9) {
96dc954e 363 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 364 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 365 } else if (voltage > -0.4) {
96dc954e 366 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 367 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
368 } else {
369 duty_R79 = 0x02d7; /* 72% duty cycle. */
370 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
371 }
372
96dc954e 373 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
374 if (duty_R56 < 10) {
375 duty_R56 = 10;
1ed93110 376 } else if (duty_R56 > 1100) {
f2ad79d1
KG
377 duty_R56 = 1100;
378 }
379
91f73872
GS
380 sr_dbg("Set threshold voltage %.2fV.", voltage);
381 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
382
383 wrptr = buf;
384 write_u16le_inc(&wrptr, duty_R56);
385 write_u16le_inc(&wrptr, duty_R79);
386
387 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 388 if (ret != SR_OK) {
91f73872 389 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
390 return ret;
391 }
f2cd2deb
FS
392
393 return SR_OK;
394}
395
08a49848
GS
396/*
397 * Communicates a channel's configuration to the device after the
398 * parameters may have changed. Configuration of one channel may
399 * interfere with other channels since they share FPGA registers.
400 */
401static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 402{
08a49848 403 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 404
f2cd2deb 405 struct dev_context *devc;
08a49848
GS
406 struct pwm_setting *params;
407 uint8_t reg_base;
408 double val_f;
409 uint32_t val_u;
410 uint32_t period, duty;
411 size_t ch;
f2cd2deb 412 int ret;
08a49848
GS
413 uint8_t enable_all, enable_cfg, reg_val;
414 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 415 uint8_t *wrptr;
f2cd2deb
FS
416
417 devc = sdi->priv;
08a49848
GS
418 if (idx >= ARRAY_SIZE(devc->pwm_setting))
419 return SR_ERR_ARG;
420 params = &devc->pwm_setting[idx];
421 if (idx >= ARRAY_SIZE(reg_bases))
422 return SR_ERR_ARG;
423 reg_base = reg_bases[idx];
f2cd2deb 424
08a49848
GS
425 /*
426 * Map application's specs to hardware register values. Do math
427 * in floating point initially, but convert to u32 eventually.
428 */
429 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
430 idx, params->enabled ? 1 : 0, params->freq, params->duty);
431 val_f = PWM_CLOCK;
432 val_f /= params->freq;
433 val_u = val_f;
434 period = val_u;
435 val_f = period;
436 val_f *= params->duty;
437 val_f /= 100.0;
438 val_f += 0.5;
439 val_u = val_f;
440 duty = val_u;
441 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
442 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
443
444 /* Get the "enabled" state of all supported PWM channels. */
445 enable_all = 0;
446 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
447 if (!devc->pwm_setting[ch].enabled)
448 continue;
449 enable_all |= 1U << ch;
f2cd2deb 450 }
08a49848
GS
451 enable_cfg = 1U << idx;
452 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
453 enable_all, enable_cfg);
f2cd2deb 454
08a49848
GS
455 /*
456 * Disable the to-get-configured channel before its parameters
457 * will change. Or disable and exit when the channel is supposed
458 * to get turned off.
459 */
460 sr_spew("PWM config, disabling before param change.");
461 reg_val = enable_all & ~enable_cfg;
462 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
463 &reg_val, sizeof(reg_val));
f2cd2deb 464 if (ret != SR_OK) {
08a49848 465 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
466 return ret;
467 }
08a49848
GS
468 if (!params->enabled)
469 return SR_OK;
86d77b75 470
08a49848
GS
471 /* Write register values to device. */
472 sr_spew("PWM config, sending new parameters.");
473 wrptr = buf;
474 write_u32le_inc(&wrptr, period);
475 write_u32le_inc(&wrptr, duty);
476 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
477 if (ret != SR_OK) {
