]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: complete hardware setup in probe, set features in open
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
83#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
84#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
85#define REG_PWM1 0x70 /* Write config for user PWM1. */
86#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 87
852c7d14
GS
88/* Bit patterns to write to REG_RUN, setup run mode. */
89#define RUNMODE_HALT 0x00
90#define RUNMODE_RUN 0x03
91
b711fd8e
GS
92/* Bit patterns when reading from REG_RUN, get run state. */
93#define RUNSTATE_IDLE_BIT (1UL << 0)
94#define RUNSTATE_DRAM_BIT (1UL << 1)
95#define RUNSTATE_TRGD_BIT (1UL << 2)
96#define RUNSTATE_POST_BIT (1UL << 3)
97
f2cd2deb 98static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
99 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
100 void *data, uint16_t wLength)
f2cd2deb
FS
101{
102 struct sr_usb_dev_inst *usb;
103 int ret;
104
105 usb = sdi->conn;
106
411ad77c
GS
107 ret = libusb_control_transfer(usb->devhdl,
108 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
109 bRequest, wValue, wIndex, data, wLength,
110 DEFAULT_TIMEOUT_MS);
111 if (ret != wLength) {
91f73872
GS
112 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
113 wLength, bRequest, wValue, wIndex,
114 libusb_error_name(ret));
115 sr_err("Cannot read %d bytes from USB: %s.",
116 wLength, libusb_error_name(ret));
f2cd2deb
FS
117 return SR_ERR;
118 }
119
120 return SR_OK;
121}
122
123static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
124 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
125 void *data, uint16_t wLength)
f2cd2deb
FS
126{
127 struct sr_usb_dev_inst *usb;
128 int ret;
129
130 usb = sdi->conn;
131
411ad77c
GS
132 ret = libusb_control_transfer(usb->devhdl,
133 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
134 bRequest, wValue, wIndex, data, wLength,
135 DEFAULT_TIMEOUT_MS);
136 if (ret != wLength) {
91f73872
GS
137 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
138 wLength, bRequest, wValue, wIndex,
139 libusb_error_name(ret));
140 sr_err("Cannot write %d bytes to USB: %s.",
141 wLength, libusb_error_name(ret));
f2cd2deb
FS
142 return SR_ERR;
143 }
144
145 return SR_OK;
146}
147
d6f89d4b
GS
148/*
149 * Check the necessity for FPGA bitstream upload, because another upload
150 * would take some 600ms which is undesirable after program startup. Try
151 * to access some FPGA registers and check the values' plausibility. The
152 * check should fail on the safe side, request another upload when in
153 * doubt. A positive response (the request to continue operation with the
154 * currently active bitstream) should be conservative. Accessing multiple
155 * registers is considered cheap compared to the cost of bitstream upload.
156 *
157 * It helps though that both the vendor software and the sigrok driver
158 * use the same bundle of MCU firmware and FPGA bitstream for any of the
159 * supported models. We don't expect to successfully communicate to the
160 * device yet disagree on its protocol. Ideally we would access version
161 * identifying registers for improved robustness, but are not aware of
162 * any. A bitstream reload can always be forced by a power cycle.
163 */
164static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
165{
166 uint8_t init_rsp;
167 int ret;
168 uint16_t run_state;
169 uint8_t pwm_en;
170 size_t read_len;
171 uint8_t buff[sizeof(run_state)];
172 const uint8_t *rdptr;
173
174 sr_dbg("Checking operation of the FPGA bitstream.");
175
852c7d14 176 init_rsp = ~0;
d6f89d4b
GS
177 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
178 if (ret != SR_OK || init_rsp != 0) {
179 sr_dbg("FPGA init query failed, or unexpected response.");
180 return SR_ERR_IO;
181 }
182
183 read_len = sizeof(run_state);
184 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
185 if (ret != SR_OK) {
186 sr_dbg("FPGA register access failed (run state).");
187 return SR_ERR_IO;
188 }
189 rdptr = buff;
190 run_state = read_u16le_inc(&rdptr);
191 sr_spew("FPGA register: run state 0x%04x.", run_state);
192 if (run_state && (run_state & 0x3) != 0x1) {
193 sr_dbg("Unexpected FPGA register content (run state).");
194 return SR_ERR_DATA;
195 }
196 if (run_state && (run_state & ~0xf) != 0x85e0) {
197 sr_dbg("Unexpected FPGA register content (run state).");
198 return SR_ERR_DATA;
199 }
200
201 read_len = sizeof(pwm_en);
202 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
203 if (ret != SR_OK) {
204 sr_dbg("FPGA register access failed (PWM enable).");
205 return SR_ERR_IO;
206 }
207 rdptr = buff;
208 pwm_en = read_u8_inc(&rdptr);
209 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
210 if ((pwm_en & 0x3) != 0x0) {
211 sr_dbg("Unexpected FPGA register content (PWM enable).");
212 return SR_ERR_DATA;
213 }
214
215 sr_info("Could re-use current FPGA bitstream. No upload required.");
216 return SR_OK;
217}
218
1ed93110
GS
219static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
220 const char *bitstream_fname)
f2cd2deb
FS
221{
222 struct drv_context *drvc;
223 struct sr_usb_dev_inst *usb;
224 struct sr_resource bitstream;
b0d0131e 225 uint32_t bitstream_size;
c3d40037
HK
226 uint8_t buffer[sizeof(uint32_t)];
227 uint8_t *wrptr;
f2cd2deb 228 uint8_t block[4096];
3f48ab02
FS
229 int len, act_len;
230 unsigned int pos;
f2cd2deb 231 int ret;
b0d0131e 232 unsigned int zero_pad_to;
f2cd2deb
FS
233
234 drvc = sdi->driver->context;
235 usb = sdi->conn;
236
9de389b1 237 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 238
411ad77c
GS
