]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: add my copyright for recent improvements
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
7047acc8 4 * Copyright (C) 2022 Gerhard Sittig <gerhard.sittig@gmx.net>
f2cd2deb
FS
5 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
6 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
7 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
8 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24#include <config.h>
a7740b06 25
f2cd2deb 26#include <libsigrok/libsigrok.h>
a7740b06
GS
27#include <string.h>
28
f2cd2deb
FS
29#include "libsigrok-internal.h"
30#include "protocol.h"
31
d466f61c
GS
32/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
33#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
34#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
35
36/*
37 * List of supported devices and their features. See @ref kingst_model
38 * for the fields' type and meaning. Table is sorted by EEPROM magic.
39 *
40 * TODO
41 * - Below LA1016 properties were guessed, need verification.
42 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
43 * - Does LA1010 fit the driver implementation? Samplerates vary with
44 * channel counts, lack of local sample memory. Most probably not.
45 */
46static const struct kingst_model models[] = {
47 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
48 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
49 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
50 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
51};
f2cd2deb 52
96dc954e 53/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 54#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
55#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
56#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
57#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
58#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
59#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
60#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 61
42f6dd55 62/*
96dc954e
GS
63 * FPGA register addresses (base addresses when registers span multiple
64 * bytes, in that case data is kept in little endian format). Passed to
65 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
66 * of SPI transfers encoding the read (1) or write (0) direction in the
67 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
68 *
69 * Unfortunately the FPGA registers change their meaning between the
70 * read and write directions of access, or exclusively provide one of
71 * these directions and not the other. This is an arbitrary vendor's
72 * choice, there is nothing which the sigrok driver could do about it.
73 * Values written to registers typically cannot get read back, neither
74 * verified after writing a configuration, nor queried upon startup for
75 * automatic detection of the current configuration. Neither appear to
76 * be there echo registers for presence and communication checks, nor
77 * version identifying registers, as far as we know.
42f6dd55 78 */
96dc954e
GS
79#define REG_RUN 0x00 /* Read capture status, write start capture. */
80#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
81#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
82#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
83#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
3ab60908
GS
84#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
85#define REG_UNKNOWN_30 0x30
96dc954e
GS
86#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
87#define REG_PWM1 0x70 /* Write config for user PWM1. */
88#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 89
972d191b
GS
90/* Bit patterns to write to REG_CAPT_MODE. */
91#define CAPTMODE_TO_RAM 0x00
92#define CAPTMODE_STREAM 0x01
93
852c7d14
GS
94/* Bit patterns to write to REG_RUN, setup run mode. */
95#define RUNMODE_HALT 0x00
96#define RUNMODE_RUN 0x03
97
b711fd8e
GS
98/* Bit patterns when reading from REG_RUN, get run state. */
99#define RUNSTATE_IDLE_BIT (1UL << 0)
100#define RUNSTATE_DRAM_BIT (1UL << 1)
101#define RUNSTATE_TRGD_BIT (1UL << 2)
102#define RUNSTATE_POST_BIT (1UL << 3)
103
f2cd2deb 104static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
105 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
106 void *data, uint16_t wLength)
f2cd2deb
FS
107{
108 struct sr_usb_dev_inst *usb;
109 int ret;
110
111 usb = sdi->conn;
112
411ad77c
GS
113 ret = libusb_control_transfer(usb->devhdl,
114 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
115 bRequest, wValue, wIndex, data, wLength,
116 DEFAULT_TIMEOUT_MS);
117 if (ret != wLength) {
91f73872
GS
118 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
119 wLength, bRequest, wValue, wIndex,
120 libusb_error_name(ret));
121 sr_err("Cannot read %d bytes from USB: %s.",
122 wLength, libusb_error_name(ret));
286b3e13 123 return SR_ERR_IO;
f2cd2deb
FS
124 }
125
126 return SR_OK;
127}
128
129static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
130 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
131 void *data, uint16_t wLength)
f2cd2deb
FS
132{
133 struct sr_usb_dev_inst *usb;
134 int ret;
135
136 usb = sdi->conn;
137
411ad77c
GS
138 ret = libusb_control_transfer(usb->devhdl,
139 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
140 bRequest, wValue, wIndex, data, wLength,
141 DEFAULT_TIMEOUT_MS);
142 if (ret != wLength) {
91f73872
GS
143 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
144 wLength, bRequest, wValue, wIndex,
145 libusb_error_name(ret));
146 sr_err("Cannot write %d bytes to USB: %s.",
147 wLength, libusb_error_name(ret));
286b3e13 148 return SR_ERR_IO;
f2cd2deb
FS
149 }
150
151 return SR_OK;
152}
153
33020165
GS
154/* HACK Experiment to spot FPGA registers of interest. */
155static void la2016_dump_fpga_registers(const struct sr_dev_inst *sdi,
156 const char *caption, size_t reg_lower, size_t reg_upper)
157{
158 static const size_t dump_chunk_len = 16;
159
160 size_t rdlen;
161 uint8_t rdbuf[0x80 - 0x00]; /* Span all FPGA registers. */
162 const uint8_t *rdptr;
163 int ret;
164 size_t dump_addr, indent, dump_len;
165 GString *txt;
166
167 if (sr_log_loglevel_get() < SR_LOG_SPEW)
168 return;
169
170 if (!reg_lower && !reg_upper) {
171 reg_lower = 0;
172 reg_upper = sizeof(rdbuf);
173 }
174 if (reg_upper - reg_lower > sizeof(rdbuf))
175 reg_upper = sizeof(rdbuf) - reg_lower;
176
177 rdlen = reg_upper - reg_lower;
178 ret = ctrl_in(sdi, CMD_FPGA_SPI, reg_lower, 0, rdbuf, rdlen);
179 if (ret != SR_OK) {
180 sr_err("Cannot get registers space.");
181 return;
182 }
183 rdptr = rdbuf;
184
185 sr_spew("FPGA registers dump: %s", caption ? : "for fun");
186 dump_addr = reg_lower;
187 while (rdlen) {
188 dump_len = rdlen;
189 indent = dump_addr % dump_chunk_len;
190 if (dump_len > dump_chunk_len)
191 dump_len = dump_chunk_len;
192 if (dump_len + indent > dump_chunk_len)
193 dump_len = dump_chunk_len - indent;
194 txt = sr_hexdump_new(rdptr, dump_len);
195 sr_spew(" %04zx %*s%s",
196 dump_addr, (int)(3 * indent), "", txt->str);
197 sr_hexdump_free(txt);
198 dump_addr += dump_len;
199 rdptr += dump_len;
200 rdlen -= dump_len;
201 }
202}
203
d6f89d4b
GS
204/*
205 * Check the necessity for FPGA bitstream upload, because another upload
206 * would take some 600ms which is undesirable after program startup. Try
207 * to access some FPGA registers and check the values' plausibility. The
208 * check should fail on the safe side, request another upload when in
209 * doubt. A positive response (the request to continue operation with the
210 * currently active bitstream) should be conservative. Accessing multiple
211 * registers is considered cheap compared to the cost of bitstream upload.