478 sr_err("Cannot change PWM parameters.");
f2cd2deb 479 return ret;
08a49848 480 }
f2cd2deb 481
08a49848
GS
482 /* Enable configured channel after write completion. */
483 sr_spew("PWM config, enabling after param change.");
484 reg_val = enable_all | enable_cfg;
485 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
486 &reg_val, sizeof(reg_val));
487 if (ret != SR_OK) {
488 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 489 return ret;
08a49848 490 }
f2cd2deb
FS
491
492 return SR_OK;
493}
494
4276ca94 495static uint32_t get_channels_mask(const struct sr_dev_inst *sdi)
ea436ba7 496{
4276ca94 497 uint32_t channels;
ea436ba7
GS
498 GSList *l;
499 struct sr_channel *ch;
500
501 channels = 0;
502 for (l = sdi->channels; l; l = l->next) {
503 ch = l->data;
504 if (ch->type != SR_CHANNEL_LOGIC)
505 continue;
506 if (!ch->enabled)
507 continue;
508 channels |= 1UL << ch->index;
509 }
510
511 return channels;
512}
513
f2cd2deb
FS
514static int set_trigger_config(const struct sr_dev_inst *sdi)
515{
516 struct dev_context *devc;
517 struct sr_trigger *trigger;
edb13f41 518 struct trigger_cfg {
972d191b
GS
519 uint32_t channels; /* Actually: Enabled channels? */
520 uint32_t enabled; /* Actually: Triggering channels? */
edb13f41
GS
521 uint32_t level;
522 uint32_t high_or_falling;
523 } cfg;
f2cd2deb
FS
524 GSList *stages;
525 GSList *channel;
526 struct sr_trigger_stage *stage1;
527 struct sr_trigger_match *match;
4276ca94 528 uint32_t ch_mask;
f2cd2deb 529 int ret;
3ab60908 530 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
c3d40037 531 uint8_t *wrptr;
f2cd2deb
FS
532
533 devc = sdi->priv;
534 trigger = sr_session_trigger_get(sdi->session);
535
536 memset(&cfg, 0, sizeof(cfg));
537
ea436ba7 538 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
539
540 if (trigger && trigger->stages) {
541 stages = trigger->stages;
542 stage1 = stages->data;
543 if (stages->next) {
544 sr_err("Only one trigger stage supported for now.");
286b3e13 545 return SR_ERR_ARG;
f2cd2deb
FS
546 }
547 channel = stage1->matches;
548 while (channel) {
549 match = channel->data;
cf057ac4 550 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
551
552 switch (match->match) {
553 case SR_TRIGGER_ZERO:
554 cfg.level |= ch_mask;
555 cfg.high_or_falling &= ~ch_mask;
556 break;
557 case SR_TRIGGER_ONE:
558 cfg.level |= ch_mask;
559 cfg.high_or_falling |= ch_mask;
560 break;
561 case SR_TRIGGER_RISING:
562 if ((cfg.enabled & ~cfg.level)) {
91f73872 563 sr_err("Device only supports one edge trigger.");
286b3e13 564 return SR_ERR_ARG;
f2cd2deb
FS
565 }
566 cfg.level &= ~ch_mask;
567 cfg.high_or_falling &= ~ch_mask;
568 break;
569 case SR_TRIGGER_FALLING:
570 if ((cfg.enabled & ~cfg.level)) {
91f73872 571 sr_err("Device only supports one edge trigger.");
286b3e13 572 return SR_ERR_ARG;
f2cd2deb
FS
573 }
574 cfg.level &= ~ch_mask;
575 cfg.high_or_falling |= ch_mask;
576 break;
577 default:
91f73872 578 sr_err("Unknown trigger condition.");
286b3e13 579 return SR_ERR_ARG;
f2cd2deb
FS
580 }
581 cfg.enabled |= ch_mask;
582 channel = channel->next;
583 }
584 }
91f73872 585 sr_dbg("Set trigger config: "
972d191b 586 "enabled-channels 0x%04x, triggering-channels 0x%04x, "
91f73872
GS
587 "level-triggered 0x%04x, high/falling 0x%04x.",
588 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 589
cf057ac4 590 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 591
c3d40037
HK
592 wrptr = buf;
593 write_u32le_inc(&wrptr, cfg.channels);
594 write_u32le_inc(&wrptr, cfg.enabled);
595 write_u32le_inc(&wrptr, cfg.level);
596 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
597 /* TODO
598 * Comment on this literal 16. Origin, meaning? Cannot be the
599 * register offset, nor the transfer length. Is it a channels
600 * count that is relevant for 16 and 32 channel models? Is it
601 * an obsolete experiment?