239 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
240 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 241 if (ret != SR_OK) {
91f73872 242 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
243 return ret;
244 }
245
b0d0131e 246 bitstream_size = (uint32_t)bitstream.size;
c3d40037 247 wrptr = buffer;
b0d0131e 248 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
249 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
250 if (ret != SR_OK) {
91f73872 251 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
252 sr_resource_close(drvc->sr_ctx, &bitstream);
253 return ret;
254 }
b0d0131e
GS
255 zero_pad_to = bitstream_size;
256 zero_pad_to += LA2016_EP2_PADDING - 1;
257 zero_pad_to /= LA2016_EP2_PADDING;
258 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
259
260 pos = 0;
261 while (1) {
3f48ab02 262 if (pos < bitstream.size) {
411ad77c
GS
263 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
264 block, sizeof(block));
3f48ab02 265 if (len < 0) {
91f73872 266 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
267 sr_resource_close(drvc->sr_ctx, &bitstream);
268 return SR_ERR;
269 }
270 } else {
96dc954e 271 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
272 len = zero_pad_to - pos;
273 if ((unsigned)len > sizeof(block))
274 len = sizeof(block);
275 memset(&block, 0, len);
f2cd2deb
FS
276 }
277 if (len == 0)
278 break;
279
852c7d14 280 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 281 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 282 if (ret != 0) {
91f73872
GS
283 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
284 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
285 ret = SR_ERR;
286 break;
287 }
288 if (act_len != len) {
91f73872
GS
289 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
290 pos, (int)len, act_len);
f2cd2deb
FS
291 ret = SR_ERR;
292 break;
293 }
294 pos += len;
295 }
296 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 297 if (ret != SR_OK)
f2cd2deb 298 return ret;
91f73872
GS
299 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
300 bitstream.size);
f2cd2deb 301
d6f89d4b
GS
302 return SR_OK;
303}
304
305static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
306{
307 int ret;
411ad77c 308 uint8_t resp;
d6f89d4b 309
411ad77c
GS
310 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
311 if (ret != SR_OK) {
91f73872 312 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
313 return ret;
314 }
411ad77c 315 if (resp != 0) {
91f73872 316 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 317 resp);
3f48ab02
FS
318 return SR_ERR;
319 }
852c7d14 320 g_usleep(30 * 1000);
f2cd2deb 321
411ad77c
GS
322 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
323 if (ret != SR_OK) {
91f73872 324 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
325 return ret;
326 }
852c7d14 327 g_usleep(40 * 1000);
d6f89d4b 328
f2cd2deb
FS
329 return SR_OK;
330}
331
332static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
333{
334 struct dev_context *devc;
f2cd2deb 335 int ret;
1ed93110 336 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
337 uint8_t buf[2 * sizeof(uint16_t)];
338 uint8_t *wrptr;
339
084d6b92
GS
340 devc = sdi->priv;
341
96dc954e 342 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
343 if (voltage > 4.0) {
344 voltage = 4.0;
1ed93110 345 } else if (voltage < -4.0) {
f2ad79d1
KG
346 voltage = -4.0;
347 }
348
349 /*
96dc954e
GS
350 * Two PWM output channels feed one DAC which generates a bias
351 * voltage, which offsets the input probe's voltage level, and
352 * in combination with the FPGA pins' fixed threshold result in
353 * a programmable input threshold from the user's perspective.
354 * The PWM outputs can be seen on R79 and R56 respectively, the
355 * frequency is 100kHz and the duty cycle varies. The R79 PWM
356 * uses three discrete settings. The R56 PWM varies with desired
357 * thresholds and depends on the R79 PWM configuration. See the
358 * schematics comments which discuss the formulae.
f2ad79d1
KG
359 */
360 if (voltage >= 2.9) {
96dc954e 361 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 362 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 363 } else if (voltage > -0.4) {
96dc954e 364 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 365 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
366 } else {
367 duty_R79 = 0x02d7; /* 72% duty cycle. */
368 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
369 }
370
96dc954e 371 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
372 if (duty_R56 < 10) {
373 duty_R56 = 10;
1ed93110 374 } else if (duty_R56 > 1100) {
f2ad79d1
KG
375 duty_R56 = 1100;
376 }
377
91f73872
GS
378 sr_dbg("Set threshold voltage %.2fV.", voltage);
379 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
380
381 wrptr = buf;
382 write_u16le_inc(&wrptr, duty_R56);
383 write_u16le_inc(&wrptr, duty_R79);
384
385 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 386 if (ret != SR_OK) {
91f73872 387 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
388 return ret;
389 }
390 devc->threshold_voltage = voltage;
391
392 return SR_OK;
393}
394
86d77b75 395static int enable_pwm(const struct sr_dev_inst *sdi, gboolean p1, gboolean p2)
f2cd2deb
FS
396{
397 struct dev_context *devc;
398 uint8_t cfg;
399 int ret;
400
401 devc = sdi->priv;
f2cd2deb 402
86d77b75
GS
403 cfg = 0;
404 if (p1)
405 cfg |= 1U << 0;
406 if (p2)
407 cfg |= 1U << 1;
91f73872 408 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
86d77b75 409
42f6dd55 410 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 411 if (ret != SR_OK) {
