]> sigrok.org Git - libsigrokdecode.git/blame - decoders/uart/uart.py
srd: PDs: Consistency/cosmetic fixes.
[libsigrokdecode.git] / decoders / uart / uart.py
CommitLineData
f44d2db2
UH
1##
2## This file is part of the sigrok project.
3##
4a04ece4 4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
f44d2db2
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
f44d2db2 21# UART protocol decoder
f44d2db2 22
677d597b 23import sigrokdecode as srd
f44d2db2
UH
24
25# States
26WAIT_FOR_START_BIT = 0
27GET_START_BIT = 1
28GET_DATA_BITS = 2
29GET_PARITY_BIT = 3
30GET_STOP_BITS = 4
31
97cca21f
UH
32# Used for differentiating between the two data directions.
33RX = 0
34TX = 1
35
1bb57ab8
UH
36# Annotation feed formats
37ANN_ASCII = 0
38ANN_DEC = 1
39ANN_HEX = 2
40ANN_OCT = 3
41ANN_BITS = 4
f44d2db2 42
f44d2db2
UH
43# Given a parity type to check (odd, even, zero, one), the value of the
44# parity bit, the value of the data, and the length of the data (5-9 bits,
45# usually 8 bits) return True if the parity is correct, False otherwise.
a7fc4c34 46# 'none' is _not_ allowed as value for 'parity_type'.
f44d2db2
UH
47def parity_ok(parity_type, parity_bit, data, num_data_bits):
48
49 # Handle easy cases first (parity bit is always 1 or 0).
a7fc4c34 50 if parity_type == 'zero':
f44d2db2 51 return parity_bit == 0
a7fc4c34 52 elif parity_type == 'one':
f44d2db2
UH
53 return parity_bit == 1
54
55 # Count number of 1 (high) bits in the data (and the parity bit itself!).
ac941bf9 56 ones = bin(data).count('1') + parity_bit
f44d2db2
UH
57
58 # Check for odd/even parity.
a7fc4c34 59 if parity_type == 'odd':
ac941bf9 60 return (ones % 2) == 1
a7fc4c34 61 elif parity_type == 'even':
ac941bf9 62 return (ones % 2) == 0
f44d2db2
UH
63 else:
64 raise Exception('Invalid parity type: %d' % parity_type)
65
677d597b 66class Decoder(srd.Decoder):
a2c2afd9 67 api_version = 1
f44d2db2
UH
68 id = 'uart'
69 name = 'UART'
3d3da57d 70 longname = 'Universal Asynchronous Receiver/Transmitter'
f44d2db2
UH
71 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
72 longdesc = 'TODO.'
f44d2db2
UH
73 license = 'gplv2+'
74 inputs = ['logic']
75 outputs = ['uart']
29ed0f4c 76 probes = [
f44d2db2
UH
77 # Allow specifying only one of the signals, e.g. if only one data
78 # direction exists (or is relevant).
29ed0f4c
UH
79 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
80 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
81 ]
b77614bc 82 optional_probes = []
f44d2db2 83 options = {
97cca21f 84 'baudrate': ['Baud rate', 115200],
f44d2db2 85 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
a7fc4c34
UH
86 'parity_type': ['Parity type', 'none'],
87 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
88 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
89 'bit_order': ['Bit order', 'lsb-first'],
f44d2db2 90 # TODO: Options to invert the signal(s).
f44d2db2 91 }
e97b6ef5 92 annotations = [
97cca21f
UH
93 ['ASCII', 'Data bytes as ASCII characters'],
94 ['Decimal', 'Databytes as decimal, integer values'],
95 ['Hex', 'Data bytes in hex format'],
96 ['Octal', 'Data bytes as octal numbers'],
97 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
1bb57ab8 98 ]
f44d2db2 99
97cca21f
UH
100 def putx(self, rxtx, data):
101 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
102
f44d2db2 103 def __init__(self, **kwargs):
f44d2db2 104 self.samplenum = 0
97cca21f
UH
105 self.frame_start = [-1, -1]
106 self.startbit = [-1, -1]
107 self.cur_data_bit = [0, 0]
108 self.databyte = [0, 0]
1ccef461 109 self.paritybit = [-1, -1]
97cca21f
UH
110 self.stopbit1 = [-1, -1]
111 self.startsample = [-1, -1]
f44d2db2
UH
112
113 # Initial state.