602 */
42f6dd55 603 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 604 if (ret != SR_OK) {
91f73872 605 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
606 return ret;
607 }
608
609 return SR_OK;
610}
611
612static int set_sample_config(const struct sr_dev_inst *sdi)
613{
614 struct dev_context *devc;
d8fbfcd9 615 uint64_t min_samplerate, eff_samplerate;
adab4d91 616 uint16_t divider_u16;
a38f0f5e 617 uint64_t limit_samples;
adab4d91
GS
618 uint64_t pre_trigger_samples;
619 uint64_t pre_trigger_memory;
620 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 621 uint8_t *wrptr;
adab4d91 622 int ret;
f2cd2deb
FS
623
624 devc = sdi->priv;
f2cd2deb 625
edc0b015 626 if (devc->samplerate > devc->model->samplerate) {
91f73872 627 sr_err("Too high a sample rate: %" PRIu64 ".",
edc0b015 628 devc->samplerate);
ea436ba7
GS
629 return SR_ERR_ARG;
630 }
d8fbfcd9
GS
631 min_samplerate = devc->model->samplerate;
632 min_samplerate /= 65536;
edc0b015 633 if (devc->samplerate < min_samplerate) {
ea436ba7 634 sr_err("Too low a sample rate: %" PRIu64 ".",
edc0b015 635 devc->samplerate);
ea436ba7 636 return SR_ERR_ARG;
f2cd2deb 637 }
edc0b015 638 divider_u16 = devc->model->samplerate / devc->samplerate;
d8fbfcd9 639 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 640
a38f0f5e
GS
641 ret = sr_sw_limits_get_remain(&devc->sw_limits,
642 &limit_samples, NULL, NULL, NULL);
643 if (ret != SR_OK) {
644 sr_err("Cannot get acquisition limits.");
645 return ret;
f2cd2deb 646 }
a38f0f5e 647 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
648 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
649 limit_samples);
650 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 651 }
d8fbfcd9
GS
652 if (limit_samples == 0) {
653 limit_samples = LA2016_NUM_SAMPLES_MAX;
654 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
655 limit_samples);
ea436ba7 656 }
f2cd2deb 657
adab4d91
GS
658 /*
659 * The acquisition configuration communicates "pre-trigger"
660 * specs in several formats. sigrok users provide a percentage
661 * (0-100%), which translates to a pre-trigger samples count
662 * (assuming that a total samples count limit was specified).
663 * The device supports hardware compression, which depends on
664 * slowly changing input data to be effective. Fast changing
665 * input data may occupy more space in sample memory than its
666 * uncompressed form would. This is why a third parameter can
667 * limit the amount of sample memory to use for pre-trigger
668 * data. Only the upper 24 bits of that memory size spec get
669 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
670 *
671 * TODO Determine whether the pre-trigger memory size gets
672 * specified in samples or in bytes. A previous implementation
673 * suggests bytes but this is suspicious when every other spec
674 * is in terms of samples.
adab4d91 675 */
d8fbfcd9
GS
676 if (devc->trigger_involved) {
677 pre_trigger_samples = limit_samples;
678 pre_trigger_samples *= devc->capture_ratio;
679 pre_trigger_samples /= 100;
680 pre_trigger_memory = devc->model->memory_bits;
681 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
682 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
683 pre_trigger_memory *= devc->capture_ratio;
684 pre_trigger_memory /= 100;
685 } else {
686 sr_dbg("No trigger setup, skipping pre-trigger config.");
687 pre_trigger_samples = 1;
688 pre_trigger_memory = 0;
689 }
690 /* Ensure non-zero value after LSB shift out in HW reg. */
691 if (pre_trigger_memory < 0x100) {
692 pre_trigger_memory = 0x100;
693 }
f2cd2deb 694
adab4d91 695 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 696 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
697 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
698 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 699
b1a17c1a
GS
700 /*
701 * The acquisition configuration occupies a total of 16 bytes:
702 * - A 34bit total samples count limit (up to 10 billions) that
703 * is kept in a 40bit register.
704 * - A 34bit pre-trigger samples count limit (up to 10 billions)
705 * in another 40bit register.
706 * - A 32bit pre-trigger memory space limit (in bytes) of which
707 * the upper 24bits are kept in an FPGA register.
708 * - A 16bit clock divider which gets applied to the maximum
709 * samplerate of the device.
710 * - An 8bit register of unknown meaning. Currently always 0.
711 */
c3d40037 712 wrptr = buf;
a38f0f5e 713 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
714 write_u40le_inc(&wrptr, pre_trigger_samples);
715 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 716 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 717 write_u8_inc(&wrptr, 0);
42f6dd55 718 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 719 if (ret != SR_OK) {
91f73872 720 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
721 return ret;
722 }
723
724 return SR_OK;
725}
726
96dc954e
GS
727/*
728 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
729 * of interest:
730 * bit 0: value 1 = idle
731 * bit 1: value 1 = writing to SDRAM
732 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
733 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
734 * The meaning of other bit fields is unknown.
7601dca7 735 *
96dc954e 736 * Typical values in order of appearance during execution:
b711fd8e
GS
737 * 0x85e1: idle, no acquisition pending
738 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
739 * "In idle state." Takes precedence over all others.