91f73872 412 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
413 return ret;
414 }
86d77b75 415
f2cd2deb
FS
416 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
417 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
418
419 return SR_OK;
420}
421
86d77b75 422static int configure_pwm(const struct sr_dev_inst *sdi, uint8_t which,
1ed93110 423 float freq, float duty)
f2cd2deb 424{
86d77b75
GS
425 static uint8_t ctrl_reg_tab[] = { REG_PWM1, REG_PWM2, };
426
f2cd2deb 427 struct dev_context *devc;
86d77b75
GS
428 uint8_t ctrl_reg;
429 struct pwm_setting_dev cfg;
430 struct pwm_setting *setting;
f2cd2deb 431 int ret;
c3d40037
HK
432 uint8_t buf[2 * sizeof(uint32_t)];
433 uint8_t *wrptr;
f2cd2deb
FS
434
435 devc = sdi->priv;
436
86d77b75 437 if (which < 1 || which > ARRAY_SIZE(ctrl_reg_tab)) {
91f73872 438 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
439 return SR_ERR;
440 }
86d77b75 441 if (freq < 0 || freq > MAX_PWM_FREQ) {
91f73872 442 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
443 return SR_ERR;
444 }
86d77b75 445 if (duty < 0 || duty > 100) {
91f73872 446 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
447 return SR_ERR;
448 }
449
86d77b75 450 memset(&cfg, 0, sizeof(cfg));
f2cd2deb
FS
451 cfg.period = (uint32_t)(PWM_CLOCK / freq);
452 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 453 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 454
86d77b75 455 ctrl_reg = ctrl_reg_tab[which - 1];
c3d40037
HK
456 wrptr = buf;
457 write_u32le_inc(&wrptr, cfg.period);
458 write_u32le_inc(&wrptr, cfg.duty);
86d77b75 459 ret = ctrl_out(sdi, CMD_FPGA_SPI, ctrl_reg, 0, buf, wrptr - buf);
f2cd2deb 460 if (ret != SR_OK) {
91f73872
GS
461 sr_err("Cannot setup PWM%d configuration %d %d.",
462 which, cfg.period, cfg.duty);
f2cd2deb
FS
463 return ret;
464 }
86d77b75 465
f2cd2deb
FS
466 setting = &devc->pwm_setting[which - 1];
467 setting->freq = freq;
468 setting->duty = duty;
f2cd2deb
FS
469
470 return SR_OK;
471}
472
473static int set_defaults(const struct sr_dev_inst *sdi)
474{
475 struct dev_context *devc;
476 int ret;
477
478 devc = sdi->priv;
479
f2cd2deb
FS
480 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
481 if (ret)
482 return ret;
483
86d77b75 484 ret = enable_pwm(sdi, FALSE, FALSE);
f2cd2deb
FS
485 if (ret)
486 return ret;
487
86d77b75 488 ret = configure_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
489 if (ret)
490 return ret;
491
86d77b75 492 ret = configure_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
493 if (ret)
494 return ret;
495
86d77b75 496 ret = enable_pwm(sdi, TRUE, TRUE);
f2cd2deb
FS
497 if (ret)
498 return ret;
499
500 return SR_OK;
501}
502
ea436ba7
GS
503static uint16_t get_channels_mask(const struct sr_dev_inst *sdi)
504{
505 uint16_t channels;
506 GSList *l;
507 struct sr_channel *ch;
508
509 channels = 0;
510 for (l = sdi->channels; l; l = l->next) {
511 ch = l->data;
512 if (ch->type != SR_CHANNEL_LOGIC)
513 continue;
514 if (!ch->enabled)
515 continue;
516 channels |= 1UL << ch->index;
517 }
518
519 return channels;
520}
521
f2cd2deb
FS
522static int set_trigger_config(const struct sr_dev_inst *sdi)
523{
524 struct dev_context *devc;
525 struct sr_trigger *trigger;
66f5f697 526 struct trigger_cfg cfg;
f2cd2deb
FS
527 GSList *stages;
528 GSList *channel;
529 struct sr_trigger_stage *stage1;
530 struct sr_trigger_match *match;
531 uint16_t ch_mask;
532 int ret;
c3d40037
HK
533 uint8_t buf[4 * sizeof(uint32_t)];
534 uint8_t *wrptr;
f2cd2deb
FS
535
536 devc = sdi->priv;
537 trigger = sr_session_trigger_get(sdi->session);
538
539 memset(&cfg, 0, sizeof(cfg));
540
ea436ba7 541 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
542
543 if (trigger && trigger->stages) {
544 stages = trigger->stages;
545 stage1 = stages->data;
546 if (stages->next) {
547 sr_err("Only one trigger stage supported for now.");
548 return SR_ERR;
549 }
550 channel = stage1->matches;
551 while (channel) {
552 match = channel->data;
cf057ac4 553 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
554
555 switch (match->match) {
556 case SR_TRIGGER_ZERO:
557 cfg.level |= ch_mask;
558 cfg.high_or_falling &= ~ch_mask;
559 break;
560 case SR_TRIGGER_ONE:
561 cfg.level |= ch_mask;
562 cfg.high_or_falling |= ch_mask;
563 break;
564 case SR_TRIGGER_RISING:
565 if ((cfg.enabled & ~cfg.level)) {
91f73872 566 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
567 return SR_ERR;
568 }
569 cfg.level &= ~ch_mask;
570 cfg.high_or_falling &= ~ch_mask;
571 break;
572 case SR_TRIGGER_FALLING:
573 if ((cfg.enabled & ~cfg.level)) {
91f73872 574 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
575 return SR_ERR;
576 }
577 cfg.level &= ~ch_mask;
578 cfg.high_or_falling |= ch_mask;
579 break;
580 default:
91f73872 581 sr_err("Unknown trigger condition.");
f2cd2deb
FS
582 return SR_ERR;
583 }
584 cfg.enabled |= ch_mask;
585 channel = channel->next;
586 }
587 }
91f73872
GS
588 sr_dbg("Set trigger config: "
589 "channels 0x%04x, trigger-enabled 0x%04x, "
590 "level-triggered 0x%04x, high/falling 0x%04x.",
591 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 592
cf057ac4 593 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 594
c3d40037
HK
595 wrptr = buf;
596 write_u32le_inc(&wrptr, cfg.channels);
597 write_u32le_inc(&wrptr, cfg.enabled);
598 write_u32le_inc(&wrptr, cfg.level);
599 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
600 /* TODO
601 * Comment on this literal 16. Origin, meaning? Cannot be the
602 * register offset, nor the transfer length. Is it a channels
603 * count that is relevant for 16 and 32 channel models? Is it
604 * an obsolete experiment?