97cca21f 114 self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT]
f44d2db2 115
97cca21f 116 self.oldbit = [None, None]
f44d2db2
UH
117
118 def start(self, metadata):
f44d2db2 119 self.samplerate = metadata['samplerate']
56202222
UH
120 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
121 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
f44d2db2 122
f44d2db2 123 # The width of one UART bit in number of samples.
4a04ece4
UH
124 self.bit_width = \
125 float(self.samplerate) / float(self.options['baudrate'])
f44d2db2
UH
126
127 def report(self):
128 pass
129
130 # Return true if we reached the middle of the desired bit, false otherwise.
97cca21f 131 def reached_bit(self, rxtx, bitnum):
f44d2db2
UH
132 # bitpos is the samplenumber which is in the middle of the
133 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
134 # (if used) or the first stop bit, and so on).
97cca21f 135 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
f44d2db2
UH
136 bitpos += bitnum * self.bit_width
137 if self.samplenum >= bitpos:
138 return True
139 return False
140
97cca21f
UH
141 def reached_bit_last(self, rxtx, bitnum):
142 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
f44d2db2
UH
143 if self.samplenum >= bitpos:
144 return True
145 return False
146
97cca21f 147 def wait_for_start_bit(self, rxtx, old_signal, signal):
f44d2db2
UH
148 # The start bit is always 0 (low). As the idle UART (and the stop bit)
149 # level is 1 (high), the beginning of a start bit is a falling edge.
150 if not (old_signal == 1 and signal == 0):
151 return
152
153 # Save the sample number where the start bit begins.
97cca21f 154 self.frame_start[rxtx] = self.samplenum
f44d2db2 155
97cca21f 156 self.state[rxtx] = GET_START_BIT
f44d2db2 157
97cca21f 158 def get_start_bit(self, rxtx, signal):
f44d2db2 159 # Skip samples until we're in the middle of the start bit.
97cca21f 160 if not self.reached_bit(rxtx, 0):
1bb57ab8 161 return
f44d2db2 162
97cca21f 163 self.startbit[rxtx] = signal
f44d2db2 164
5cc4b6a0 165 # The startbit must be 0. If not, we report an error.
97cca21f
UH
166 if self.startbit[rxtx] != 0:
167 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 168 ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
5cc4b6a0 169 # TODO: Abort? Ignore rest of the frame?
f44d2db2 170
97cca21f
UH
171 self.cur_data_bit[rxtx] = 0
172 self.databyte[rxtx] = 0
173 self.startsample[rxtx] = -1
f44d2db2 174
97cca21f 175 self.state[rxtx] = GET_DATA_BITS
f44d2db2 176
97cca21f 177 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 178 ['STARTBIT', rxtx, self.startbit[rxtx]])
97cca21f 179 self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
5cc4b6a0 180 [ANN_ASCII, ['Start bit', 'Start', 'S']])
f44d2db2 181
97cca21f 182 def get_data_bits(self, rxtx, signal):
f44d2db2 183 # Skip samples until we're in the middle of the desired data bit.
97cca21f 184 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
1bb57ab8 185 return
f44d2db2
UH
186
187 # Save the sample number where the data byte starts.
97cca21f
UH
188 if self.startsample[rxtx] == -1:
189 self.startsample[rxtx] = self.samplenum
f44d2db2
UH
190
191 # Get the next data bit in LSB-first or MSB-first fashion.
a7fc4c34 192 if self.options['bit_order'] == 'lsb-first':
97cca21f 193 self.databyte[rxtx] >>= 1
fd4aa8aa
UH
194 self.databyte[rxtx] |= \
195 (signal << (self.options['num_data_bits'] - 1))
a7fc4c34 196 elif self.options['bit_order'] == 'msb-first':
97cca21f
UH
197 self.databyte[rxtx] <<= 1
198 self.databyte[rxtx] |= (signal << 0)
f44d2db2 199 else:
a7fc4c34 200 raise Exception('Invalid bit order value: %s',
4a04ece4 201 self.options['bit_order'])
f44d2db2
UH
202
203 # Return here, unless we already received all data bits.
4a04ece4
UH
204 # TODO? Off-by-one?
