]> sigrok.org Git - libsigrokdecode.git/blame - decoders/uart/pd.py
uart: Minor readability nit (position of start bit in calculation)
[libsigrokdecode.git] / decoders / uart / pd.py
CommitLineData
f44d2db2 1##
50bd5d25 2## This file is part of the libsigrokdecode project.
f44d2db2 3##
0bb7bcf3 4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
f44d2db2
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
4539e9ca 17## along with this program; if not, see <http://www.gnu.org/licenses/>.
f44d2db2
UH
18##
19
677d597b 20import sigrokdecode as srd
b5712ccb 21from math import floor, ceil
f44d2db2 22
4cace3b8 23'''
c515eed7 24OUTPUT_PYTHON format:
4cace3b8 25
bf69977d
UH
26Packet:
27[<ptype>, <rxtx>, <pdata>]
4cace3b8 28
bf69977d 29This is the list of <ptype>s and their respective <pdata> values:
4cace3b8 30 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
0c7d5a56
UH
31 - 'DATA': This is always a tuple containing two items:
32 - 1st item: the (integer) value of the UART data. Valid values
6ffd71c1 33 range from 0 to 511 (as the data can be up to 9 bits in size).
0c7d5a56 34 - 2nd item: the list of individual data bits and their ss/es numbers.
4cace3b8
UH
35 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
36 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
37 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
38 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
39 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
40 the expected parity value, the second is the actual parity value.
41 - TODO: Frame error?
42
43The <rxtx> field is 0 for RX packets, 1 for TX packets.
44'''
45
97cca21f
UH
46# Used for differentiating between the two data directions.
47RX = 0
48TX = 1
49
f44d2db2
UH
50# Given a parity type to check (odd, even, zero, one), the value of the
51# parity bit, the value of the data, and the length of the data (5-9 bits,
52# usually 8 bits) return True if the parity is correct, False otherwise.
a7fc4c34 53# 'none' is _not_ allowed as value for 'parity_type'.
f44d2db2
UH
54def parity_ok(parity_type, parity_bit, data, num_data_bits):
55
56 # Handle easy cases first (parity bit is always 1 or 0).
a7fc4c34 57 if parity_type == 'zero':
f44d2db2 58 return parity_bit == 0
a7fc4c34 59 elif parity_type == 'one':
f44d2db2
UH
60 return parity_bit == 1
61
62 # Count number of 1 (high) bits in the data (and the parity bit itself!).
ac941bf9 63 ones = bin(data).count('1') + parity_bit
f44d2db2
UH
64
65 # Check for odd/even parity.
a7fc4c34 66 if parity_type == 'odd':
ac941bf9 67 return (ones % 2) == 1
a7fc4c34 68 elif parity_type == 'even':
ac941bf9 69 return (ones % 2) == 0
f44d2db2 70
21cda951
UH
71class SamplerateError(Exception):
72 pass
73
f04964c6
UH
74class ChannelError(Exception):
75 pass
76
677d597b 77class Decoder(srd.Decoder):
12851357 78 api_version = 2
f44d2db2
UH
79 id = 'uart'
80 name = 'UART'
3d3da57d 81 longname = 'Universal Asynchronous Receiver/Transmitter'
a465436e 82 desc = 'Asynchronous, serial bus.'
f44d2db2
UH
83 license = 'gplv2+'
84 inputs = ['logic']
85 outputs = ['uart']
6a15597a 86 optional_channels = (
f44d2db2
UH
87 # Allow specifying only one of the signals, e.g. if only one data
88 # direction exists (or is relevant).