605 */
42f6dd55 606 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 607 if (ret != SR_OK) {
91f73872 608 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
609 return ret;
610 }
611
612 return SR_OK;
613}
614
615static int set_sample_config(const struct sr_dev_inst *sdi)
616{
617 struct dev_context *devc;
d8fbfcd9 618 uint64_t min_samplerate, eff_samplerate;
adab4d91 619 uint16_t divider_u16;
a38f0f5e 620 uint64_t limit_samples;
adab4d91
GS
621 uint64_t pre_trigger_samples;
622 uint64_t pre_trigger_memory;
623 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 624 uint8_t *wrptr;
adab4d91 625 int ret;
f2cd2deb
FS
626
627 devc = sdi->priv;
f2cd2deb 628
d466f61c 629 if (devc->cur_samplerate > devc->model->samplerate) {
91f73872
GS
630 sr_err("Too high a sample rate: %" PRIu64 ".",
631 devc->cur_samplerate);
ea436ba7
GS
632 return SR_ERR_ARG;
633 }
d8fbfcd9
GS
634 min_samplerate = devc->model->samplerate;
635 min_samplerate /= 65536;
636 if (devc->cur_samplerate < min_samplerate) {
ea436ba7
GS
637 sr_err("Too low a sample rate: %" PRIu64 ".",
638 devc->cur_samplerate);
639 return SR_ERR_ARG;
f2cd2deb 640 }
d8fbfcd9
GS
641 divider_u16 = devc->model->samplerate / devc->cur_samplerate;
642 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 643
a38f0f5e
GS
644 ret = sr_sw_limits_get_remain(&devc->sw_limits,
645 &limit_samples, NULL, NULL, NULL);
646 if (ret != SR_OK) {
647 sr_err("Cannot get acquisition limits.");
648 return ret;
f2cd2deb 649 }
a38f0f5e 650 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
651 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
652 limit_samples);
653 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 654 }
d8fbfcd9
GS
655 if (limit_samples == 0) {
656 limit_samples = LA2016_NUM_SAMPLES_MAX;
657 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
658 limit_samples);
ea436ba7 659 }
f2cd2deb 660
adab4d91
GS
661 /*
662 * The acquisition configuration communicates "pre-trigger"
663 * specs in several formats. sigrok users provide a percentage
664 * (0-100%), which translates to a pre-trigger samples count
665 * (assuming that a total samples count limit was specified).
666 * The device supports hardware compression, which depends on
667 * slowly changing input data to be effective. Fast changing
668 * input data may occupy more space in sample memory than its
669 * uncompressed form would. This is why a third parameter can
670 * limit the amount of sample memory to use for pre-trigger
671 * data. Only the upper 24 bits of that memory size spec get
672 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
673 *
674 * TODO Determine whether the pre-trigger memory size gets
675 * specified in samples or in bytes. A previous implementation
676 * suggests bytes but this is suspicious when every other spec
677 * is in terms of samples.
adab4d91 678 */
d8fbfcd9
GS
679 if (devc->trigger_involved) {
680 pre_trigger_samples = limit_samples;
681 pre_trigger_samples *= devc->capture_ratio;
682 pre_trigger_samples /= 100;
683 pre_trigger_memory = devc->model->memory_bits;
684 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
685 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
686 pre_trigger_memory *= devc->capture_ratio;
687 pre_trigger_memory /= 100;
688 } else {
689 sr_dbg("No trigger setup, skipping pre-trigger config.");
690 pre_trigger_samples = 1;
691 pre_trigger_memory = 0;
692 }
693 /* Ensure non-zero value after LSB shift out in HW reg. */
694 if (pre_trigger_memory < 0x100) {
695 pre_trigger_memory = 0x100;
696 }
f2cd2deb 697
adab4d91 698 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 699 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
700 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
701 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 702
b1a17c1a
GS
703 /*
704 * The acquisition configuration occupies a total of 16 bytes:
705 * - A 34bit total samples count limit (up to 10 billions) that
706 * is kept in a 40bit register.
707 * - A 34bit pre-trigger samples count limit (up to 10 billions)
708 * in another 40bit register.
709 * - A 32bit pre-trigger memory space limit (in bytes) of which
710 * the upper 24bits are kept in an FPGA register.
711 * - A 16bit clock divider which gets applied to the maximum
712 * samplerate of the device.
713 * - An 8bit register of unknown meaning. Currently always 0.
714 */
c3d40037 715 wrptr = buf;
a38f0f5e 716 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
717 write_u40le_inc(&wrptr, pre_trigger_samples);
718 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 719 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 720 write_u8_inc(&wrptr, 0);
42f6dd55 721 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 722 if (ret != SR_OK) {
91f73872 723 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
724 return ret;
725 }
726
727 return SR_OK;
728}
729
96dc954e
GS
730/*
731 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
732 * of interest:
733 * bit 0: value 1 = idle
734 * bit 1: value 1 = writing to SDRAM
735 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
736 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
737 * The meaning of other bit fields is unknown.