212 *
213 * It helps though that both the vendor software and the sigrok driver
214 * use the same bundle of MCU firmware and FPGA bitstream for any of the
215 * supported models. We don't expect to successfully communicate to the
216 * device yet disagree on its protocol. Ideally we would access version
217 * identifying registers for improved robustness, but are not aware of
218 * any. A bitstream reload can always be forced by a power cycle.
219 */
220static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
221{
222 uint8_t init_rsp;
3ab60908 223 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
d6f89d4b
GS
224 int ret;
225 uint16_t run_state;
226 uint8_t pwm_en;
227 size_t read_len;
d6f89d4b
GS
228 const uint8_t *rdptr;
229
230 sr_dbg("Checking operation of the FPGA bitstream.");
33020165 231 la2016_dump_fpga_registers(sdi, "bitstream check", 0, 0);
d6f89d4b 232
852c7d14 233 init_rsp = ~0;
d6f89d4b
GS
234 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
235 if (ret != SR_OK || init_rsp != 0) {
236 sr_dbg("FPGA init query failed, or unexpected response.");
237 return SR_ERR_IO;
238 }
239
240 read_len = sizeof(run_state);
241 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
242 if (ret != SR_OK) {
243 sr_dbg("FPGA register access failed (run state).");
244 return SR_ERR_IO;
245 }
246 rdptr = buff;
247 run_state = read_u16le_inc(&rdptr);
248 sr_spew("FPGA register: run state 0x%04x.", run_state);
249 if (run_state && (run_state & 0x3) != 0x1) {
250 sr_dbg("Unexpected FPGA register content (run state).");
251 return SR_ERR_DATA;
252 }
253 if (run_state && (run_state & ~0xf) != 0x85e0) {
254 sr_dbg("Unexpected FPGA register content (run state).");
255 return SR_ERR_DATA;
256 }
257
258 read_len = sizeof(pwm_en);
259 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
260 if (ret != SR_OK) {
261 sr_dbg("FPGA register access failed (PWM enable).");
262 return SR_ERR_IO;
263 }
264 rdptr = buff;
265 pwm_en = read_u8_inc(&rdptr);
266 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
267 if ((pwm_en & 0x3) != 0x0) {
268 sr_dbg("Unexpected FPGA register content (PWM enable).");
269 return SR_ERR_DATA;
270 }
271
272 sr_info("Could re-use current FPGA bitstream. No upload required.");
273 return SR_OK;
274}
275
1ed93110
GS
276static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
277 const char *bitstream_fname)
f2cd2deb
FS
278{
279 struct drv_context *drvc;
280 struct sr_usb_dev_inst *usb;
281 struct sr_resource bitstream;
b0d0131e 282 uint32_t bitstream_size;
c3d40037
HK
283 uint8_t buffer[sizeof(uint32_t)];
284 uint8_t *wrptr;
f2cd2deb 285 uint8_t block[4096];
3f48ab02
FS
286 int len, act_len;
287 unsigned int pos;
f2cd2deb 288 int ret;
b0d0131e 289 unsigned int zero_pad_to;
f2cd2deb
FS
290
291 drvc = sdi->driver->context;
292 usb = sdi->conn;
293
9de389b1 294 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 295
411ad77c
GS
296 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
297 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 298 if (ret != SR_OK) {
91f73872 299 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
300 return ret;
301 }
302
b0d0131e 303 bitstream_size = (uint32_t)bitstream.size;
c3d40037 304 wrptr = buffer;
b0d0131e 305 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
306 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
307 if (ret != SR_OK) {
91f73872 308 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
309 sr_resource_close(drvc->sr_ctx, &bitstream);
310 return ret;
311 }
b0d0131e
GS
312 zero_pad_to = bitstream_size;
313 zero_pad_to += LA2016_EP2_PADDING - 1;
314 zero_pad_to /= LA2016_EP2_PADDING;
315 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
316
317 pos = 0;
318 while (1) {
3f48ab02 319 if (pos < bitstream.size) {
411ad77c
GS
320 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
321 block, sizeof(block));
3f48ab02 322 if (len < 0) {
91f73872 323 sr_err("Cannot read FPGA bitstream.");
3f48ab02 324 sr_resource_close(drvc->sr_ctx, &bitstream);
286b3e13 325 return SR_ERR_IO;
3f48ab02
FS
326 }
327 } else {
96dc954e 328 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
329 len = zero_pad_to - pos;
330 if ((unsigned)len > sizeof(block))
331 len = sizeof(block);
332 memset(&block, 0, len);
f2cd2deb
FS
333 }
334 if (len == 0)
335 break;
336
852c7d14 337 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 338 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 339 if (ret != 0) {
91f73872
GS
340 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
341 pos, (int)len, libusb_error_name(ret));
286b3e13 342 ret = SR_ERR_IO;
f2cd2deb
FS
343 break;
344 }
345 if (act_len != len) {
91f73872
GS
346 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
347 pos, (int)len, act_len);
286b3e13 348 ret = SR_ERR_IO;
f2cd2deb
FS
349 break;
350 }
351 pos += len;
352 }
353 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 354 if (ret != SR_OK)
f2cd2deb 355 return ret;
91f73872
GS
356 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
357 bitstream.size);
f2cd2deb 358
d6f89d4b
GS
359 return SR_OK;
360}
361
362static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
363{
364 int ret;
411ad77c 365 uint8_t resp;
d6f89d4b 366
411ad77c
GS
367 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
368 if (ret != SR_OK) {
91f73872 369 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
370 return ret;
371 }
411ad77c 372 if (resp != 0) {
91f73872 373 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 374 resp);
286b3e13 375 return SR_ERR_DATA;
3f48ab02 376 }
852c7d14 377 g_usleep(30 * 1000);
f2cd2deb 378
411ad77c
GS
379 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
380 if (ret != SR_OK) {
91f73872 381 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
382 return ret;
383 }
852c7d14 384 g_usleep(40 * 1000);
d6f89d4b 385
f2cd2deb
FS
386 return SR_OK;
387}
388
389static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
390{
f2cd2deb 391 int ret;
1ed93110 392 uint16_t duty_R79, duty_R56;
3ab60908 393 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
f2ad79d1
KG
394 uint8_t *wrptr;
395
96dc954e 396 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
397 if (voltage > LA2016_THR_VOLTAGE_MAX) {
398 voltage = LA2016_THR_VOLTAGE_MAX;
399 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
400 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
401 }
402
403 /*
96dc954e
GS
404 * Two PWM output channels feed one DAC which generates a bias
405 * voltage, which offsets the input probe's voltage level, and
406 * in combination with the FPGA pins' fixed threshold result in
407 * a programmable input threshold from the user's perspective.