96dc954e
GS
740 * 0x85e2: pre-sampling, samples before the trigger position,
741 * when capture ratio > 0%
b711fd8e
GS
742 * IDLE clear, TRGD clear, POST clear; DRAM don't care
743 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
744 * 0x85ea: pre-sampling complete, now waiting for the trigger
745 * (whilst sampling continuously)
b711fd8e
GS
746 * IDLE clear, TRGD clear, POST set; DRAM don't care
747 * "Post set thus after pre, not triggered yet"
96dc954e 748 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
749 * IDLE clear, TRGD set, POST set; DRAM don't care
750 * "Triggered and in post, not idle yet."
96dc954e 751 * 0x85ed: idle
b711fd8e
GS
752 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
753 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 754 */
b711fd8e
GS
755static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
756static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
757static const uint16_t runstate_mask_step =
758 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
759static const uint16_t runstate_patt_pre_trig = 0;
760static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
761static const uint16_t runstate_patt_post_trig =
762 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
763
f2cd2deb
FS
764static uint16_t run_state(const struct sr_dev_inst *sdi)
765{
21d68fd9
GS
766 static uint16_t previous_state;
767
f2cd2deb 768 int ret;
21d68fd9 769 uint16_t state;
3ab60908 770 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
21d68fd9
GS
771 const uint8_t *rdptr;
772 const char *label;
f2cd2deb 773
411ad77c
GS
774 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
775 if (ret != SR_OK) {
91f73872 776 sr_err("Cannot read run state.");
f2cd2deb
FS
777 return ret;
778 }
21d68fd9
GS
779 rdptr = buff;
780 state = read_u16le_inc(&rdptr);
7601dca7 781
96dc954e
GS
782 /*
783 * Avoid flooding the log, only dump values as they change.
784 * The routine is called about every 50ms.
7601dca7 785 */
b711fd8e
GS
786 if (state == previous_state)
787 return state;
788
789 previous_state = state;
790 label = NULL;
791 if ((state & runstate_mask_idle) == runstate_patt_idle)
792 label = "idle";
793 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
794 label = "pre-trigger sampling";
795 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
796 label = "sampling, waiting for trigger";
797 if ((state & runstate_mask_step) == runstate_patt_post_trig)
798 label = "post-trigger sampling";
799 if (label && *label)
800 sr_dbg("Run state: 0x%04x (%s).", state, label);
801 else
802 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
803
804 return state;
805}
806
cf057ac4 807static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
808{
809 uint16_t state;
810
811 state = run_state(sdi);
b711fd8e 812 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
813 return 1;
814
815 return 0;
816}
817
818static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
819{
820 int ret;
821
411ad77c
GS
822 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
823 if (ret != SR_OK) {
c34f4a89 824 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
825 return ret;
826 }
827
828 return SR_OK;
829}
830
831static int get_capture_info(const struct sr_dev_inst *sdi)
832{
833 struct dev_context *devc;
834 int ret;
3ab60908 835 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 836 const uint8_t *rdptr;
f2cd2deb
FS
837
838 devc = sdi->priv;
839
411ad77c
GS
840 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
841 if (ret != SR_OK) {
91f73872 842 sr_err("Cannot read capture info.");
f2cd2deb
FS
843 return ret;
844 }
c3d40037
HK
845
846 rdptr = buf;
847 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
848 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
849 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 850
cf057ac4 851 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
852 devc->info.n_rep_packets, devc->info.n_rep_packets,
853 devc->info.n_rep_packets_before_trigger,
854 devc->info.n_rep_packets_before_trigger,
855 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 856
038e65c1
GS
857 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
858 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
852c7d14 859 (unsigned long)devc->info.n_rep_packets,
038e65c1 860 (unsigned long)devc->packets_per_chunk);
91f73872 861 }
f2cd2deb
FS
862
863 return SR_OK;
864}
865
d466f61c
GS
866SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
867 struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
f2cd2deb 868{
d466f61c
GS
869 struct dev_context *devc;
870 char *fw_file;
871 int ret;
872
873 devc = sdi ? sdi->priv : NULL;
874
875 fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
876 sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
877
878 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
879 if (ret != SR_OK) {
880 g_free(fw_file);
881 return ret;
882 }
883
884 if (devc) {
885 devc->mcu_firmware = fw_file;