7601dca7 738 *
96dc954e 739 * Typical values in order of appearance during execution:
b711fd8e
GS
740 * 0x85e1: idle, no acquisition pending
741 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
742 * "In idle state." Takes precedence over all others.
96dc954e
GS
743 * 0x85e2: pre-sampling, samples before the trigger position,
744 * when capture ratio > 0%
b711fd8e
GS
745 * IDLE clear, TRGD clear, POST clear; DRAM don't care
746 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
747 * 0x85ea: pre-sampling complete, now waiting for the trigger
748 * (whilst sampling continuously)
b711fd8e
GS
749 * IDLE clear, TRGD clear, POST set; DRAM don't care
750 * "Post set thus after pre, not triggered yet"
96dc954e 751 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
752 * IDLE clear, TRGD set, POST set; DRAM don't care
753 * "Triggered and in post, not idle yet."
96dc954e 754 * 0x85ed: idle
b711fd8e
GS
755 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
756 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 757 */
b711fd8e
GS
758static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
759static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
760static const uint16_t runstate_mask_step =
761 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
762static const uint16_t runstate_patt_pre_trig = 0;
763static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
764static const uint16_t runstate_patt_post_trig =
765 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
766
f2cd2deb
FS
767static uint16_t run_state(const struct sr_dev_inst *sdi)
768{
21d68fd9
GS
769 static uint16_t previous_state;
770
f2cd2deb 771 int ret;
21d68fd9
GS
772 uint16_t state;
773 uint8_t buff[sizeof(state)];
774 const uint8_t *rdptr;
775 const char *label;
f2cd2deb 776
411ad77c
GS
777 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
778 if (ret != SR_OK) {
91f73872 779 sr_err("Cannot read run state.");
f2cd2deb
FS
780 return ret;
781 }
21d68fd9
GS
782 rdptr = buff;
783 state = read_u16le_inc(&rdptr);
7601dca7 784
96dc954e
GS
785 /*
786 * Avoid flooding the log, only dump values as they change.
787 * The routine is called about every 50ms.
7601dca7 788 */
b711fd8e
GS
789 if (state == previous_state)
790 return state;
791
792 previous_state = state;
793 label = NULL;
794 if ((state & runstate_mask_idle) == runstate_patt_idle)
795 label = "idle";
796 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
797 label = "pre-trigger sampling";
798 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
799 label = "sampling, waiting for trigger";
800 if ((state & runstate_mask_step) == runstate_patt_post_trig)
801 label = "post-trigger sampling";
802 if (label && *label)
803 sr_dbg("Run state: 0x%04x (%s).", state, label);
804 else
805 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
806
807 return state;
808}
809
cf057ac4 810static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
811{
812 uint16_t state;
813
814 state = run_state(sdi);
b711fd8e 815 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
816 return 1;
817
818 return 0;
819}
820
821static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
822{
823 int ret;
824
411ad77c
GS
825 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
826 if (ret != SR_OK) {
c34f4a89 827 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
828 return ret;
829 }
830
831 return SR_OK;
832}
833
834static int get_capture_info(const struct sr_dev_inst *sdi)
835{
836 struct dev_context *devc;
837 int ret;
c3d40037
HK
838 uint8_t buf[3 * sizeof(uint32_t)];
839 const uint8_t *rdptr;
f2cd2deb
FS
840
841 devc = sdi->priv;
842
411ad77c
GS
843 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
844 if (ret != SR_OK) {
91f73872 845 sr_err("Cannot read capture info.");
f2cd2deb
FS
846 return ret;
847 }
c3d40037
HK
848
849 rdptr = buf;
850 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
851 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
852 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 853
cf057ac4 854 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
855 devc->info.n_rep_packets, devc->info.n_rep_packets,
856 devc->info.n_rep_packets_before_trigger,
857 devc->info.n_rep_packets_before_trigger,
858 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 859
852c7d14
GS
860 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
861 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
862 (unsigned long)devc->info.n_rep_packets,
863 NUM_PACKETS_IN_CHUNK);
91f73872 864 }
f2cd2deb
FS
865
866 return SR_OK;
867}
868
d466f61c
GS
869SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
870 struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
f2cd2deb 871{
d466f61c
GS
872 struct dev_context *devc;
873 char *fw_file;
874 int ret;
875
876 devc = sdi ? sdi->priv : NULL;
877
878 fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
879 sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
880
881 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
882 if (ret != SR_OK) {
883 g_free(fw_file);
884 return ret;
885 }
886
887 if (devc) {
888 devc->mcu_firmware = fw_file;
889 fw_file = NULL;
890 }
891 g_free(fw_file);
892
893 return SR_OK;
f2cd2deb
FS
894}
895
896SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
897{
898 struct dev_context *devc;
899 int ret;
900 uint8_t cmd;
901
902 devc = sdi->priv;
903
904 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
905 if (ret != SR_OK)
906 return ret;
907
908 cmd = 0;
411ad77c
GS
909 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
910 if (ret != SR_OK) {
91f73872 911 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
912 return ret;
913 }
914
915 ret = set_trigger_config(sdi);
916 if (ret != SR_OK)
917 return ret;
918
919 ret = set_sample_config(sdi);
920 if (ret != SR_OK)
921 return ret;
922
923 return SR_OK;
924}
925
926SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
927{
3ebc1cb2
GS
928 int ret;
929
852c7d14 930 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
931 if (ret != SR_OK)
932 return ret;
933
934 return SR_OK;
f2cd2deb
FS
935}
936
3ebc1cb2 937static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 938{
3ebc1cb2
GS
939 int ret;
940
852c7d14 941 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
942 if (ret != SR_OK)
943 return ret;
944
945 return SR_OK;
f2cd2deb
FS