408 * The PWM outputs can be seen on R79 and R56 respectively, the
409 * frequency is 100kHz and the duty cycle varies. The R79 PWM
410 * uses three discrete settings. The R56 PWM varies with desired
411 * thresholds and depends on the R79 PWM configuration. See the
412 * schematics comments which discuss the formulae.
f2ad79d1
KG
413 */
414 if (voltage >= 2.9) {
96dc954e 415 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 416 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 417 } else if (voltage > -0.4) {
96dc954e 418 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 419 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
420 } else {
421 duty_R79 = 0x02d7; /* 72% duty cycle. */
422 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
423 }
424
96dc954e 425 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
426 if (duty_R56 < 10) {
427 duty_R56 = 10;
1ed93110 428 } else if (duty_R56 > 1100) {
f2ad79d1
KG
429 duty_R56 = 1100;
430 }
431
91f73872
GS
432 sr_dbg("Set threshold voltage %.2fV.", voltage);
433 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
434
435 wrptr = buf;
436 write_u16le_inc(&wrptr, duty_R56);
437 write_u16le_inc(&wrptr, duty_R79);
438
439 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 440 if (ret != SR_OK) {
91f73872 441 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
442 return ret;
443 }
f2cd2deb
FS
444
445 return SR_OK;
446}
447
08a49848
GS
448/*
449 * Communicates a channel's configuration to the device after the
450 * parameters may have changed. Configuration of one channel may
451 * interfere with other channels since they share FPGA registers.
452 */
453static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 454{
08a49848 455 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 456
f2cd2deb 457 struct dev_context *devc;
08a49848
GS
458 struct pwm_setting *params;
459 uint8_t reg_base;
460 double val_f;
461 uint32_t val_u;
462 uint32_t period, duty;
463 size_t ch;
f2cd2deb 464 int ret;
08a49848
GS
465 uint8_t enable_all, enable_cfg, reg_val;
466 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 467 uint8_t *wrptr;
f2cd2deb
FS
468
469 devc = sdi->priv;
08a49848
GS
470 if (idx >= ARRAY_SIZE(devc->pwm_setting))
471 return SR_ERR_ARG;
472 params = &devc->pwm_setting[idx];
473 if (idx >= ARRAY_SIZE(reg_bases))
474 return SR_ERR_ARG;
475 reg_base = reg_bases[idx];
f2cd2deb 476
08a49848
GS
477 /*
478 * Map application's specs to hardware register values. Do math
479 * in floating point initially, but convert to u32 eventually.
480 */
481 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
482 idx, params->enabled ? 1 : 0, params->freq, params->duty);
483 val_f = PWM_CLOCK;
484 val_f /= params->freq;
485 val_u = val_f;
486 period = val_u;
487 val_f = period;
488 val_f *= params->duty;
489 val_f /= 100.0;
490 val_f += 0.5;
491 val_u = val_f;
492 duty = val_u;
493 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
494 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
495
496 /* Get the "enabled" state of all supported PWM channels. */
497 enable_all = 0;
498 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
499 if (!devc->pwm_setting[ch].enabled)
500 continue;
501 enable_all |= 1U << ch;
f2cd2deb 502 }
08a49848
GS
503 enable_cfg = 1U << idx;
504 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
505 enable_all, enable_cfg);
f2cd2deb 506
08a49848
GS
507 /*
508 * Disable the to-get-configured channel before its parameters
509 * will change. Or disable and exit when the channel is supposed
510 * to get turned off.
511 */
512 sr_spew("PWM config, disabling before param change.");
513 reg_val = enable_all & ~enable_cfg;
514 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
515 &reg_val, sizeof(reg_val));
f2cd2deb 516 if (ret != SR_OK) {
08a49848 517 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
518 return ret;
519 }
08a49848
GS
520 if (!params->enabled)
521 return SR_OK;
86d77b75 522
08a49848
GS
523 /* Write register values to device. */
524 sr_spew("PWM config, sending new parameters.");
525 wrptr = buf;
526 write_u32le_inc(&wrptr, period);
527 write_u32le_inc(&wrptr, duty);
528 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
529 if (ret != SR_OK) {
530 sr_err("Cannot change PWM parameters.");
f2cd2deb 531 return ret;
08a49848 532 }
f2cd2deb 533
08a49848
GS
534 /* Enable configured channel after write completion. */
535 sr_spew("PWM config, enabling after param change.");
536 reg_val = enable_all | enable_cfg;
537 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
538 &reg_val, sizeof(reg_val));
539 if (ret != SR_OK) {
540 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 541 return ret;
08a49848 542 }
f2cd2deb
FS
543
544 return SR_OK;
545}
546
4276ca94 547static uint32_t get_channels_mask(const struct sr_dev_inst *sdi)
ea436ba7 548{
4276ca94 549 uint32_t channels;
ea436ba7
GS
550 GSList *l;
551 struct sr_channel *ch;
552
553 channels = 0;
554 for (l = sdi->channels; l; l = l->next) {
555 ch = l->data;
556 if (ch->type != SR_CHANNEL_LOGIC)
557 continue;
558 if (!ch->enabled)
559 continue;
560 channels |= 1UL << ch->index;
561 }
562
563 return channels;
564}
565
f2cd2deb
FS
566static int set_trigger_config(const struct sr_dev_inst *sdi)
567{
568 struct dev_context *devc;
569 struct sr_trigger *trigger;
edb13f41 570 struct trigger_cfg {
972d191b
GS
571 uint32_t channels; /* Actually: Enabled channels? */
572 uint32_t enabled; /* Actually: Triggering channels? */
edb13f41
GS
573 uint32_t level;
574 uint32_t high_or_falling;
575 } cfg;
f2cd2deb
FS
576 GSList *stages;
577 GSList *channel;
578 struct sr_trigger_stage *stage1;
579 struct sr_trigger_match *match;
4276ca94 580 uint32_t ch_mask;
f2cd2deb 581 int ret;
3ab60908 582 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
c3d40037 583 uint8_t *wrptr;
f2cd2deb
FS
584
585 devc = sdi->priv;
586 trigger = sr_session_trigger_get(sdi->session);
587
588 memset(&cfg, 0, sizeof(cfg));
589
ea436ba7 590 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
591