886 fw_file = NULL;
887 }
888 g_free(fw_file);
889
890 return SR_OK;
f2cd2deb
FS
891}
892
9270f8f4
GS
893SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
894 double voltage)
f2cd2deb 895{
f2cd2deb
FS
896 int ret;
897 uint8_t cmd;
898
9270f8f4 899 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
900 if (ret != SR_OK)
901 return ret;
902
972d191b 903 cmd = CAPTMODE_TO_RAM;
411ad77c
GS
904 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
905 if (ret != SR_OK) {
91f73872 906 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
907 return ret;
908 }
909
910 ret = set_trigger_config(sdi);
911 if (ret != SR_OK)
912 return ret;
913
914 ret = set_sample_config(sdi);
915 if (ret != SR_OK)
916 return ret;
917
918 return SR_OK;
919}
920
921SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
922{
3ebc1cb2
GS
923 int ret;
924
852c7d14 925 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
926 if (ret != SR_OK)
927 return ret;
928
929 return SR_OK;
f2cd2deb
FS
930}
931
3ebc1cb2 932static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 933{
3ebc1cb2
GS
934 int ret;
935
852c7d14 936 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
937 if (ret != SR_OK)
938 return ret;
939
940 return SR_OK;
f2cd2deb
FS
941}
942
943SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
944{
3ebc1cb2
GS
945 int ret;
946 struct dev_context *devc;
947
948 ret = la2016_stop_acquisition(sdi);
949 if (ret != SR_OK)
950 return ret;
951
952 devc = sdi ? sdi->priv : NULL;
953 if (devc && devc->transfer)
954 libusb_cancel_transfer(devc->transfer);
955
956 return SR_OK;
f2cd2deb
FS
957}
958
cf057ac4 959static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 960 libusb_transfer_cb_fn cb)
f2cd2deb
FS
961{
962 struct dev_context *devc;
963 struct sr_usb_dev_inst *usb;
964 int ret;
3ab60908 965 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
c3d40037 966 uint8_t *wrptr;
f2cd2deb
FS
967 uint32_t to_read;
968 uint8_t *buffer;
969
970 devc = sdi->priv;
971 usb = sdi->conn;
972
411ad77c
GS
973 ret = get_capture_info(sdi);
974 if (ret != SR_OK)
f2cd2deb
FS
975 return ret;
976
038e65c1
GS
977 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
978 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
979 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
980 devc->n_bytes_to_read *= TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
981 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
982 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
983
91f73872 984 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 985 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 986
411ad77c
GS
987 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
988 if (ret != SR_OK) {
91f73872 989 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
990 return ret;
991 }
91f73872
GS
992 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
993 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
994 wrptr = wrbuf;
995 write_u32le_inc(&wrptr, devc->read_pos);
996 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
997 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
998 if (ret != SR_OK) {
91f73872 999 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
1000 return ret;
1001 }
411ad77c
GS
1002 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1003 if (ret != SR_OK) {
91f73872 1004 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1005 return ret;
1006 }
1007
96dc954e
GS
1008 /*
1009 * Pick a buffer size for all USB transfers. The buffer size
1010 * must be a multiple of the endpoint packet size. And cannot
1011 * exceed a maximum value.
1012 */
f2cd2deb 1013 to_read = devc->n_bytes_to_read;
96dc954e
GS
1014 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1015 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1016 to_read += LA2016_EP6_PKTSZ - 1;
1017 to_read /= LA2016_EP6_PKTSZ;
1018 to_read *= LA2016_EP6_PKTSZ;
f2cd2deb
FS
1019 buffer = g_try_malloc(to_read);
1020 if (!buffer) {
91f73872
GS
1021 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1022 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1023 return SR_ERR_MALLOC;
1024 }
1025
1026 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1027 libusb_fill_bulk_transfer(devc->transfer,
1028 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1029 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1030
411ad77c
GS
1031 ret = libusb_submit_transfer(devc->transfer);
1032 if (ret != 0) {
91f73872 1033 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1034 libusb_free_transfer(devc->transfer);
1035 devc->transfer = NULL;
1036 g_free(buffer);
286b3e13 1037 return SR_ERR_IO;
f2cd2deb
FS
1038 }
1039
1040 return SR_OK;
1041}
1042
480efba2
GS
1043/*
1044 * A chunk (received via USB) contains a number of transfers (USB length
1045 * divided by 16) which contain a number of packets (5 per transfer) which
1046 * contain a number of samples (8bit repeat count per 16bit sample data).
