]> sigrok.org Git - libsigrokdecode.git/blame - decoders/uart.py
srd: UART: Drop 'quick_hack' stuff.
[libsigrokdecode.git] / decoders / uart.py
CommitLineData
f44d2db2
UH
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# UART protocol decoder
23#
24
6efe1e11
UH
25#
26# Universal Asynchronous Receiver Transmitter (UART) is a simple serial
27# communication protocol which allows two devices to talk to each other.
28#
29# It uses just two data signals and a ground (GND) signal:
30# - RX/RXD: Receive signal
31# - TX/TXD: Transmit signal
32#
33# The protocol is asynchronous, i.e., there is no dedicated clock signal.
34# Rather, both devices have to agree on a baudrate (number of bits to be
35# transmitted per second) beforehand. Baudrates can be arbitrary in theory,
36# but usually the choice is limited by the hardware UARTs that are used.
37# Common values are 9600 or 115200.
38#
39# The protocol allows full-duplex transmission, i.e. both devices can send
40# data at the same time. However, unlike SPI (which is always full-duplex,
41# i.e., each send operation is automatically also a receive operation), UART
42# allows one-way communication, too. In such a case only one signal (and GND)
43# is required.
44#
45# The data is sent over the TX line in so-called 'frames', which consist of:
46# - Exactly one start bit (always 0/low).
47# - Between 5 and 9 data bits.
48# - An (optional) parity bit.
49# - One or more stop bit(s).
50#
51# The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the
52# receiver can continually monitor its RX line for a falling edge, in order
53# to detect the start bit.
54#
55# Once detected, it can (due to the agreed-upon baudrate and thus the known
56# width/duration of one UART bit) sample the state of the RX line "in the
57# middle" of each (start/data/parity/stop) bit it wants to analyze.
58#
59# It is configurable whether there is a parity bit in a frame, and if yes,
60# which type of parity is used:
61# - None: No parity bit is included.
62# - Odd: The number of 1 bits in the data (and parity bit itself) is odd.
63# - Even: The number of 1 bits in the data (and parity bit itself) is even.
64# - Mark/one: The parity bit is always 1/high (also called 'mark state').
65# - Space/zero: The parity bit is always 0/low (also called 'space state').
66#
67# It is also configurable how many stop bits are to be used:
68# - 1 stop bit (most common case)
69# - 2 stop bits
70# - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width)
71# - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width)
72#
73# The bit order of the 5-9 data bits is LSB-first.
74#
75# Possible special cases:
76# - One or both data lines could be inverted, which also means that the idle
77# state of the signal line(s) is low instead of high.
78# - Only the data bits on one or both data lines (and the parity bit) could
79# be inverted (but the start/stop bits remain non-inverted).
80# - The bit order could be MSB-first instead of LSB-first.
81# - The baudrate could change in the middle of the communication. This only
82# happens in very special cases, and can only work if both devices know
83# to which baudrate they are to switch, and when.
84# - Theoretically, the baudrate on RX and the one on TX could also be
85# different, but that's a very obscure case and probably doesn't happen
86# very often in practice.
87#
88# Error conditions:
89# - If there is a parity bit, but it doesn't match the expected parity,
90# this is called a 'parity error'.
91# - If there are no stop bit(s), that's called a 'frame error'.
92#
93# More information:
94# TODO: URLs
95#
96
29ed0f4c 97import sigrokdecode
f44d2db2
UH
98
99# States
100WAIT_FOR_START_BIT = 0
101GET_START_BIT = 1
102GET_DATA_BITS = 2
103GET_PARITY_BIT = 3
104GET_STOP_BITS = 4
105
106# Parity options
107PARITY_NONE = 0
108PARITY_ODD = 1
109PARITY_EVEN = 2
110PARITY_ZERO = 3
111PARITY_ONE = 4
112
113# Stop bit options
114STOP_BITS_0_5 = 0
115STOP_BITS_1 = 1
116STOP_BITS_1_5 = 2
117STOP_BITS_2 = 3
118
119# Bit order options
120LSB_FIRST = 0
121MSB_FIRST = 1
122
123# Output data formats
124DATA_FORMAT_ASCII = 0
125DATA_FORMAT_HEX = 1
126
f44d2db2
UH
127# Given a parity type to check (odd, even, zero, one), the value of the
128# parity bit, the value of the data, and the length of the data (5-9 bits,
129# usually 8 bits) return True if the parity is correct, False otherwise.
130# PARITY_NONE is _not_ allowed as value for 'parity_type'.
131def parity_ok(parity_type, parity_bit, data, num_data_bits):
132
133 # Handle easy cases first (parity bit is always 1 or 0).
134 if parity_type == PARITY_ZERO:
135 return parity_bit == 0
136 elif parity_type == PARITY_ONE:
137 return parity_bit == 1
138
139 # Count number of 1 (high) bits in the data (and the parity bit itself!).