205 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
97cca21f 206 self.cur_data_bit[rxtx] += 1
1bb57ab8 207 return
f44d2db2 208
97cca21f 209 self.state[rxtx] = GET_PARITY_BIT
f44d2db2 210
97cca21f 211 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
b9e44d1e 212 ['DATA', rxtx, self.databyte[rxtx]])
f44d2db2 213
97cca21f
UH
214 s = 'RX: ' if (rxtx == RX) else 'TX: '
215 self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
216 self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
217 self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
218 s + hex(self.databyte[rxtx])[2:]]])
219 self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
220 s + oct(self.databyte[rxtx])[2:]]])
221 self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
222 s + bin(self.databyte[rxtx])[2:]]])
f44d2db2 223
97cca21f 224 def get_parity_bit(self, rxtx, signal):
f44d2db2 225 # If no parity is used/configured, skip to the next state immediately.
a7fc4c34 226 if self.options['parity_type'] == 'none':
97cca21f 227 self.state[rxtx] = GET_STOP_BITS
1bb57ab8 228 return
f44d2db2
UH
229
230 # Skip samples until we're in the middle of the parity bit.
4a04ece4 231 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
1bb57ab8 232 return
f44d2db2 233
97cca21f 234 self.paritybit[rxtx] = signal
f44d2db2 235
97cca21f 236 self.state[rxtx] = GET_STOP_BITS
f44d2db2 237
ac941bf9 238 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
4a04ece4 239 self.databyte[rxtx], self.options['num_data_bits']):
f44d2db2 240 # TODO: Fix range.
1bb57ab8 241 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 242 ['PARITYBIT', rxtx, self.paritybit[rxtx]])
1bb57ab8 243 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 244 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
f44d2db2 245 else:
1bb57ab8 246 # TODO: Fix range.
61132abd 247 # TODO: Return expected/actual parity values.
1bb57ab8 248 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 249 ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
1bb57ab8 250 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 251 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
f44d2db2
UH
252
253 # TODO: Currently only supports 1 stop bit.
97cca21f 254 def get_stop_bits(self, rxtx, signal):
f44d2db2 255 # Skip samples until we're in the middle of the stop bit(s).
a7fc4c34 256 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
4a04ece4
UH
257 b = self.options['num_data_bits'] + 1 + skip_parity
258 if not self.reached_bit(rxtx, b):
1bb57ab8 259 return
f44d2db2 260
97cca21f 261 self.stopbit1[rxtx] = signal
f44d2db2 262
5cc4b6a0 263 # Stop bits must be 1. If not, we report an error.
97cca21f
UH
264 if self.stopbit1[rxtx] != 1:
265 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 266 ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
5cc4b6a0 267 # TODO: Abort? Ignore the frame? Other?
f44d2db2 268
97cca21f 269 self.state[rxtx] = WAIT_FOR_START_BIT
f44d2db2 270
f44d2db2 271 # TODO: Fix range.
1bb57ab8 272 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 273 ['STOPBIT', rxtx, self.stopbit1[rxtx]])
1bb57ab8 274 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 275 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
f44d2db2 276
decde15e
UH
277 def decode(self, ss, es, data):
278 # TODO: Either RX or TX could be omitted (optional probe).
97cca21f 279 for (samplenum, (rx, tx)) in data:
f44d2db2
UH
280
281 # TODO: Start counting at 0 or 1? Increase before or after?
282 self.samplenum += 1
283
284 # First sample: Save RX/TX value.
97cca21f
UH
285 if self.oldbit[RX] == None:
286 self.oldbit[RX] = rx
287 continue
288 if self.oldbit[TX] == None:
289 self.oldbit[TX] = tx
f44d2db2
UH
290 continue
291
f44d2db2 292 # State machine.
97cca21f
UH
293 for rxtx in (RX, TX):
294 signal = rx if (rxtx == RX) else tx
295
296 if self.state[rxtx] == WAIT_FOR_START_BIT:
297 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
298 elif self.state[rxtx] == GET_START_BIT:
299 self.get_start_bit(rxtx, signal)
300 elif self.state[rxtx] == GET_DATA_BITS:
301 self.get_data_bits(rxtx, signal)
302 elif self.state[rxtx] == GET_PARITY_BIT:
303 self.get_parity_bit(rxtx, signal)
304 elif self.state[rxtx] == GET_STOP_BITS:
305 self.get_stop_bits(rxtx, signal)
306 else:
decde15e 307 raise Exception('Invalid state: %d' % self.state[rxtx])
97cca21f
UH
308
309 # Save current RX/TX values for the next round.
310 self.oldbit[rxtx] = signal
f44d2db2 311