592 if (trigger && trigger->stages) {
593 stages = trigger->stages;
594 stage1 = stages->data;
595 if (stages->next) {
596 sr_err("Only one trigger stage supported for now.");
286b3e13 597 return SR_ERR_ARG;
f2cd2deb
FS
598 }
599 channel = stage1->matches;
600 while (channel) {
601 match = channel->data;
cf057ac4 602 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
603
604 switch (match->match) {
605 case SR_TRIGGER_ZERO:
606 cfg.level |= ch_mask;
607 cfg.high_or_falling &= ~ch_mask;
608 break;
609 case SR_TRIGGER_ONE:
610 cfg.level |= ch_mask;
611 cfg.high_or_falling |= ch_mask;
612 break;
613 case SR_TRIGGER_RISING:
614 if ((cfg.enabled & ~cfg.level)) {
91f73872 615 sr_err("Device only supports one edge trigger.");
286b3e13 616 return SR_ERR_ARG;
f2cd2deb
FS
617 }
618 cfg.level &= ~ch_mask;
619 cfg.high_or_falling &= ~ch_mask;
620 break;
621 case SR_TRIGGER_FALLING:
622 if ((cfg.enabled & ~cfg.level)) {
91f73872 623 sr_err("Device only supports one edge trigger.");
286b3e13 624 return SR_ERR_ARG;
f2cd2deb
FS
625 }
626 cfg.level &= ~ch_mask;
627 cfg.high_or_falling |= ch_mask;
628 break;
629 default:
91f73872 630 sr_err("Unknown trigger condition.");
286b3e13 631 return SR_ERR_ARG;
f2cd2deb
FS
632 }
633 cfg.enabled |= ch_mask;
634 channel = channel->next;
635 }
636 }
91f73872 637 sr_dbg("Set trigger config: "
972d191b 638 "enabled-channels 0x%04x, triggering-channels 0x%04x, "
91f73872
GS
639 "level-triggered 0x%04x, high/falling 0x%04x.",
640 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 641
cf057ac4 642 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 643
c3d40037
HK
644 wrptr = buf;
645 write_u32le_inc(&wrptr, cfg.channels);
646 write_u32le_inc(&wrptr, cfg.enabled);
647 write_u32le_inc(&wrptr, cfg.level);
648 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
649 /* TODO
650 * Comment on this literal 16. Origin, meaning? Cannot be the
651 * register offset, nor the transfer length. Is it a channels
652 * count that is relevant for 16 and 32 channel models? Is it
653 * an obsolete experiment?
654 */
42f6dd55 655 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 656 if (ret != SR_OK) {
91f73872 657 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
658 return ret;
659 }
660
661 return SR_OK;
662}
663
664static int set_sample_config(const struct sr_dev_inst *sdi)
665{
666 struct dev_context *devc;
d8fbfcd9 667 uint64_t min_samplerate, eff_samplerate;
adab4d91 668 uint16_t divider_u16;
a38f0f5e 669 uint64_t limit_samples;
adab4d91
GS
670 uint64_t pre_trigger_samples;
671 uint64_t pre_trigger_memory;
672 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 673 uint8_t *wrptr;
adab4d91 674 int ret;
f2cd2deb
FS
675
676 devc = sdi->priv;
f2cd2deb 677
edc0b015 678 if (devc->samplerate > devc->model->samplerate) {
91f73872 679 sr_err("Too high a sample rate: %" PRIu64 ".",
edc0b015 680 devc->samplerate);
ea436ba7
GS
681 return SR_ERR_ARG;
682 }
d8fbfcd9
GS
683 min_samplerate = devc->model->samplerate;
684 min_samplerate /= 65536;
edc0b015 685 if (devc->samplerate < min_samplerate) {
ea436ba7 686 sr_err("Too low a sample rate: %" PRIu64 ".",
edc0b015 687 devc->samplerate);
ea436ba7 688 return SR_ERR_ARG;
f2cd2deb 689 }
edc0b015 690 divider_u16 = devc->model->samplerate / devc->samplerate;
d8fbfcd9 691 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 692
a38f0f5e
GS
693 ret = sr_sw_limits_get_remain(&devc->sw_limits,
694 &limit_samples, NULL, NULL, NULL);
695 if (ret != SR_OK) {
696 sr_err("Cannot get acquisition limits.");
697 return ret;
f2cd2deb 698 }
a38f0f5e 699 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
700 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
701 limit_samples);
702 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 703 }
d8fbfcd9
GS
704 if (limit_samples == 0) {
705 limit_samples = LA2016_NUM_SAMPLES_MAX;
706 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
707 limit_samples);
ea436ba7 708 }
f2cd2deb 709
adab4d91
GS
710 /*
711 * The acquisition configuration communicates "pre-trigger"
712 * specs in several formats. sigrok users provide a percentage
713 * (0-100%), which translates to a pre-trigger samples count
714 * (assuming that a total samples count limit was specified).
715 * The device supports hardware compression, which depends on
716 * slowly changing input data to be effective. Fast changing
717 * input data may occupy more space in sample memory than its
718 * uncompressed form would. This is why a third parameter can
719 * limit the amount of sample memory to use for pre-trigger
720 * data. Only the upper 24 bits of that memory size spec get
721 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
722 *
723 * TODO Determine whether the pre-trigger memory size gets
724 * specified in samples or in bytes. A previous implementation
725 * suggests bytes but this is suspicious when every other spec
726 * is in terms of samples.
adab4d91 727 */
d8fbfcd9
GS
728 if (devc->trigger_involved) {
729 pre_trigger_samples = limit_samples;
730 pre_trigger_samples *= devc->capture_ratio;
731 pre_trigger_samples /= 100;
732 pre_trigger_memory = devc->model->memory_bits;
733 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
734 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
735 pre_trigger_memory *= devc->capture_ratio;
736 pre_trigger_memory /= 100;
737 } else {
738 sr_dbg("No trigger setup, skipping pre-trigger config.");
739 pre_trigger_samples = 1;
740 pre_trigger_memory = 0;
741 }
742 /* Ensure non-zero value after LSB shift out in HW reg. */
743 if (pre_trigger_memory < 0x100) {
744 pre_trigger_memory = 0x100;
745 }
f2cd2deb 746
adab4d91 747 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 748 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
749 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
750 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 751
b1a17c1a
GS
752 /*
753 * The acquisition configuration occupies a total of 16 bytes:
754 * - A 34bit total samples count limit (up to 10 billions) that
755 * is kept in a 40bit register.