140 parity = bin(data).count('1') + parity_bit
141
142 # Check for odd/even parity.
143 if parity_type == PARITY_ODD:
144 return (parity % 2) == 1
145 elif parity_type == PARITY_EVEN:
146 return (parity % 2) == 0
147 else:
148 raise Exception('Invalid parity type: %d' % parity_type)
149
29ed0f4c 150class Decoder(sigrokdecode.Decoder):
f44d2db2
UH
151 id = 'uart'
152 name = 'UART'
153 longname = 'Universal Asynchronous Receiver/Transmitter (UART)'
154 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
155 longdesc = 'TODO.'
156 author = 'Uwe Hermann'
157 email = 'uwe@hermann-uwe.de'
158 license = 'gplv2+'
159 inputs = ['logic']
160 outputs = ['uart']
29ed0f4c 161 probes = [
f44d2db2
UH
162 # Allow specifying only one of the signals, e.g. if only one data
163 # direction exists (or is relevant).
29ed0f4c
UH
164 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
165 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
166 ]
f44d2db2
UH
167 options = {
168 'baudrate': ['UART baud rate', 115200],
169 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
170 'parity': ['Parity', PARITY_NONE],
171 'parity_check': ['Check parity', True],
172 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1],
173 'bit_order': ['Bit order', LSB_FIRST],
174 'data_format': ['Output data format', DATA_FORMAT_ASCII],
175 # TODO: Options to invert the signal(s).
176 # ...
177 }
178
179 def __init__(self, **kwargs):
26420622
UH
180 self.output_protocol = None
181 self.output_annotation = None
f44d2db2
UH
182
183 # Set defaults, can be overridden in 'start'.
184 self.baudrate = 115200
185 self.num_data_bits = 8
186 self.parity = PARITY_NONE
187 self.check_parity = True
188 self.num_stop_bits = 1
189 self.bit_order = LSB_FIRST
190 self.data_format = DATA_FORMAT_ASCII
191
192 self.samplenum = 0
193 self.frame_start = -1
194 self.startbit = -1
195 self.cur_data_bit = 0
196 self.databyte = 0
197 self.stopbit1 = -1
198 self.startsample = -1
199
200 # Initial state.
201 self.staterx = WAIT_FOR_START_BIT
202
f44d2db2
UH
203 self.oldrx = None
204 self.oldtx = None
205
206 def start(self, metadata):
f44d2db2 207 self.samplerate = metadata['samplerate']
26420622
UH
208 # self.output_protocol = self.output_new(2)
209 self.output_annotation = self.output_new(1)
f44d2db2
UH
210
211 # TODO
212 ### self.baudrate = metadata['baudrate']
213 ### self.num_data_bits = metadata['num_data_bits']
214 ### self.parity = metadata['parity']
215 ### self.parity_check = metadata['parity_check']
216 ### self.num_stop_bits = metadata['num_stop_bits']
217 ### self.bit_order = metadata['bit_order']
218 ### self.data_format = metadata['data_format']
219
220 # The width of one UART bit in number of samples.
221 self.bit_width = float(self.samplerate) / float(self.baudrate)
222
223 def report(self):
224 pass
225
226 # Return true if we reached the middle of the desired bit, false otherwise.
227 def reached_bit(self, bitnum):
228 # bitpos is the samplenumber which is in the middle of the
229 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
230 # (if used) or the first stop bit, and so on).
231 bitpos = self.frame_start + (self.bit_width / 2.0)
232 bitpos += bitnum * self.bit_width
233 if self.samplenum >= bitpos:
234 return True
235 return False
236
237 def reached_bit_last(self, bitnum):
238 bitpos = self.frame_start + ((bitnum + 1) * self.bit_width)
239 if self.samplenum >= bitpos:
240 return True
241 return False
242
243 def wait_for_start_bit(self, old_signal, signal):
244 # The start bit is always 0 (low). As the idle UART (and the stop bit)
245 # level is 1 (high), the beginning of a start bit is a falling edge.
246 if not (old_signal == 1 and signal == 0):
247 return
248
249 # Save the sample number where the start bit begins.
250 self.frame_start = self.samplenum
251
252 self.staterx = GET_START_BIT
253
254 def get_start_bit(self, signal):
255 # Skip samples until we're in the middle of the start bit.
256 if not self.reached_bit(0):
257 return []
258
259 self.startbit = signal
260
261 if self.startbit != 0:
262 # TODO: Startbit must be 0. If not, we report an error.
263 pass
264
265 self.cur_data_bit = 0
266 self.databyte = 0
267 self.startsample = -1
268
269 self.staterx = GET_DATA_BITS
270
f44d2db2
UH
271 o = [{'type': 'S', 'range': (self.frame_start, self.samplenum),
272 'data': None, 'ann': 'Start bit'}]
273 return o
274
275 def get_data_bits(self, signal):
276 # Skip samples until we're in the middle of the desired data bit.