29ed0f4c
UH
89 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
90 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
da9bcbd9 91 )
84c1c0b5
BV
92 options = (
93 {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
94 {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
95 'values': (5, 6, 7, 8, 9)},
96 {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
97 'values': ('none', 'odd', 'even', 'zero', 'one')},
98 {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
99 'values': ('yes', 'no')},
100 {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
101 'values': (0.0, 0.5, 1.0, 1.5)},
102 {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
103 'values': ('lsb-first', 'msb-first')},
ea36c198 104 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
84c1c0b5 105 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
4eafeeef
DB
106 {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
107 'values': ('yes', 'no')},
108 {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
109 'values': ('yes', 'no')},
84c1c0b5 110 )
da9bcbd9
BV
111 annotations = (
112 ('rx-data', 'RX data'),
113 ('tx-data', 'TX data'),
114 ('rx-start', 'RX start bits'),
115 ('tx-start', 'TX start bits'),
116 ('rx-parity-ok', 'RX parity OK bits'),
117 ('tx-parity-ok', 'TX parity OK bits'),
118 ('rx-parity-err', 'RX parity error bits'),
119 ('tx-parity-err', 'TX parity error bits'),
120 ('rx-stop', 'RX stop bits'),
121 ('tx-stop', 'TX stop bits'),
122 ('rx-warnings', 'RX warnings'),
123 ('tx-warnings', 'TX warnings'),
124 ('rx-data-bits', 'RX data bits'),
125 ('tx-data-bits', 'TX data bits'),
126 )
2ce20a91 127 annotation_rows = (
4e3b276a 128 ('rx-data', 'RX', (0, 2, 4, 6, 8)),
4aedd5b8 129 ('rx-data-bits', 'RX bits', (12,)),
4e3b276a 130 ('rx-warnings', 'RX warnings', (10,)),
4aedd5b8
UH
131 ('tx-data', 'TX', (1, 3, 5, 7, 9)),
132 ('tx-data-bits', 'TX bits', (13,)),
4e3b276a 133 ('tx-warnings', 'TX warnings', (11,)),
2ce20a91 134 )
0bb7bcf3
UH
135 binary = (
136 ('rx', 'RX dump'),
137 ('tx', 'TX dump'),
138 ('rxtx', 'RX/TX dump'),
139 )
96a044da 140 idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
f44d2db2 141
97cca21f 142 def putx(self, rxtx, data):
b5712ccb
PA
143 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
144 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
15ac6604 145
4aedd5b8 146 def putpx(self, rxtx, data):
b5712ccb
PA
147 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
148 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
4aedd5b8 149
15ac6604 150 def putg(self, data):
b5712ccb
PA
151 s, halfbit = self.samplenum, self.bit_width / 2.0
152 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
15ac6604
UH
153
154 def putp(self, data):
b5712ccb
PA
155 s, halfbit = self.samplenum, self.bit_width / 2.0
156 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
97cca21f 157
0bb7bcf3 158 def putbin(self, rxtx, data):
b5712ccb 159 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
2f370328 160 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
0bb7bcf3 161
92b7b49f 162 def __init__(self):
f372d597 163 self.samplerate = None
f44d2db2 164 self.samplenum = 0
97cca21f
UH
165 self.frame_start = [-1, -1]
166 self.startbit = [-1, -1]
167 self.cur_data_bit = [0, 0]
e9a3c933 168 self.datavalue = [0, 0]
1ccef461 169 self.paritybit = [-1, -1]
97cca21f
UH
170 self.stopbit1 = [-1, -1]
171 self.startsample = [-1, -1]
2b716038 172 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
83be7b83 173 self.oldbit = [1, 1]
96a044da 174 self.oldpins = [-1, -1]
4aedd5b8 175 self.databits = [[], []]
f44d2db2 176
f372d597 177 def start(self):
c515eed7 178 self.out_python = self.register(srd.OUTPUT_PYTHON)
2f370328 179 self.out_binary = self.register(srd.OUTPUT_BINARY)
be465111 180 self.out_ann = self.register(srd.OUTPUT_ANN)
98b89139 181 self.bw = (self.options['num_data_bits'] + 7) // 8
f44d2db2 182
f372d597
BV
183 def metadata(self, key, value):
184 if key == srd.SRD_CONF_SAMPLERATE:
35b380b1 185 self.samplerate = value
f372d597
BV
186 # The width of one UART bit in number of samples.
187 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
f44d2db2 188
f44d2db2 189 # Return true if we reached the middle of the desired bit, false otherwise.
97cca21f 190 def reached_bit(self, rxtx, bitnum):
f44d2db2
UH
191 # bitpos is the samplenumber which is in the middle of the
192 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
193 # (if used) or the first stop bit, and so on).
b5712ccb
PA
194 # The samples within bit are 0, 1, ..., (bit_width - 1), therefore
195 # index of the middle sample within bit window is (bit_width - 1) / 2.
196 bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
f44d2db2
UH
197 bitpos += bitnum * self.bit_width
198 if self.samplenum >= bitpos:
199 return True
200 return False
201
97cca21f 202 def wait_for_start_bit(self, rxtx, old_signal, signal):
f44d2db2
UH
203 # The start bit is always 0 (low). As the idle UART (and the stop bit)
204 # level is 1 (high), the beginning of a start bit is a falling edge.
205 if not (old_signal == 1 and signal == 0):
206 return
207
208 # Save the sample number where the start bit begins.
97cca21f 209 self.frame_start[rxtx] = self.samplenum
f44d2db2 210
2b716038 211 self.state[rxtx] = 'GET START BIT'
f44d2db2 212
97cca21f 213 def get_start_bit(self, rxtx, signal):
f44d2db2 214 # Skip samples until we're in the middle of the start bit.