756 * - A 34bit pre-trigger samples count limit (up to 10 billions)
757 * in another 40bit register.
758 * - A 32bit pre-trigger memory space limit (in bytes) of which
759 * the upper 24bits are kept in an FPGA register.
760 * - A 16bit clock divider which gets applied to the maximum
761 * samplerate of the device.
762 * - An 8bit register of unknown meaning. Currently always 0.
763 */
c3d40037 764 wrptr = buf;
a38f0f5e 765 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
766 write_u40le_inc(&wrptr, pre_trigger_samples);
767 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 768 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 769 write_u8_inc(&wrptr, 0);
42f6dd55 770 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 771 if (ret != SR_OK) {
91f73872 772 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
773 return ret;
774 }
775
776 return SR_OK;
777}
778
96dc954e
GS
779/*
780 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
781 * of interest:
782 * bit 0: value 1 = idle
783 * bit 1: value 1 = writing to SDRAM
784 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
785 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
786 * The meaning of other bit fields is unknown.
7601dca7 787 *
96dc954e 788 * Typical values in order of appearance during execution:
b711fd8e
GS
789 * 0x85e1: idle, no acquisition pending
790 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
791 * "In idle state." Takes precedence over all others.
96dc954e
GS
792 * 0x85e2: pre-sampling, samples before the trigger position,
793 * when capture ratio > 0%
b711fd8e
GS
794 * IDLE clear, TRGD clear, POST clear; DRAM don't care
795 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
796 * 0x85ea: pre-sampling complete, now waiting for the trigger
797 * (whilst sampling continuously)
b711fd8e
GS
798 * IDLE clear, TRGD clear, POST set; DRAM don't care
799 * "Post set thus after pre, not triggered yet"
96dc954e 800 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
801 * IDLE clear, TRGD set, POST set; DRAM don't care
802 * "Triggered and in post, not idle yet."
96dc954e 803 * 0x85ed: idle
b711fd8e
GS
804 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
805 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 806 */
b711fd8e
GS
807static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
808static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
809static const uint16_t runstate_mask_step =
810 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
811static const uint16_t runstate_patt_pre_trig = 0;
812static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
813static const uint16_t runstate_patt_post_trig =
814 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
815
f2cd2deb
FS
816static uint16_t run_state(const struct sr_dev_inst *sdi)
817{
21d68fd9
GS
818 static uint16_t previous_state;
819
f2cd2deb 820 int ret;
21d68fd9 821 uint16_t state;
3ab60908 822 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
21d68fd9
GS
823 const uint8_t *rdptr;
824 const char *label;
f2cd2deb 825
411ad77c
GS
826 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
827 if (ret != SR_OK) {
91f73872 828 sr_err("Cannot read run state.");
f2cd2deb
FS
829 return ret;
830 }
21d68fd9
GS
831 rdptr = buff;
832 state = read_u16le_inc(&rdptr);
7601dca7 833
96dc954e
GS
834 /*
835 * Avoid flooding the log, only dump values as they change.
836 * The routine is called about every 50ms.
7601dca7 837 */
b711fd8e
GS
838 if (state == previous_state)
839 return state;
840
841 previous_state = state;
842 label = NULL;
843 if ((state & runstate_mask_idle) == runstate_patt_idle)
844 label = "idle";
845 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
846 label = "pre-trigger sampling";
847 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
848 label = "sampling, waiting for trigger";
849 if ((state & runstate_mask_step) == runstate_patt_post_trig)
850 label = "post-trigger sampling";
851 if (label && *label)
852 sr_dbg("Run state: 0x%04x (%s).", state, label);
853 else
854 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
855
856 return state;
857}
858
cf057ac4 859static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
860{
861 uint16_t state;
862
863 state = run_state(sdi);
b711fd8e 864 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
865 return 1;
866
867 return 0;
868}
869
870static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
871{
872 int ret;
873
411ad77c
GS
874 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
875 if (ret != SR_OK) {
c34f4a89 876 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
877 return ret;
878 }
879
880 return SR_OK;
881}
882
883static int get_capture_info(const struct sr_dev_inst *sdi)
884{
885 struct dev_context *devc;
886 int ret;
3ab60908 887 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 888 const uint8_t *rdptr;
f2cd2deb
FS
889
890 devc = sdi->priv;
891
411ad77c
GS
892 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
893 if (ret != SR_OK) {
91f73872 894 sr_err("Cannot read capture info.");
f2cd2deb
FS
895 return ret;
896 }
c3d40037
HK
897
898 rdptr = buf;
899 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
900 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
901 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 902
cf057ac4 903 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
904 devc->info.n_rep_packets, devc->info.n_rep_packets,
905 devc->info.n_rep_packets_before_trigger,
906 devc->info.n_rep_packets_before_trigger,
907 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 908
038e65c1
GS
909 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
910 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
852c7d14 911 (unsigned long)devc->info.n_rep_packets,
038e65c1 912 (unsigned long)devc->packets_per_chunk);