1047 */
dfac9592 1048static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1049 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1050{
1051 struct dev_context *devc;
480efba2 1052 size_t num_pkts;
dfac9592 1053 const uint8_t *rp;
4276ca94 1054 uint32_t sample_value;
480efba2
GS
1055 size_t repetitions;
1056 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1057
1058 devc = sdi->priv;
1059
a38f0f5e
GS
1060 /* Ignore incoming USB data after complete sample data download. */
1061 if (devc->download_finished)
1062 return;
dfac9592 1063
cf057ac4 1064 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1065 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1066 devc->trigger_marked = TRUE;
dfac9592
GS
1067 }
1068
4276ca94 1069 sample_value = 0;
dfac9592 1070 rp = packets;
480efba2 1071 while (num_xfers--) {
038e65c1 1072 num_pkts = devc->packets_per_chunk;
480efba2 1073 while (num_pkts--) {
dfac9592 1074
4276ca94
GS
1075 /* TODO Verify 32channel layout. */
1076 if (devc->model->channel_count == 32)
1077 sample_value = read_u32le_inc(&rp);
1078 else if (devc->model->channel_count == 16)
1079 sample_value = read_u16le_inc(&rp);
dfac9592 1080 repetitions = read_u8_inc(&rp);
dfac9592 1081
dfac9592 1082 devc->total_samples += repetitions;
480efba2 1083
4276ca94 1084 write_u32le(sample_buff, sample_value);
a38f0f5e
GS
1085 feed_queue_logic_submit(devc->feed_queue,
1086 sample_buff, repetitions);
1087 sr_sw_limits_update_samples_read(&devc->sw_limits,
1088 repetitions);
480efba2 1089
cf057ac4
GS
1090 if (devc->trigger_involved && !devc->trigger_marked) {
1091 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1092 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1093 devc->trigger_marked = TRUE;
91f73872 1094 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110 1095 devc->total_samples,
edc0b015 1096 (double)devc->total_samples / devc->samplerate * 1e3);
dfac9592
GS
1097 }
1098 }
1099 }
1100 (void)read_u8_inc(&rp); /* Skip sequence number. */
1101 }
a38f0f5e
GS
1102
1103 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1104 sr_dbg("Acquisition limit reached.");
1105 devc->download_finished = TRUE;
1106 }
1107 if (devc->download_finished) {
1108 sr_dbg("Download finished, flushing session feed queue.");
1109 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1110 }
a38f0f5e 1111 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1112}
1113
1114static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1115{
1116 struct sr_dev_inst *sdi;
1117 struct dev_context *devc;
1118 struct sr_usb_dev_inst *usb;
a38f0f5e 1119 size_t num_xfers;
dfac9592
GS
1120 int ret;
1121
1122 sdi = transfer->user_data;
1123 devc = sdi->priv;
1124 usb = sdi->conn;
1125
1126 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1127 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1128 /*
1129 * Implementation detail: A USB transfer timeout is not fatal
1130 * here. We just process whatever was received, empty input is
1131 * perfectly acceptable. Reaching (or exceeding) the sw limits
1132 * or exhausting the device's captured data will complete the
1133 * sample data download.
1134 */
1135 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1136 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1137
1138 devc->n_bytes_to_read -= transfer->actual_length;
1139 if (devc->n_bytes_to_read) {
1140 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1141 /*
1142 * Determine read size for the next USB transfer. Make
1143 * the buffer size a multiple of the endpoint packet
1144 * size. Don't exceed a maximum value.
1145 */
dfac9592
GS
1146 if (to_read >= LA2016_USB_BUFSZ)
1147 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1148 to_read += LA2016_EP6_PKTSZ - 1;
1149 to_read /= LA2016_EP6_PKTSZ;
1150 to_read *= LA2016_EP6_PKTSZ;
852c7d14
GS
1151 libusb_fill_bulk_transfer(transfer,
1152 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1153 transfer->buffer, to_read,
dfac9592
GS
1154 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1155
411ad77c
GS
1156 ret = libusb_submit_transfer(transfer);
1157 if (ret == 0)
dfac9592 1158 return;
91f73872
GS
1159 sr_err("Cannot submit another USB transfer: %s.",
1160 libusb_error_name(ret));
dfac9592
GS
1161 }
1162
1163 g_free(transfer->buffer);
1164 libusb_free_transfer(transfer);
cf057ac4 1165 devc->download_finished = TRUE;
dfac9592
GS
1166}
1167
1168SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1169{
1170 const struct sr_dev_inst *sdi;
1171 struct dev_context *devc;
1172 struct drv_context *drvc;
1173 struct timeval tv;
a38f0f5e 1174 int ret;
dfac9592
GS
1175
1176 (void)fd;
1177 (void)revents;
1178
1179 sdi = cb_data;
1180 devc = sdi->priv;
1181 drvc = sdi->driver->context;
1182
a38f0f5e
GS
1183 /*
1184 * Wait for the acquisition to complete in hardware.