946}
947
948SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
949{
3ebc1cb2
GS
950 int ret;
951 struct dev_context *devc;
952
953 ret = la2016_stop_acquisition(sdi);
954 if (ret != SR_OK)
955 return ret;
956
957 devc = sdi ? sdi->priv : NULL;
958 if (devc && devc->transfer)
959 libusb_cancel_transfer(devc->transfer);
960
961 return SR_OK;
f2cd2deb
FS
962}
963
cf057ac4 964static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 965 libusb_transfer_cb_fn cb)
f2cd2deb
FS
966{
967 struct dev_context *devc;
968 struct sr_usb_dev_inst *usb;
969 int ret;
c3d40037
HK
970 uint8_t wrbuf[2 * sizeof(uint32_t)];
971 uint8_t *wrptr;
f2cd2deb
FS
972 uint32_t to_read;
973 uint8_t *buffer;
974
975 devc = sdi->priv;
976 usb = sdi->conn;
977
411ad77c
GS
978 ret = get_capture_info(sdi);
979 if (ret != SR_OK)
f2cd2deb
FS
980 return ret;
981
c3d40037
HK
982 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
983 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
984 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
985 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
986
91f73872 987 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 988 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 989
411ad77c
GS
990 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
991 if (ret != SR_OK) {
91f73872 992 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
993 return ret;
994 }
91f73872
GS
995 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
996 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
997 wrptr = wrbuf;
998 write_u32le_inc(&wrptr, devc->read_pos);
999 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
1000 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
1001 if (ret != SR_OK) {
91f73872 1002 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
1003 return ret;
1004 }
411ad77c
GS
1005 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1006 if (ret != SR_OK) {
91f73872 1007 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1008 return ret;
1009 }
1010
96dc954e
GS
1011 /*
1012 * Pick a buffer size for all USB transfers. The buffer size
1013 * must be a multiple of the endpoint packet size. And cannot
1014 * exceed a maximum value.
1015 */
f2cd2deb 1016 to_read = devc->n_bytes_to_read;
96dc954e
GS
1017 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1018 to_read = LA2016_USB_BUFSZ;
1019 else /* One transfer. */
e847645b 1020 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
1021 buffer = g_try_malloc(to_read);
1022 if (!buffer) {
91f73872
GS
1023 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1024 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1025 return SR_ERR_MALLOC;
1026 }
1027
1028 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1029 libusb_fill_bulk_transfer(devc->transfer,
1030 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1031 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1032
411ad77c
GS
1033 ret = libusb_submit_transfer(devc->transfer);
1034 if (ret != 0) {
91f73872 1035 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1036 libusb_free_transfer(devc->transfer);
1037 devc->transfer = NULL;
1038 g_free(buffer);
1039 return SR_ERR;
1040 }
1041
1042 return SR_OK;
1043}
1044
480efba2
GS
1045/*
1046 * A chunk (received via USB) contains a number of transfers (USB length
1047 * divided by 16) which contain a number of packets (5 per transfer) which
1048 * contain a number of samples (8bit repeat count per 16bit sample data).
1049 */
dfac9592 1050static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1051 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1052{
1053 struct dev_context *devc;
480efba2 1054 size_t num_pkts;
dfac9592 1055 const uint8_t *rp;
480efba2
GS
1056 uint16_t sample_value;
1057 size_t repetitions;
1058 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1059
1060 devc = sdi->priv;
1061
a38f0f5e
GS
1062 /* Ignore incoming USB data after complete sample data download. */
1063 if (devc->download_finished)
1064 return;
dfac9592 1065
cf057ac4 1066 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1067 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1068 devc->trigger_marked = TRUE;
dfac9592
GS
1069 }
1070
1071 rp = packets;
480efba2
GS
1072 while (num_xfers--) {
1073 num_pkts = NUM_PACKETS_IN_CHUNK;
1074 while (num_pkts--) {
dfac9592 1075
480efba2 1076 sample_value = read_u16le_inc(&rp);
dfac9592 1077 repetitions = read_u8_inc(&rp);
dfac9592 1078
dfac9592 1079 devc->total_samples += repetitions;
480efba2
GS
1080
1081 write_u16le(sample_buff, sample_value);
a38f0f5e
GS
1082 feed_queue_logic_submit(devc->feed_queue,
1083 sample_buff, repetitions);
1084 sr_sw_limits_update_samples_read(&devc->sw_limits,
1085 repetitions);
480efba2 1086
cf057ac4
GS
1087 if (devc->trigger_involved && !devc->trigger_marked) {
1088 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1089 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1090 devc->trigger_marked = TRUE;
91f73872 1091 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1092 devc->total_samples,
1093 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1094 }
1095 }
1096 }
1097 (void)read_u8_inc(&rp); /* Skip sequence number. */
1098 }
a38f0f5e
GS
1099
1100 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1101 sr_dbg("Acquisition limit reached.");
1102 devc->download_finished = TRUE;
1103 }
1104 if (devc->download_finished) {
1105 sr_dbg("Download finished, flushing session feed queue.");
1106 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1107 }
a38f0f5e 1108 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1109}
1110
1111static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1112{
1113 struct sr_dev_inst *sdi;
1114 struct dev_context *devc;
1115 struct sr_usb_dev_inst *usb;
a38f0f5e 1116 size_t num_xfers;
dfac9592
GS
1117 int ret;
1118
1119 sdi = transfer->user_data;
1120 devc = sdi->priv;
1121 usb = sdi->conn;
1122
1123 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1124 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1125 /*
1126 * Implementation detail: A USB transfer timeout is not fatal
1127 * here. We just process whatever was received, empty input is
1128 * perfectly acceptable. Reaching (or exceeding) the sw limits
1129 * or exhausting the device's captured data will complete the
1130 * sample data download.