91f73872 913 }
f2cd2deb
FS
914
915 return SR_OK;
916}
917
d466f61c 918SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
91aa0f04 919 struct sr_context *sr_ctx, libusb_device *dev, gboolean skip_upload)
f2cd2deb 920{
d466f61c 921 struct dev_context *devc;
91aa0f04
GS
922 uint16_t pid;
923 char *fw;
d466f61c
GS
924 int ret;
925
926 devc = sdi ? sdi->priv : NULL;
91aa0f04
GS
927 if (!devc || !devc->usb_pid)
928 return SR_ERR_ARG;
929 pid = devc->usb_pid;
d466f61c 930
91aa0f04
GS
931 fw = g_strdup_printf(MCU_FWFILE_FMT, pid);
932 sr_info("USB PID %04hx, MCU firmware '%s'.", pid, fw);
933 devc->mcu_firmware = g_strdup(fw);
d466f61c 934
91aa0f04
GS
935 if (skip_upload)
936 ret = SR_OK;
937 else
938 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw);
939 g_free(fw);
940 if (ret != SR_OK)
d466f61c 941 return ret;
d466f61c
GS
942
943 return SR_OK;
f2cd2deb
FS
944}
945
9270f8f4
GS
946SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
947 double voltage)
f2cd2deb 948{
f2cd2deb
FS
949 int ret;
950 uint8_t cmd;
951
9270f8f4 952 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
953 if (ret != SR_OK)
954 return ret;
955
972d191b 956 cmd = CAPTMODE_TO_RAM;
411ad77c
GS
957 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
958 if (ret != SR_OK) {
91f73872 959 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
960 return ret;
961 }
962
963 ret = set_trigger_config(sdi);
964 if (ret != SR_OK)
965 return ret;
966
967 ret = set_sample_config(sdi);
968 if (ret != SR_OK)
969 return ret;
970
971 return SR_OK;
972}
973
974SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
975{
3ebc1cb2
GS
976 int ret;
977
852c7d14 978 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
979 if (ret != SR_OK)
980 return ret;
981
982 return SR_OK;
f2cd2deb
FS
983}
984
3ebc1cb2 985static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 986{
3ebc1cb2
GS
987 int ret;
988
852c7d14 989 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
990 if (ret != SR_OK)
991 return ret;
992
993 return SR_OK;
f2cd2deb
FS
994}
995
996SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
997{
3ebc1cb2
GS
998 int ret;
999 struct dev_context *devc;
1000
1001 ret = la2016_stop_acquisition(sdi);
1002 if (ret != SR_OK)
1003 return ret;
1004
1005 devc = sdi ? sdi->priv : NULL;
1006 if (devc && devc->transfer)
1007 libusb_cancel_transfer(devc->transfer);
1008
1009 return SR_OK;
f2cd2deb
FS
1010}
1011
cf057ac4 1012static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 1013 libusb_transfer_cb_fn cb)
f2cd2deb
FS
1014{
1015 struct dev_context *devc;
1016 struct sr_usb_dev_inst *usb;
1017 int ret;
3ab60908 1018 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
c3d40037 1019 uint8_t *wrptr;
f2cd2deb
FS
1020 uint32_t to_read;
1021 uint8_t *buffer;
1022
1023 devc = sdi->priv;
1024 usb = sdi->conn;
1025
411ad77c
GS
1026 ret = get_capture_info(sdi);
1027 if (ret != SR_OK)
f2cd2deb
FS
1028 return ret;
1029
038e65c1
GS
1030 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
1031 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
1032 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
1033 devc->n_bytes_to_read *= TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
1034 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
1035 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
1036
91f73872 1037 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 1038 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 1039
411ad77c
GS
1040 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1041 if (ret != SR_OK) {
91f73872 1042 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
1043 return ret;
1044 }
91f73872
GS
1045 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
1046 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
1047 wrptr = wrbuf;
1048 write_u32le_inc(&wrptr, devc->read_pos);
1049 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
1050 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
1051 if (ret != SR_OK) {
91f73872 1052 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
1053 return ret;
1054 }
411ad77c
GS
1055 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1056 if (ret != SR_OK) {
91f73872 1057 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1058 return ret;
1059 }
1060
96dc954e
GS
1061 /*
1062 * Pick a buffer size for all USB transfers. The buffer size
1063 * must be a multiple of the endpoint packet size. And cannot
1064 * exceed a maximum value.
1065 */
f2cd2deb 1066 to_read = devc->n_bytes_to_read;
96dc954e
GS
1067 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1068 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1069 to_read += LA2016_EP6_PKTSZ - 1;
1070 to_read /= LA2016_EP6_PKTSZ;
1071 to_read *= LA2016_EP6_PKTSZ;
f2cd2deb
FS
1072 buffer = g_try_malloc(to_read);
1073 if (!buffer) {
91f73872
GS
1074 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1075 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1076 return SR_ERR_MALLOC;
1077 }
1078
1079 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1080 libusb_fill_bulk_transfer(devc->transfer,
1081 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1082 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1083
411ad77c
GS
1084 ret = libusb_submit_transfer(devc->transfer);
1085 if (ret != 0) {
91f73872 1086 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1087 libusb_free_transfer(devc->transfer);
1088 devc->transfer = NULL;
1089 g_free(buffer);
286b3e13 1090 return SR_ERR_IO;
f2cd2deb
FS
1091 }
1092
1093 return SR_OK;
1094}
1095
480efba2
GS
1096/*
1097 * A chunk (received via USB) contains a number of transfers (USB length
1098 * divided by 16) which contain a number of packets (5 per transfer) which
1099 * contain a number of samples (8bit repeat count per 16bit sample data).