97cca21f 215 if not self.reached_bit(rxtx, 0):
1bb57ab8 216 return
f44d2db2 217
97cca21f 218 self.startbit[rxtx] = signal
f44d2db2 219
711d0602
GS
220 # The startbit must be 0. If not, we report an error and wait
221 # for the next start bit (assuming this one was spurious).
97cca21f 222 if self.startbit[rxtx] != 0:
15ac6604 223 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
76a4498f 224 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
711d0602
GS
225 self.state[rxtx] = 'WAIT FOR START BIT'
226 return
f44d2db2 227
97cca21f 228 self.cur_data_bit[rxtx] = 0
e9a3c933 229 self.datavalue[rxtx] = 0
97cca21f 230 self.startsample[rxtx] = -1
f44d2db2 231
2b716038 232 self.state[rxtx] = 'GET DATA BITS'
f44d2db2 233
15ac6604 234 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
2ce20a91 235 self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
f44d2db2 236
97cca21f 237 def get_data_bits(self, rxtx, signal):
f44d2db2 238 # Skip samples until we're in the middle of the desired data bit.
5e3c79fd 239 if not self.reached_bit(rxtx, 1 + self.cur_data_bit[rxtx]):
1bb57ab8 240 return
f44d2db2 241
15ac6604 242 # Save the sample number of the middle of the first data bit.
97cca21f
UH
243 if self.startsample[rxtx] == -1:
244 self.startsample[rxtx] = self.samplenum
f44d2db2
UH
245
246 # Get the next data bit in LSB-first or MSB-first fashion.
a7fc4c34 247 if self.options['bit_order'] == 'lsb-first':
e9a3c933
GS
248 self.datavalue[rxtx] >>= 1
249 self.datavalue[rxtx] |= \
fd4aa8aa 250 (signal << (self.options['num_data_bits'] - 1))
22fc7ace 251 else:
e9a3c933
GS
252 self.datavalue[rxtx] <<= 1
253 self.datavalue[rxtx] |= (signal << 0)
f44d2db2 254
4aedd5b8
UH
255 self.putg([rxtx + 12, ['%d' % signal]])
256
257 # Store individual data bits and their start/end samplenumbers.
258 s, halfbit = self.samplenum, int(self.bit_width / 2)
259 self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
260
f44d2db2 261 # Return here, unless we already received all data bits.
5e3c79fd
GS
262 self.cur_data_bit[rxtx] += 1
263 if self.cur_data_bit[rxtx] < self.options['num_data_bits']:
1bb57ab8 264 return
f44d2db2 265
1078af01
GS
266 # Skip to either reception of the parity bit, or reception of
267 # the STOP bits if parity is not applicable.
2b716038 268 self.state[rxtx] = 'GET PARITY BIT'
1078af01
GS
269 if self.options['parity_type'] == 'none':
270 self.state[rxtx] = 'GET STOP BITS'
f44d2db2 271
7cf698c5 272 self.putpx(rxtx, ['DATA', rxtx,
e9a3c933 273 (self.datavalue[rxtx], self.databits[rxtx])])
f44d2db2 274
6ffd71c1
GS
275 b = self.datavalue[rxtx]
276 formatted = self.format_value(b)
277 if formatted is not None:
278 self.putx(rxtx, [rxtx, [formatted]])
f44d2db2 279
98b89139
UH
280 bdata = b.to_bytes(self.bw, byteorder='big')
281 self.putbin(rxtx, [rxtx, bdata])
282 self.putbin(rxtx, [2, bdata])
0bb7bcf3 283
c1fc50b1 284 self.databits[rxtx] = []
4aedd5b8 285
6ffd71c1
GS
286 def format_value(self, v):
287 # Format value 'v' according to configured options.
288 # Reflects the user selected kind of representation, as well as
289 # the number of data bits in the UART frames.
290
291 fmt, bits = self.options['format'], self.options['num_data_bits']
292
293 # Assume "is printable" for values from 32 to including 126,
294 # below 32 is "control" and thus not printable, above 127 is
295 # "not ASCII" in its strict sense, 127 (DEL) is not printable,
296 # fall back to hex representation for non-printables.
297 if fmt == 'ascii':
298 if v in range(32, 126 + 1):
299 return chr(v)
300 hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
301 return hexfmt.format(v)
302
303 # Mere number to text conversion without prefix and padding
304 # for the "decimal" output format.