1185 * Periodically check a potentially configured msecs timeout.
1186 */
cf057ac4
GS
1187 if (!devc->completion_seen) {
1188 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1189 if (sr_sw_limits_check(&devc->sw_limits)) {
1190 devc->sw_limits.limit_msec = 0;
1191 sr_dbg("Limit reached. Stopping acquisition.");
1192 la2016_stop_acquisition(sdi);
1193 }
96dc954e 1194 /* Not yet ready for sample data download. */
dfac9592
GS
1195 return TRUE;
1196 }
a38f0f5e
GS
1197 sr_dbg("Acquisition completion seen (hardware).");
1198 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1199 devc->completion_seen = TRUE;
1200 devc->download_finished = FALSE;
1201 devc->trigger_marked = FALSE;
dfac9592 1202 devc->total_samples = 0;
a38f0f5e
GS
1203
1204 /* Initiate the download of acquired sample data. */
1205 std_session_send_df_frame_begin(sdi);
1206 ret = la2016_start_download(sdi, receive_transfer);
1207 if (ret != SR_OK) {
91f73872 1208 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1209 return FALSE;
1210 }
91f73872 1211 sr_dbg("Acquisition data download started.");
dfac9592
GS
1212
1213 return TRUE;
1214 }
1215
a38f0f5e 1216 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1217 tv.tv_sec = tv.tv_usec = 0;
1218 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1219
a38f0f5e 1220 /* Postprocess completion of sample data download. */
cf057ac4 1221 if (devc->download_finished) {
91f73872 1222 sr_dbg("Download finished, post processing.");
dfac9592
GS
1223
1224 la2016_stop_acquisition(sdi);
a38f0f5e 1225 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1226 devc->transfer = NULL;
1227
a38f0f5e
GS
1228 feed_queue_logic_flush(devc->feed_queue);
1229 feed_queue_logic_free(devc->feed_queue);
1230 devc->feed_queue = NULL;
1231 std_session_send_df_frame_end(sdi);
1232 std_session_send_df_end(sdi);
1233
91f73872 1234 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1235 }
1236
1237 return TRUE;
1238}
1239
d466f61c
GS
1240SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1241 gboolean show_message)
f2cd2deb 1242{
8b172e78 1243 struct dev_context *devc;
3ab60908 1244 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
64172b16 1245 size_t rdoff, rdlen;
43d2e52f
GS
1246 const uint8_t *rdptr;
1247 uint8_t date_yy, date_mm;
1248 uint8_t dinv_yy, dinv_mm;
9de389b1 1249 uint8_t magic;
d466f61c
GS
1250 size_t model_idx;
1251 const struct kingst_model *model;
9de389b1 1252 int ret;
f2cd2deb 1253
8b172e78
KG
1254 devc = sdi->priv;
1255
96dc954e 1256 /*
43d2e52f
GS
1257 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1258 * year and month in BCD format, followed by inverted values for
1259 * consistency checks. For example bytes 20 04 df fb translate
1260 * to 2020-04. This information can help identify the vintage of
1261 * devices when unknown magic numbers are seen.
9de389b1 1262 */
64172b16
GS
1263 rdoff = 0x20;
1264 rdlen = 4 * sizeof(uint8_t);
1265 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1266 if (ret != SR_OK && !show_message) {
64172b16 1267 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1268 sr_dbg("Cannot access EEPROM.");
1269 return SR_ERR_IO;
1270 } else if (ret != SR_OK) {
64172b16 1271 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1272 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1273 } else {
64172b16
GS
1274 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1275 GString *txt;
1276 txt = sr_hexdump_new(buf, rdlen);
1277 sr_spew("Manufacture date bytes %s.", txt->str);
1278 sr_hexdump_free(txt);
1279 }
43d2e52f
GS
1280 rdptr = &buf[0];
1281 date_yy = read_u8_inc(&rdptr);
1282 date_mm = read_u8_inc(&rdptr);
1283 dinv_yy = read_u8_inc(&rdptr);
1284 dinv_mm = read_u8_inc(&rdptr);
1285 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1286 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1287 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1288 }
f2cd2deb 1289
9de389b1 1290 /*
96dc954e
GS
1291 * Several Kingst logic analyzer devices share the same USB VID
1292 * and PID. The product ID determines which MCU firmware to load.
1293 * The MCU firmware provides access to EEPROM content which then
1294 * allows to identify the device model. Which in turn determines
1295 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1296 * to get inspected.