1100 */
dfac9592 1101static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1102 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1103{
1104 struct dev_context *devc;
480efba2 1105 size_t num_pkts;
dfac9592 1106 const uint8_t *rp;
4276ca94 1107 uint32_t sample_value;
480efba2
GS
1108 size_t repetitions;
1109 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1110
1111 devc = sdi->priv;
1112
a38f0f5e
GS
1113 /* Ignore incoming USB data after complete sample data download. */
1114 if (devc->download_finished)
1115 return;
dfac9592 1116
cf057ac4 1117 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1118 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1119 devc->trigger_marked = TRUE;
dfac9592
GS
1120 }
1121
4276ca94 1122 sample_value = 0;
dfac9592 1123 rp = packets;
480efba2 1124 while (num_xfers--) {
038e65c1 1125 num_pkts = devc->packets_per_chunk;
480efba2 1126 while (num_pkts--) {
dfac9592 1127
4276ca94
GS
1128 /* TODO Verify 32channel layout. */
1129 if (devc->model->channel_count == 32)
1130 sample_value = read_u32le_inc(&rp);
1131 else if (devc->model->channel_count == 16)
1132 sample_value = read_u16le_inc(&rp);
dfac9592 1133 repetitions = read_u8_inc(&rp);
dfac9592 1134
dfac9592 1135 devc->total_samples += repetitions;
480efba2 1136
4276ca94 1137 write_u32le(sample_buff, sample_value);
a38f0f5e
GS
1138 feed_queue_logic_submit(devc->feed_queue,
1139 sample_buff, repetitions);
1140 sr_sw_limits_update_samples_read(&devc->sw_limits,
1141 repetitions);
480efba2 1142
cf057ac4
GS
1143 if (devc->trigger_involved && !devc->trigger_marked) {
1144 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1145 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1146 devc->trigger_marked = TRUE;
91f73872 1147 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110 1148 devc->total_samples,
edc0b015 1149 (double)devc->total_samples / devc->samplerate * 1e3);
dfac9592
GS
1150 }
1151 }
1152 }
1153 (void)read_u8_inc(&rp); /* Skip sequence number. */
1154 }
a38f0f5e
GS
1155
1156 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1157 sr_dbg("Acquisition limit reached.");
1158 devc->download_finished = TRUE;
1159 }
1160 if (devc->download_finished) {
1161 sr_dbg("Download finished, flushing session feed queue.");
1162 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1163 }
a38f0f5e 1164 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1165}
1166
1167static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1168{
1169 struct sr_dev_inst *sdi;
1170 struct dev_context *devc;
1171 struct sr_usb_dev_inst *usb;
a38f0f5e 1172 size_t num_xfers;
dfac9592
GS
1173 int ret;
1174
1175 sdi = transfer->user_data;
1176 devc = sdi->priv;
1177 usb = sdi->conn;
1178
1179 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1180 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1181 /*
1182 * Implementation detail: A USB transfer timeout is not fatal
1183 * here. We just process whatever was received, empty input is
1184 * perfectly acceptable. Reaching (or exceeding) the sw limits
1185 * or exhausting the device's captured data will complete the
1186 * sample data download.
1187 */
1188 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1189 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1190
1191 devc->n_bytes_to_read -= transfer->actual_length;
1192 if (devc->n_bytes_to_read) {
1193 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1194 /*
1195 * Determine read size for the next USB transfer. Make
1196 * the buffer size a multiple of the endpoint packet
1197 * size. Don't exceed a maximum value.
1198 */
dfac9592
GS
1199 if (to_read >= LA2016_USB_BUFSZ)
1200 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1201 to_read += LA2016_EP6_PKTSZ - 1;
1202 to_read /= LA2016_EP6_PKTSZ;
1203 to_read *= LA2016_EP6_PKTSZ;
852c7d14
GS
1204 libusb_fill_bulk_transfer(transfer,
1205 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1206 transfer->buffer, to_read,
dfac9592
GS
1207 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1208
411ad77c
GS
1209 ret = libusb_submit_transfer(transfer);
1210 if (ret == 0)
dfac9592 1211 return;
91f73872
GS
1212 sr_err("Cannot submit another USB transfer: %s.",
1213 libusb_error_name(ret));
dfac9592
GS
1214 }
1215
1216 g_free(transfer->buffer);
1217 libusb_free_transfer(transfer);
cf057ac4 1218 devc->download_finished = TRUE;
dfac9592
GS
1219}
1220
1221SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1222{
1223 const struct sr_dev_inst *sdi;
1224 struct dev_context *devc;
1225 struct drv_context *drvc;
1226 struct timeval tv;
a38f0f5e 1227 int ret;
dfac9592
GS
1228
1229 (void)fd;
1230 (void)revents;
1231
1232 sdi = cb_data;
1233 devc = sdi->priv;
1234 drvc = sdi->driver->context;
1235
a38f0f5e
GS
1236 /*
1237 * Wait for the acquisition to complete in hardware.
1238 * Periodically check a potentially configured msecs timeout.
1239 */
cf057ac4
GS
1240 if (!devc->completion_seen) {
1241 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1242 if (sr_sw_limits_check(&devc->sw_limits)) {
1243 devc->sw_limits.limit_msec = 0;
1244 sr_dbg("Limit reached. Stopping acquisition.");
1245 la2016_stop_acquisition(sdi);
1246 }
96dc954e 1247 /* Not yet ready for sample data download. */
dfac9592
GS
1248 return TRUE;
1249 }
a38f0f5e
GS
1250 sr_dbg("Acquisition completion seen (hardware).");
1251 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1252 devc->completion_seen = TRUE;
1253 devc->download_finished = FALSE;
1254 devc->trigger_marked = FALSE;
dfac9592 1255 devc->total_samples = 0;
a38f0f5e 1256
33020165
GS
1257 la2016_dump_fpga_registers(sdi, "acquisition complete", 0, 0);
1258
a38f0f5e
GS
1259 /* Initiate the download of acquired sample data. */
1260 std_session_send_df_frame_begin(sdi);
96a405ab 1261 devc->frame_begin_sent = TRUE;
a38f0f5e
GS
1262 ret = la2016_start_download(sdi, receive_transfer);
1263 if (ret != SR_OK) {
91f73872 1264 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1265 return FALSE;
1266 }
91f73872 1267 sr_dbg("Acquisition data download started.");
dfac9592
GS
1268
1269 return TRUE;
1270 }
1271
a38f0f5e 1272 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1273 tv.tv_sec = tv.tv_usec = 0;
1274 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1275
a38f0f5e 1276 /* Postprocess completion of sample data download. */
cf057ac4 1277 if (devc->download_finished) {
91f73872 1278 sr_dbg("Download finished, post processing.");
dfac9592
GS
1279
1280 la2016_stop_acquisition(sdi);
a38f0f5e 1281 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1282 devc->transfer = NULL;
1283
a38f0f5e
GS
1284 feed_queue_logic_flush(devc->feed_queue);
1285 feed_queue_logic_free(devc->feed_queue);
1286 devc->feed_queue = NULL;
96a405ab
GS
1287 if (devc->frame_begin_sent) {
1288 std_session_send_df_frame_end(sdi);
1289 devc->frame_begin_sent = FALSE;
1290 }
a38f0f5e
GS
1291 std_session_send_df_end(sdi);
1292
91f73872 1293 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1294 }
1295
1296 return TRUE;
1297}
1298
d466f61c
GS
1299SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1300 gboolean show_message)
f2cd2deb 1301{
8b172e78 1302 struct dev_context *devc;
3ab60908 1303 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
64172b16 1304 size_t rdoff, rdlen;
43d2e52f
GS
1305 const uint8_t *rdptr;
1306 uint8_t date_yy, date_mm;
1307 uint8_t dinv_yy, dinv_mm;
9de389b1 1308 uint8_t magic;
d466f61c
GS
1309 size_t model_idx;
1310 const struct kingst_model *model;
9de389b1 1311 int ret;
f2cd2deb 1312
8b172e78
KG
1313 devc = sdi->priv;
1314
96dc954e 1315 /*
43d2e52f
GS
1316 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1317 * year and month in BCD format, followed by inverted values for
1318 * consistency checks. For example bytes 20 04 df fb translate
1319 * to 2020-04. This information can help identify the vintage of
1320 * devices when unknown magic numbers are seen.
