]> sigrok.org Git - libsigrokdecode.git/blame - decoders/uart/uart.py
srd: uart: Use strings for most PD options.
[libsigrokdecode.git] / decoders / uart / uart.py
CommitLineData
f44d2db2
UH
1##
2## This file is part of the sigrok project.
3##
4a04ece4 4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
f44d2db2
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# UART protocol decoder
23#
24
677d597b 25import sigrokdecode as srd
f44d2db2
UH
26
27# States
28WAIT_FOR_START_BIT = 0
29GET_START_BIT = 1
30GET_DATA_BITS = 2
31GET_PARITY_BIT = 3
32GET_STOP_BITS = 4
33
97cca21f
UH
34# Used for differentiating between the two data directions.
35RX = 0
36TX = 1
37
1bb57ab8
UH
38# Annotation feed formats
39ANN_ASCII = 0
40ANN_DEC = 1
41ANN_HEX = 2
42ANN_OCT = 3
43ANN_BITS = 4
f44d2db2 44
f44d2db2
UH
45# Given a parity type to check (odd, even, zero, one), the value of the
46# parity bit, the value of the data, and the length of the data (5-9 bits,
47# usually 8 bits) return True if the parity is correct, False otherwise.
a7fc4c34 48# 'none' is _not_ allowed as value for 'parity_type'.
f44d2db2
UH
49def parity_ok(parity_type, parity_bit, data, num_data_bits):
50
51 # Handle easy cases first (parity bit is always 1 or 0).
a7fc4c34 52 if parity_type == 'zero':
f44d2db2 53 return parity_bit == 0
a7fc4c34 54 elif parity_type == 'one':
f44d2db2
UH
55 return parity_bit == 1
56
57 # Count number of 1 (high) bits in the data (and the parity bit itself!).
ac941bf9 58 ones = bin(data).count('1') + parity_bit
f44d2db2
UH
59
60 # Check for odd/even parity.
a7fc4c34 61 if parity_type == 'odd':
ac941bf9 62 return (ones % 2) == 1
a7fc4c34 63 elif parity_type == 'even':
ac941bf9 64 return (ones % 2) == 0
f44d2db2
UH
65 else:
66 raise Exception('Invalid parity type: %d' % parity_type)
67
677d597b 68class Decoder(srd.Decoder):
a2c2afd9 69 api_version = 1
f44d2db2
UH
70 id = 'uart'
71 name = 'UART'
3d3da57d 72 longname = 'Universal Asynchronous Receiver/Transmitter'
f44d2db2
UH
73 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
74 longdesc = 'TODO.'
f44d2db2
UH
75 license = 'gplv2+'
76 inputs = ['logic']
77 outputs = ['uart']
29ed0f4c 78 probes = [
f44d2db2
UH
79 # Allow specifying only one of the signals, e.g. if only one data
80 # direction exists (or is relevant).
29ed0f4c
UH
81 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
82 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
83 ]
b77614bc 84 optional_probes = []
f44d2db2 85 options = {
97cca21f 86 'baudrate': ['Baud rate', 115200],
f44d2db2 87 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
a7fc4c34
UH
88 'parity_type': ['Parity type', 'none'],
89 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
90 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
91 'bit_order': ['Bit order', 'lsb-first'],
f44d2db2 92 # TODO: Options to invert the signal(s).
f44d2db2 93 }
e97b6ef5 94 annotations = [
97cca21f
UH
95 ['ASCII', 'Data bytes as ASCII characters'],
96 ['Decimal', 'Databytes as decimal, integer values'],
97 ['Hex', 'Data bytes in hex format'],
98 ['Octal', 'Data bytes as octal numbers'],
99 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
1bb57ab8 100 ]
f44d2db2 101
97cca21f
UH
102 def putx(self, rxtx, data):
103 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
104
f44d2db2 105 def __init__(self, **kwargs):
f44d2db2 106 self.samplenum = 0
97cca21f
UH
107 self.frame_start = [-1, -1]
108 self.startbit = [-1, -1]
109 self.cur_data_bit = [0, 0]
110 self.databyte = [0, 0]
1ccef461 111 self.paritybit = [-1, -1]
97cca21f
UH
112 self.stopbit1 = [-1, -1]
113 self.startsample = [-1, -1]
f44d2db2
UH
114
115 # Initial state.