9de389b1 1297 *
96dc954e
GS
1298 * EEPROM content for model identification is kept redundantly
1299 * in memory. The values are stored in verbatim and in inverted
1300 * form, multiple copies are kept at different offsets. Example
1301 * data:
9de389b1 1302 *
96dc954e
GS
1303 * magic 0x08
1304 * | ~magic 0xf7
1305 * | |
1306 * 08f7000008f710ef
1307 * | |
1308 * | ~magic backup
1309 * magic backup
9de389b1 1310 *
96dc954e
GS
1311 * Exclusively inspecting the magic byte appears to be sufficient,
1312 * other fields seem to be 'don't care'.
9de389b1 1313 *
96dc954e
GS
1314 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1315 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1316 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1317 * (latest v1.3.0 PCB, perhaps others)
1318 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1319 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1320 *
96dc954e
GS
1321 * When EEPROM content does not match the hardware configuration
1322 * (the board layout), the software may load but yield incorrect
1323 * results (like swapped channels). The FPGA bitstream itself
1324 * will authenticate with IC U10 and fail when its capabilities
1325 * do not match the hardware model. An LA1016 won't become a
1326 * LA2016 by faking its EEPROM content.
9de389b1 1327 */
d466f61c 1328 devc->identify_magic = 0;
64172b16
GS
1329 rdoff = 0x08;
1330 rdlen = 8 * sizeof(uint8_t);
1331 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1332 if (ret != SR_OK) {
91f73872 1333 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1334 return ret;
1335 }
64172b16
GS
1336 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1337 GString *txt;
1338 txt = sr_hexdump_new(buf, rdlen);
1339 sr_spew("EEPROM magic bytes %s.", txt->str);
1340 sr_hexdump_free(txt);
1341 }
43d2e52f 1342 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1343 /* Primary copy of magic passes complement check. */
9de389b1 1344 magic = buf[0];
64172b16 1345 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1346 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1347 /* Backup copy of magic passes complement check. */
9de389b1 1348 magic = buf[4];
64172b16 1349 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1350 } else {
1351 sr_err("Cannot find consistent device type identification.");
1352 magic = 0;
f2cd2deb 1353 }
d466f61c 1354 devc->identify_magic = magic;
9de389b1 1355
d466f61c
GS
1356 devc->model = NULL;
1357 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1358 model = &models[model_idx];
1359 if (model->magic != magic)
1360 continue;
1361 devc->model = model;
64172b16
GS
1362 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1363 model->name, model->channel_count,
1364 model->samplerate / SR_MHZ(1));
d466f61c
GS
1365 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1366 model->fpga_stem);
d466f61c 1367 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1368 break;
1369 }
d466f61c 1370 if (!devc->model) {
91f73872 1371 sr_err("Cannot identify as one of the supported models.");
286b3e13 1372 return SR_ERR_DATA;
3f48ab02 1373 }
f2cd2deb 1374
d466f61c
GS
1375 return SR_OK;
1376}
1377
6d53e949 1378SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1379{
1380 struct dev_context *devc;
1381 const char *bitstream_fn;
1382 int ret;
1383 uint16_t state;
1384
1385 devc = sdi->priv;
1386 bitstream_fn = devc ? devc->fpga_bitstream : "";
1387
1388 ret = check_fpga_bitstream(sdi);
1389 if (ret != SR_OK) {
d6f89d4b
GS
1390 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1391 if (ret != SR_OK) {
1392 sr_err("Cannot upload FPGA bitstream.");
1393 return ret;
1394 }
1395 }
1396 ret = enable_fpga_bitstream(sdi);
9de389b1 1397 if (ret != SR_OK) {
d6f89d4b 1398 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1399 return ret;
1400 }
1401
f2cd2deb 1402 state = run_state(sdi);
9de389b1 1403 if (state != 0x85e9) {
91f73872 1404 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1405 }
f2cd2deb 1406
6d53e949
GS
1407 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1408 if (ret != SR_OK) {
91f73872 1409 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1410 return ret;
1411 }
9de389b1 1412
91f73872 1413 sr_dbg("Device should be initialized.");
f2cd2deb 1414
6d53e949
GS
1415 return SR_OK;
1416}
1417
6d53e949 1418SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1419{
1420 int ret;
1421
6d53e949
GS
1422 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1423 if (ret != SR_OK) {
91f73872 1424 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1425 return ret;
1426 }
1427
1428 return SR_OK;
1429}
08a49848
GS
1430
1431SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1432{
1433 return set_pwm_config(sdi, idx);
1434}