9de389b1 1321 */
64172b16
GS
1322 rdoff = 0x20;
1323 rdlen = 4 * sizeof(uint8_t);
1324 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1325 if (ret != SR_OK && !show_message) {
64172b16 1326 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1327 sr_dbg("Cannot access EEPROM.");
1328 return SR_ERR_IO;
1329 } else if (ret != SR_OK) {
64172b16 1330 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1331 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1332 } else {
64172b16
GS
1333 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1334 GString *txt;
1335 txt = sr_hexdump_new(buf, rdlen);
1336 sr_spew("Manufacture date bytes %s.", txt->str);
1337 sr_hexdump_free(txt);
1338 }
43d2e52f
GS
1339 rdptr = &buf[0];
1340 date_yy = read_u8_inc(&rdptr);
1341 date_mm = read_u8_inc(&rdptr);
1342 dinv_yy = read_u8_inc(&rdptr);
1343 dinv_mm = read_u8_inc(&rdptr);
1344 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1345 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1346 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1347 }
f2cd2deb 1348
9de389b1 1349 /*
96dc954e
GS
1350 * Several Kingst logic analyzer devices share the same USB VID
1351 * and PID. The product ID determines which MCU firmware to load.
1352 * The MCU firmware provides access to EEPROM content which then
1353 * allows to identify the device model. Which in turn determines
1354 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1355 * to get inspected.
9de389b1 1356 *
96dc954e
GS
1357 * EEPROM content for model identification is kept redundantly
1358 * in memory. The values are stored in verbatim and in inverted
1359 * form, multiple copies are kept at different offsets. Example
1360 * data:
9de389b1 1361 *
96dc954e
GS
1362 * magic 0x08
1363 * | ~magic 0xf7
1364 * | |
1365 * 08f7000008f710ef
1366 * | |
1367 * | ~magic backup
1368 * magic backup
9de389b1 1369 *
96dc954e
GS
1370 * Exclusively inspecting the magic byte appears to be sufficient,
1371 * other fields seem to be 'don't care'.
9de389b1 1372 *
96dc954e
GS
1373 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1374 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1375 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1376 * (latest v1.3.0 PCB, perhaps others)
1377 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1378 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1379 *
96dc954e
GS
1380 * When EEPROM content does not match the hardware configuration
1381 * (the board layout), the software may load but yield incorrect
1382 * results (like swapped channels). The FPGA bitstream itself
1383 * will authenticate with IC U10 and fail when its capabilities
1384 * do not match the hardware model. An LA1016 won't become a
1385 * LA2016 by faking its EEPROM content.
9de389b1 1386 */
d466f61c 1387 devc->identify_magic = 0;
64172b16
GS
1388 rdoff = 0x08;
1389 rdlen = 8 * sizeof(uint8_t);
1390 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1391 if (ret != SR_OK) {
91f73872 1392 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1393 return ret;
1394 }
64172b16
GS
1395 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1396 GString *txt;
1397 txt = sr_hexdump_new(buf, rdlen);
1398 sr_spew("EEPROM magic bytes %s.", txt->str);
1399 sr_hexdump_free(txt);
1400 }
43d2e52f 1401 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1402 /* Primary copy of magic passes complement check. */
9de389b1 1403 magic = buf[0];
64172b16 1404 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1405 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1406 /* Backup copy of magic passes complement check. */
9de389b1 1407 magic = buf[4];
64172b16 1408 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1409 } else {
1410 sr_err("Cannot find consistent device type identification.");
1411 magic = 0;
f2cd2deb 1412 }
d466f61c 1413 devc->identify_magic = magic;
9de389b1 1414
d466f61c
GS
1415 devc->model = NULL;
1416 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1417 model = &models[model_idx];
1418 if (model->magic != magic)
1419 continue;
1420 devc->model = model;
64172b16
GS
1421 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1422 model->name, model->channel_count,
1423 model->samplerate / SR_MHZ(1));
d466f61c
GS
1424 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1425 model->fpga_stem);
d466f61c 1426 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1427 break;
1428 }
d466f61c 1429 if (!devc->model) {
91f73872 1430 sr_err("Cannot identify as one of the supported models.");
286b3e13 1431 return SR_ERR_DATA;
3f48ab02 1432 }
f2cd2deb 1433
d466f61c
GS
1434 return SR_OK;
1435}
1436
6d53e949 1437SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1438{
1439 struct dev_context *devc;
1440 const char *bitstream_fn;
1441 int ret;
1442 uint16_t state;
1443
1444 devc = sdi->priv;
1445 bitstream_fn = devc ? devc->fpga_bitstream : "";
1446
1447 ret = check_fpga_bitstream(sdi);
1448 if (ret != SR_OK) {
d6f89d4b
GS
1449 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1450 if (ret != SR_OK) {
1451 sr_err("Cannot upload FPGA bitstream.");
1452 return ret;
1453 }
1454 }
1455 ret = enable_fpga_bitstream(sdi);
9de389b1 1456 if (ret != SR_OK) {
d6f89d4b 1457 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1458 return ret;
1459 }
1460
f2cd2deb 1461 state = run_state(sdi);
44947217
GS
1462 if ((state & 0xfff0) != 0x85e0) {
1463 sr_warn("Unexpected run state, want 0x85eX, got 0x%04x.", state);
9de389b1 1464 }
f2cd2deb 1465
6d53e949
GS
1466 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1467 if (ret != SR_OK) {
91f73872 1468 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1469 return ret;
1470 }
9de389b1 1471
91f73872 1472 sr_dbg("Device should be initialized.");
f2cd2deb 1473
6d53e949
GS
1474 return SR_OK;
1475}
1476
6d53e949 1477SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1478{
1479 int ret;
1480
6d53e949
GS
1481 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1482 if (ret != SR_OK) {
91f73872 1483 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1484 return ret;
1485 }
1486
1487 return SR_OK;
1488}
08a49848
GS
1489
1490SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1491{
1492 return set_pwm_config(sdi, idx);
1493}