305 if fmt == 'dec':
306 return "{:d}".format(v)
307
308 # Padding with leading zeroes for hex/oct/bin formats, but
309 # without a prefix for density -- since the format is user
310 # specified, there is no ambiguity.
311 if fmt == 'hex':
312 digits = (bits + 4 - 1) // 4
313 fmtchar = "X"
314 elif fmt == 'oct':
315 digits = (bits + 3 - 1) // 3
316 fmtchar = "o"
317 elif fmt == 'bin':
318 digits = bits
319 fmtchar = "b"
320 else:
321 fmtchar = None
322 if fmtchar is not None:
323 fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
324 return fmt.format(v)
325
326 return None
327
97cca21f 328 def get_parity_bit(self, rxtx, signal):
f44d2db2 329 # Skip samples until we're in the middle of the parity bit.
5e3c79fd 330 if not self.reached_bit(rxtx, 1 + self.options['num_data_bits']):
1bb57ab8 331 return
f44d2db2 332
97cca21f 333 self.paritybit[rxtx] = signal
f44d2db2 334
2b716038 335 self.state[rxtx] = 'GET STOP BITS'
f44d2db2 336
ac941bf9 337 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
e9a3c933 338 self.datavalue[rxtx], self.options['num_data_bits']):
15ac6604 339 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
2ce20a91 340 self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
f44d2db2 341 else:
61132abd 342 # TODO: Return expected/actual parity values.
15ac6604 343 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
4e3b276a 344 self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
f44d2db2
UH
345
346 # TODO: Currently only supports 1 stop bit.
97cca21f 347 def get_stop_bits(self, rxtx, signal):
f44d2db2 348 # Skip samples until we're in the middle of the stop bit(s).
a7fc4c34 349 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
5e3c79fd 350 b = 1 + self.options['num_data_bits'] + skip_parity
4a04ece4 351 if not self.reached_bit(rxtx, b):
1bb57ab8 352 return
f44d2db2 353
97cca21f 354 self.stopbit1[rxtx] = signal
f44d2db2 355
5cc4b6a0 356 # Stop bits must be 1. If not, we report an error.
97cca21f 357 if self.stopbit1[rxtx] != 1:
15ac6604 358 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
76a4498f 359 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
5cc4b6a0 360 # TODO: Abort? Ignore the frame? Other?
f44d2db2 361
2b716038 362 self.state[rxtx] = 'WAIT FOR START BIT'
f44d2db2 363
15ac6604 364 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
2ce20a91 365 self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
f44d2db2 366
decde15e 367 def decode(self, ss, es, data):
21cda951
UH
368 if not self.samplerate:
369 raise SamplerateError('Cannot decode without samplerate.')
2fcd7c22
UH
370 for (self.samplenum, pins) in data:
371
96a044da
DT
372 # We want to skip identical samples for performance reasons but,
373 # for now, we can only do that when we are in the idle state
374 # (meaning both channels are waiting for the start bit).
375 if self.state == self.idle_state and self.oldpins == pins:
376 continue
377
2fcd7c22 378 self.oldpins, (rx, tx) = pins, pins
f44d2db2 379
4eafeeef
DB
380 if self.options['invert_rx'] == 'yes':
381 rx = not rx
382 if self.options['invert_tx'] == 'yes':
383 tx = not tx
384
3dd546c1
UH
385 # Either RX or TX (but not both) can be omitted.
386 has_pin = [rx in (0, 1), tx in (0, 1)]
387 if has_pin == [False, False]:
f04964c6 388 raise ChannelError('Either TX or RX (or both) pins required.')
3dd546c1 389
f44d2db2 390 # State machine.
97cca21f 391 for rxtx in (RX, TX):
3dd546c1
UH
392 # Don't try to handle RX (or TX) if not supplied.
393 if not has_pin[rxtx]:
394 continue
395
97cca21f
UH
396 signal = rx if (rxtx == RX) else tx
397
2b716038 398 if self.state[rxtx] == 'WAIT FOR START BIT':
97cca21f 399 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
2b716038 400 elif self.state[rxtx] == 'GET START BIT':
97cca21f 401 self.get_start_bit(rxtx, signal)
2b716038 402 elif self.state[rxtx] == 'GET DATA BITS':
97cca21f 403 self.get_data_bits(rxtx, signal)
2b716038 404 elif self.state[rxtx] == 'GET PARITY BIT':
97cca21f 405 self.get_parity_bit(rxtx, signal)
2b716038 406 elif self.state[rxtx] == 'GET STOP BITS':
97cca21f 407 self.get_stop_bits(rxtx, signal)
97cca21f
UH
408
409 # Save current RX/TX values for the next round.
410 self.oldbit[rxtx] = signal