1131 */
1132 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1133 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1134
1135 devc->n_bytes_to_read -= transfer->actual_length;
1136 if (devc->n_bytes_to_read) {
1137 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1138 /*
1139 * Determine read size for the next USB transfer. Make
1140 * the buffer size a multiple of the endpoint packet
1141 * size. Don't exceed a maximum value.
1142 */
dfac9592
GS
1143 if (to_read >= LA2016_USB_BUFSZ)
1144 to_read = LA2016_USB_BUFSZ;
96dc954e 1145 else
dfac9592 1146 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1147 libusb_fill_bulk_transfer(transfer,
1148 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1149 transfer->buffer, to_read,
dfac9592
GS
1150 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1151
411ad77c
GS
1152 ret = libusb_submit_transfer(transfer);
1153 if (ret == 0)
dfac9592 1154 return;
91f73872
GS
1155 sr_err("Cannot submit another USB transfer: %s.",
1156 libusb_error_name(ret));
dfac9592
GS
1157 }
1158
1159 g_free(transfer->buffer);
1160 libusb_free_transfer(transfer);
cf057ac4 1161 devc->download_finished = TRUE;
dfac9592
GS
1162}
1163
1164SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1165{
1166 const struct sr_dev_inst *sdi;
1167 struct dev_context *devc;
1168 struct drv_context *drvc;
1169 struct timeval tv;
a38f0f5e 1170 int ret;
dfac9592
GS
1171
1172 (void)fd;
1173 (void)revents;
1174
1175 sdi = cb_data;
1176 devc = sdi->priv;
1177 drvc = sdi->driver->context;
1178
a38f0f5e
GS
1179 /*
1180 * Wait for the acquisition to complete in hardware.
1181 * Periodically check a potentially configured msecs timeout.
1182 */
cf057ac4
GS
1183 if (!devc->completion_seen) {
1184 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1185 if (sr_sw_limits_check(&devc->sw_limits)) {
1186 devc->sw_limits.limit_msec = 0;
1187 sr_dbg("Limit reached. Stopping acquisition.");
1188 la2016_stop_acquisition(sdi);
1189 }
96dc954e 1190 /* Not yet ready for sample data download. */
dfac9592
GS
1191 return TRUE;
1192 }
a38f0f5e
GS
1193 sr_dbg("Acquisition completion seen (hardware).");
1194 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1195 devc->completion_seen = TRUE;
1196 devc->download_finished = FALSE;
1197 devc->trigger_marked = FALSE;
dfac9592 1198 devc->total_samples = 0;
a38f0f5e
GS
1199
1200 /* Initiate the download of acquired sample data. */
1201 std_session_send_df_frame_begin(sdi);
1202 ret = la2016_start_download(sdi, receive_transfer);
1203 if (ret != SR_OK) {
91f73872 1204 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1205 return FALSE;
1206 }
91f73872 1207 sr_dbg("Acquisition data download started.");
dfac9592
GS
1208
1209 return TRUE;
1210 }
1211
a38f0f5e 1212 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1213 tv.tv_sec = tv.tv_usec = 0;
1214 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1215
a38f0f5e 1216 /* Postprocess completion of sample data download. */
cf057ac4 1217 if (devc->download_finished) {
91f73872 1218 sr_dbg("Download finished, post processing.");
dfac9592
GS
1219
1220 la2016_stop_acquisition(sdi);
a38f0f5e 1221 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1222 devc->transfer = NULL;
1223
a38f0f5e
GS
1224 feed_queue_logic_flush(devc->feed_queue);
1225 feed_queue_logic_free(devc->feed_queue);
1226 devc->feed_queue = NULL;
1227 std_session_send_df_frame_end(sdi);
1228 std_session_send_df_end(sdi);
1229
91f73872 1230 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1231 }
1232
1233 return TRUE;
1234}
1235
d466f61c
GS
1236SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1237 gboolean show_message)
f2cd2deb 1238{
8b172e78 1239 struct dev_context *devc;
9de389b1 1240 uint8_t buf[8];
64172b16 1241 size_t rdoff, rdlen;
43d2e52f
GS
1242 const uint8_t *rdptr;
1243 uint8_t date_yy, date_mm;
1244 uint8_t dinv_yy, dinv_mm;
9de389b1 1245 uint8_t magic;
d466f61c
GS
1246 size_t model_idx;
1247 const struct kingst_model *model;
9de389b1 1248 int ret;
f2cd2deb 1249
8b172e78
KG
1250 devc = sdi->priv;
1251
96dc954e 1252 /*
43d2e52f
GS
1253 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1254 * year and month in BCD format, followed by inverted values for
1255 * consistency checks. For example bytes 20 04 df fb translate
1256 * to 2020-04. This information can help identify the vintage of
1257 * devices when unknown magic numbers are seen.