97cca21f 116 self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT]
f44d2db2 117
97cca21f 118 self.oldbit = [None, None]
f44d2db2
UH
119
120 def start(self, metadata):
f44d2db2 121 self.samplerate = metadata['samplerate']
56202222
UH
122 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
123 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
f44d2db2 124
f44d2db2 125 # The width of one UART bit in number of samples.
4a04ece4
UH
126 self.bit_width = \
127 float(self.samplerate) / float(self.options['baudrate'])
f44d2db2
UH
128
129 def report(self):
130 pass
131
132 # Return true if we reached the middle of the desired bit, false otherwise.
97cca21f 133 def reached_bit(self, rxtx, bitnum):
f44d2db2
UH
134 # bitpos is the samplenumber which is in the middle of the
135 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
136 # (if used) or the first stop bit, and so on).
97cca21f 137 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
f44d2db2
UH
138 bitpos += bitnum * self.bit_width
139 if self.samplenum >= bitpos:
140 return True
141 return False
142
97cca21f
UH
143 def reached_bit_last(self, rxtx, bitnum):
144 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
f44d2db2
UH
145 if self.samplenum >= bitpos:
146 return True
147 return False
148
97cca21f 149 def wait_for_start_bit(self, rxtx, old_signal, signal):
f44d2db2
UH
150 # The start bit is always 0 (low). As the idle UART (and the stop bit)
151 # level is 1 (high), the beginning of a start bit is a falling edge.
152 if not (old_signal == 1 and signal == 0):
153 return
154
155 # Save the sample number where the start bit begins.
97cca21f 156 self.frame_start[rxtx] = self.samplenum
f44d2db2 157
97cca21f 158 self.state[rxtx] = GET_START_BIT
f44d2db2 159
97cca21f 160 def get_start_bit(self, rxtx, signal):
f44d2db2 161 # Skip samples until we're in the middle of the start bit.
97cca21f 162 if not self.reached_bit(rxtx, 0):
1bb57ab8 163 return
f44d2db2 164
97cca21f 165 self.startbit[rxtx] = signal
f44d2db2 166
5cc4b6a0 167 # The startbit must be 0. If not, we report an error.
97cca21f
UH
168 if self.startbit[rxtx] != 0:
169 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 170 ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
5cc4b6a0 171 # TODO: Abort? Ignore rest of the frame?
f44d2db2 172
97cca21f
UH
173 self.cur_data_bit[rxtx] = 0
174 self.databyte[rxtx] = 0
175 self.startsample[rxtx] = -1
f44d2db2 176
97cca21f 177 self.state[rxtx] = GET_DATA_BITS
f44d2db2 178
97cca21f 179 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 180 ['STARTBIT', rxtx, self.startbit[rxtx]])
97cca21f 181 self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
5cc4b6a0 182 [ANN_ASCII, ['Start bit', 'Start', 'S']])
f44d2db2 183
97cca21f 184 def get_data_bits(self, rxtx, signal):
f44d2db2 185 # Skip samples until we're in the middle of the desired data bit.
97cca21f 186 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
1bb57ab8 187 return
f44d2db2
UH
188
189 # Save the sample number where the data byte starts.
97cca21f
UH
190 if self.startsample[rxtx] == -1:
191 self.startsample[rxtx] = self.samplenum
f44d2db2
UH
192
193 # Get the next data bit in LSB-first or MSB-first fashion.
a7fc4c34 194 if self.options['bit_order'] == 'lsb-first':
97cca21f 195 self.databyte[rxtx] >>= 1
fd4aa8aa
UH
196 self.databyte[rxtx] |= \
197 (signal << (self.options['num_data_bits'] - 1))
a7fc4c34 198 elif self.options['bit_order'] == 'msb-first':
97cca21f
UH
199 self.databyte[rxtx] <<= 1
200 self.databyte[rxtx] |= (signal << 0)
f44d2db2 201 else:
a7fc4c34 202 raise Exception('Invalid bit order value: %s',
4a04ece4 203 self.options['bit_order'])
f44d2db2
UH
204
205 # Return here, unless we already received all data bits.
4a04ece4
UH
206 # TODO? Off-by-one?