277 if not self.reached_bit(self.cur_data_bit + 1):
278 return []
279
280 # Save the sample number where the data byte starts.
281 if self.startsample == -1:
282 self.startsample = self.samplenum
283
284 # Get the next data bit in LSB-first or MSB-first fashion.
285 if self.bit_order == LSB_FIRST:
286 self.databyte >>= 1
287 self.databyte |= (signal << (self.num_data_bits - 1))
288 elif self.bit_order == MSB_FIRST:
289 self.databyte <<= 1
290 self.databyte |= (signal << 0)
291 else:
292 raise Exception('Invalid bit order value: %d', self.bit_order)
293
294 # Return here, unless we already received all data bits.
295 if self.cur_data_bit < self.num_data_bits - 1: # TODO? Off-by-one?
296 self.cur_data_bit += 1
297 return []
298
299 # Convert the data byte into the configured format.
300 if self.data_format == DATA_FORMAT_ASCII:
301 d = chr(self.databyte)
302 elif self.data_format == DATA_FORMAT_HEX:
303 d = '0x%02x' % self.databyte
304 else:
305 raise Exception('Invalid data format value: %d', self.data_format)
306
307 self.staterx = GET_PARITY_BIT
308
f44d2db2
UH
309 o = [{'type': 'D', 'range': (self.startsample, self.samplenum - 1),
310 'data': d, 'ann': None}]
311
312 return o
313
314 def get_parity_bit(self, signal):
315 # If no parity is used/configured, skip to the next state immediately.
316 if self.parity == PARITY_NONE:
317 self.staterx = GET_STOP_BITS
318 return []
319
320 # Skip samples until we're in the middle of the parity bit.
321 if not self.reached_bit(self.num_data_bits + 1):
322 return []
323
324 self.paritybit = signal
325
326 self.staterx = GET_STOP_BITS
327
328 if parity_ok(self.parity, self.paritybit, self.databyte,
329 self.num_data_bits):
f44d2db2
UH
330 # TODO: Fix range.
331 o = [{'type': 'P', 'range': (self.samplenum, self.samplenum),
332 'data': self.paritybit, 'ann': 'Parity bit'}]
333 else:
f44d2db2
UH
334 o = [{'type': 'PE', 'range': (self.samplenum, self.samplenum),
335 'data': self.paritybit, 'ann': 'Parity error'}]
336
337 return o
338
339 # TODO: Currently only supports 1 stop bit.
340 def get_stop_bits(self, signal):
341 # Skip samples until we're in the middle of the stop bit(s).
5b6b4f77 342 skip_parity = 0 if self.parity == PARITY_NONE else 1
f44d2db2
UH
343 if not self.reached_bit(self.num_data_bits + 1 + skip_parity):
344 return []
345
346 self.stopbit1 = signal
347
348 if self.stopbit1 != 1:
349 # TODO: Stop bits must be 1. If not, we report an error.
350 pass
351
352 self.staterx = WAIT_FOR_START_BIT
353
f44d2db2
UH
354 # TODO: Fix range.
355 o = [{'type': 'P', 'range': (self.samplenum, self.samplenum),
356 'data': None, 'ann': 'Stop bit'}]
357 return o
358
29ed0f4c 359 def decode(self, timeoffset, duration, data): # TODO
f44d2db2
UH
360 out = []
361
29ed0f4c
UH
362 # for (samplenum, (rx, tx)) in data:
363 for (samplenum, (rx,)) in data:
f44d2db2
UH
364
365 # TODO: Start counting at 0 or 1? Increase before or after?
366 self.samplenum += 1
367
368 # First sample: Save RX/TX value.
369 if self.oldrx == None:
370 # Get RX/TX bit values (0/1 for low/high) of the first sample.
29ed0f4c
UH
371 self.oldrx = rx
372 # self.oldtx = tx
f44d2db2
UH
373 continue
374
f44d2db2
UH
375 # State machine.
376 if self.staterx == WAIT_FOR_START_BIT:
377 self.wait_for_start_bit(self.oldrx, rx)
378 elif self.staterx == GET_START_BIT:
379 out += self.get_start_bit(rx)
380 elif self.staterx == GET_DATA_BITS:
381 out += self.get_data_bits(rx)
382 elif self.staterx == GET_PARITY_BIT:
383 out += self.get_parity_bit(rx)
384 elif self.staterx == GET_STOP_BITS:
385 out += self.get_stop_bits(rx)
386 else:
387 raise Exception('Invalid state: %s' % self.staterx)
388
389 # Save current RX/TX values for the next round.
390 self.oldrx = rx
391 # self.oldtx = tx
392
393 if out != []:
29ed0f4c
UH
394 # self.put(0, 0, self.output_protocol, out_proto)
395 self.put(0, 0, self.output_annotation, out)
f44d2db2 396