9de389b1 1258 */
64172b16
GS
1259 rdoff = 0x20;
1260 rdlen = 4 * sizeof(uint8_t);
1261 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1262 if (ret != SR_OK && !show_message) {
64172b16 1263 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1264 sr_dbg("Cannot access EEPROM.");
1265 return SR_ERR_IO;
1266 } else if (ret != SR_OK) {
64172b16 1267 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1268 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1269 } else {
64172b16
GS
1270 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1271 GString *txt;
1272 txt = sr_hexdump_new(buf, rdlen);
1273 sr_spew("Manufacture date bytes %s.", txt->str);
1274 sr_hexdump_free(txt);
1275 }
43d2e52f
GS
1276 rdptr = &buf[0];
1277 date_yy = read_u8_inc(&rdptr);
1278 date_mm = read_u8_inc(&rdptr);
1279 dinv_yy = read_u8_inc(&rdptr);
1280 dinv_mm = read_u8_inc(&rdptr);
1281 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1282 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1283 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1284 }
f2cd2deb 1285
9de389b1 1286 /*
96dc954e
GS
1287 * Several Kingst logic analyzer devices share the same USB VID
1288 * and PID. The product ID determines which MCU firmware to load.
1289 * The MCU firmware provides access to EEPROM content which then
1290 * allows to identify the device model. Which in turn determines
1291 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1292 * to get inspected.
9de389b1 1293 *
96dc954e
GS
1294 * EEPROM content for model identification is kept redundantly
1295 * in memory. The values are stored in verbatim and in inverted
1296 * form, multiple copies are kept at different offsets. Example
1297 * data:
9de389b1 1298 *
96dc954e
GS
1299 * magic 0x08
1300 * | ~magic 0xf7
1301 * | |
1302 * 08f7000008f710ef
1303 * | |
1304 * | ~magic backup
1305 * magic backup
9de389b1 1306 *
96dc954e
GS
1307 * Exclusively inspecting the magic byte appears to be sufficient,
1308 * other fields seem to be 'don't care'.
9de389b1 1309 *
96dc954e
GS
1310 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1311 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1312 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1313 * (latest v1.3.0 PCB, perhaps others)
1314 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1315 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1316 *
96dc954e
GS
1317 * When EEPROM content does not match the hardware configuration
1318 * (the board layout), the software may load but yield incorrect
1319 * results (like swapped channels). The FPGA bitstream itself
1320 * will authenticate with IC U10 and fail when its capabilities
1321 * do not match the hardware model. An LA1016 won't become a
1322 * LA2016 by faking its EEPROM content.
9de389b1 1323 */
d466f61c 1324 devc->identify_magic = 0;
64172b16
GS
1325 rdoff = 0x08;
1326 rdlen = 8 * sizeof(uint8_t);
1327 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1328 if (ret != SR_OK) {
91f73872 1329 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1330 return ret;
1331 }
64172b16
GS
1332 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1333 GString *txt;
1334 txt = sr_hexdump_new(buf, rdlen);
1335 sr_spew("EEPROM magic bytes %s.", txt->str);
1336 sr_hexdump_free(txt);
1337 }
43d2e52f 1338 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1339 /* Primary copy of magic passes complement check. */
9de389b1 1340 magic = buf[0];
64172b16 1341 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1342 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1343 /* Backup copy of magic passes complement check. */
9de389b1 1344 magic = buf[4];
64172b16 1345 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1346 } else {
1347 sr_err("Cannot find consistent device type identification.");
1348 magic = 0;
f2cd2deb 1349 }
d466f61c 1350 devc->identify_magic = magic;
9de389b1 1351
d466f61c
GS
1352 devc->model = NULL;
1353 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1354 model = &models[model_idx];
1355 if (model->magic != magic)
1356 continue;
1357 devc->model = model;
64172b16
GS
1358 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1359 model->name, model->channel_count,
1360 model->samplerate / SR_MHZ(1));
d466f61c
GS
1361 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1362 model->fpga_stem);
d466f61c 1363 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1364 break;
1365 }
d466f61c 1366 if (!devc->model) {
91f73872 1367 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1368 return SR_ERR;
1369 }
f2cd2deb 1370
d466f61c
GS
1371 return SR_OK;
1372}
1373
6d53e949 1374SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1375{
1376 struct dev_context *devc;
1377 const char *bitstream_fn;
1378 int ret;
1379 uint16_t state;
1380
1381 devc = sdi->priv;
1382 bitstream_fn = devc ? devc->fpga_bitstream : "";
1383
1384 ret = check_fpga_bitstream(sdi);
1385 if (ret != SR_OK) {
d6f89d4b
GS
1386 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1387 if (ret != SR_OK) {
1388 sr_err("Cannot upload FPGA bitstream.");
1389 return ret;
1390 }
1391 }
1392 ret = enable_fpga_bitstream(sdi);
9de389b1 1393 if (ret != SR_OK) {
d6f89d4b 1394 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1395 return ret;
1396 }
1397
f2cd2deb 1398 state = run_state(sdi);
9de389b1 1399 if (state != 0x85e9) {
91f73872 1400 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1401 }
f2cd2deb 1402
6d53e949
GS
1403 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1404 if (ret != SR_OK) {
91f73872 1405 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1406 return ret;
1407 }
9de389b1 1408
91f73872 1409 sr_dbg("Device should be initialized.");
f2cd2deb 1410
6d53e949
GS
1411 return SR_OK;
1412}
1413
1414SR_PRIV int la2016_init_params(const struct sr_dev_inst *sdi)
1415{
1416 int ret;
1417
c34f4a89
GS
1418 ret = set_defaults(sdi);
1419 if (ret != SR_OK)
1420 return ret;
1421
1422 return SR_OK;
f2cd2deb
FS
1423}
1424
6d53e949 1425SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1426{
1427 int ret;
1428
6d53e949
GS
1429 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1430 if (ret != SR_OK) {
91f73872 1431 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1432 return ret;
1433 }
1434
1435 return SR_OK;
1436}