207 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
97cca21f 208 self.cur_data_bit[rxtx] += 1
1bb57ab8 209 return
f44d2db2 210
97cca21f 211 self.state[rxtx] = GET_PARITY_BIT
f44d2db2 212
97cca21f 213 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
b9e44d1e 214 ['DATA', rxtx, self.databyte[rxtx]])
f44d2db2 215
97cca21f
UH
216 s = 'RX: ' if (rxtx == RX) else 'TX: '
217 self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
218 self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
219 self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
220 s + hex(self.databyte[rxtx])[2:]]])
221 self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
222 s + oct(self.databyte[rxtx])[2:]]])
223 self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
224 s + bin(self.databyte[rxtx])[2:]]])
f44d2db2 225
97cca21f 226 def get_parity_bit(self, rxtx, signal):
f44d2db2 227 # If no parity is used/configured, skip to the next state immediately.
a7fc4c34 228 if self.options['parity_type'] == 'none':
97cca21f 229 self.state[rxtx] = GET_STOP_BITS
1bb57ab8 230 return
f44d2db2
UH
231
232 # Skip samples until we're in the middle of the parity bit.
4a04ece4 233 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
1bb57ab8 234 return
f44d2db2 235
97cca21f 236 self.paritybit[rxtx] = signal
f44d2db2 237
97cca21f 238 self.state[rxtx] = GET_STOP_BITS
f44d2db2 239
ac941bf9 240 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
4a04ece4 241 self.databyte[rxtx], self.options['num_data_bits']):
f44d2db2 242 # TODO: Fix range.
1bb57ab8 243 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 244 ['PARITYBIT', rxtx, self.paritybit[rxtx]])
1bb57ab8 245 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 246 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
f44d2db2 247 else:
1bb57ab8 248 # TODO: Fix range.
61132abd 249 # TODO: Return expected/actual parity values.
1bb57ab8 250 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 251 ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
1bb57ab8 252 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 253 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
f44d2db2
UH
254
255 # TODO: Currently only supports 1 stop bit.
97cca21f 256 def get_stop_bits(self, rxtx, signal):
f44d2db2 257 # Skip samples until we're in the middle of the stop bit(s).
a7fc4c34 258 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
4a04ece4
UH
259 b = self.options['num_data_bits'] + 1 + skip_parity
260 if not self.reached_bit(rxtx, b):
1bb57ab8 261 return
f44d2db2 262
97cca21f 263 self.stopbit1[rxtx] = signal
f44d2db2 264
5cc4b6a0 265 # Stop bits must be 1. If not, we report an error.
97cca21f
UH
266 if self.stopbit1[rxtx] != 1:
267 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
b9e44d1e 268 ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
5cc4b6a0 269 # TODO: Abort? Ignore the frame? Other?
f44d2db2 270
97cca21f 271 self.state[rxtx] = WAIT_FOR_START_BIT
f44d2db2 272
f44d2db2 273 # TODO: Fix range.
1bb57ab8 274 self.put(self.samplenum, self.samplenum, self.out_proto,
b9e44d1e 275 ['STOPBIT', rxtx, self.stopbit1[rxtx]])
1bb57ab8 276 self.put(self.samplenum, self.samplenum, self.out_ann,
5cc4b6a0 277 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
f44d2db2 278
decde15e
UH
279 def decode(self, ss, es, data):
280 # TODO: Either RX or TX could be omitted (optional probe).
97cca21f 281 for (samplenum, (rx, tx)) in data:
f44d2db2
UH
282
283 # TODO: Start counting at 0 or 1? Increase before or after?
284 self.samplenum += 1
285
286 # First sample: Save RX/TX value.
97cca21f
UH
287 if self.oldbit[RX] == None:
288 self.oldbit[RX] = rx
289 continue
290 if self.oldbit[TX] == None:
291 self.oldbit[TX] = tx
f44d2db2
UH
292 continue
293
f44d2db2 294 # State machine.
97cca21f
UH
295 for rxtx in (RX, TX):
296 signal = rx if (rxtx == RX) else tx
297
298 if self.state[rxtx] == WAIT_FOR_START_BIT:
299 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
300 elif self.state[rxtx] == GET_START_BIT:
301 self.get_start_bit(rxtx, signal)
302 elif self.state[rxtx] == GET_DATA_BITS:
303 self.get_data_bits(rxtx, signal)
304 elif self.state[rxtx] == GET_PARITY_BIT:
305 self.get_parity_bit(rxtx, signal)
306 elif self.state[rxtx] == GET_STOP_BITS:
307 self.get_stop_bits(rxtx, signal)
308 else:
decde15e 309 raise Exception('Invalid state: %d' % self.state[rxtx])
97cca21f
UH
310
311 # Save current RX/TX values for the next round.
312 self.oldbit[rxtx] = signal
f44d2db2 313