]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/uart.py
srd: uart: Use strings for most PD options.
[libsigrokdecode.git] / decoders / uart / uart.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# UART protocol decoder
23#
24
25import sigrokdecode as srd
26
27# States
28WAIT_FOR_START_BIT = 0
29GET_START_BIT = 1
30GET_DATA_BITS = 2
31GET_PARITY_BIT = 3
32GET_STOP_BITS = 4
33
34# Used for differentiating between the two data directions.
35RX = 0
36TX = 1
37
38# Annotation feed formats
39ANN_ASCII = 0
40ANN_DEC = 1
41ANN_HEX = 2
42ANN_OCT = 3
43ANN_BITS = 4
44
45# Given a parity type to check (odd, even, zero, one), the value of the
46# parity bit, the value of the data, and the length of the data (5-9 bits,
47# usually 8 bits) return True if the parity is correct, False otherwise.
48# 'none' is _not_ allowed as value for 'parity_type'.
49def parity_ok(parity_type, parity_bit, data, num_data_bits):
50
51 # Handle easy cases first (parity bit is always 1 or 0).
52 if parity_type == 'zero':
53 return parity_bit == 0
54 elif parity_type == 'one':
55 return parity_bit == 1
56
57 # Count number of 1 (high) bits in the data (and the parity bit itself!).
58 ones = bin(data).count('1') + parity_bit
59
60 # Check for odd/even parity.
61 if parity_type == 'odd':
62 return (ones % 2) == 1
63 elif parity_type == 'even':
64 return (ones % 2) == 0
65 else:
66 raise Exception('Invalid parity type: %d' % parity_type)
67
68class Decoder(srd.Decoder):
69 api_version = 1
70 id = 'uart'
71 name = 'UART'
72 longname = 'Universal Asynchronous Receiver/Transmitter'
73 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
74 longdesc = 'TODO.'
75 license = 'gplv2+'
76 inputs = ['logic']
77 outputs = ['uart']
78 probes = [
79 # Allow specifying only one of the signals, e.g. if only one data
80 # direction exists (or is relevant).
81 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
82 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
83 ]
84 optional_probes = []
85 options = {
86 'baudrate': ['Baud rate', 115200],
87 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
88 'parity_type': ['Parity type', 'none'],
89 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
90 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
91 'bit_order': ['Bit order', 'lsb-first'],
92 # TODO: Options to invert the signal(s).
93 }
94 annotations = [
95 ['ASCII', 'Data bytes as ASCII characters'],
96 ['Decimal', 'Databytes as decimal, integer values'],
97 ['Hex', 'Data bytes in hex format'],
98 ['Octal', 'Data bytes as octal numbers'],
99 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
100 ]
101
102 def putx(self, rxtx, data):
103 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
104
105 def __init__(self, **kwargs):
106 self.samplenum = 0
107 self.frame_start = [-1, -1]
108 self.startbit = [-1, -1]
109 self.cur_data_bit = [0, 0]
110 self.databyte = [0, 0]
111 self.paritybit = [-1, -1]
112 self.stopbit1 = [-1, -1]
113 self.startsample = [-1, -1]
114
115 # Initial state.
116 self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT]
117
118 self.oldbit = [None, None]
119
120 def start(self, metadata):
121 self.samplerate = metadata['samplerate']
122 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
123 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
124
125 # The width of one UART bit in number of samples.
126 self.bit_width = \
127 float(self.samplerate) / float(self.options['baudrate'])
128
129 def report(self):
130 pass
131
132 # Return true if we reached the middle of the desired bit, false otherwise.
133 def reached_bit(self, rxtx, bitnum):
134 # bitpos is the samplenumber which is in the middle of the
135 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
136 # (if used) or the first stop bit, and so on).
137 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
138 bitpos += bitnum * self.bit_width
139 if self.samplenum >= bitpos:
140 return True
141 return False
142
143 def reached_bit_last(self, rxtx, bitnum):
144 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
145 if self.samplenum >= bitpos:
146 return True
147 return False
148
149 def wait_for_start_bit(self, rxtx, old_signal, signal):
150 # The start bit is always 0 (low). As the idle UART (and the stop bit)
151 # level is 1 (high), the beginning of a start bit is a falling edge.
152 if not (old_signal == 1 and signal == 0):
153 return
154
155 # Save the sample number where the start bit begins.
156 self.frame_start[rxtx] = self.samplenum
157
158 self.state[rxtx] = GET_START_BIT
159
160 def get_start_bit(self, rxtx, signal):
161 # Skip samples until we're in the middle of the start bit.
162 if not self.reached_bit(rxtx, 0):
163 return
164
165 self.startbit[rxtx] = signal
166
167 # The startbit must be 0. If not, we report an error.
168 if self.startbit[rxtx] != 0:
169 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
170 ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
171 # TODO: Abort? Ignore rest of the frame?
172
173 self.cur_data_bit[rxtx] = 0
174 self.databyte[rxtx] = 0
175 self.startsample[rxtx] = -1
176
177 self.state[rxtx] = GET_DATA_BITS
178
179 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
180 ['STARTBIT', rxtx, self.startbit[rxtx]])
181 self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
182 [ANN_ASCII, ['Start bit', 'Start', 'S']])
183
184 def get_data_bits(self, rxtx, signal):
185 # Skip samples until we're in the middle of the desired data bit.
186 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
187 return
188
189 # Save the sample number where the data byte starts.
190 if self.startsample[rxtx] == -1:
191 self.startsample[rxtx] = self.samplenum
192
193 # Get the next data bit in LSB-first or MSB-first fashion.
194 if self.options['bit_order'] == 'lsb-first':
195 self.databyte[rxtx] >>= 1
196 self.databyte[rxtx] |= \
197 (signal << (self.options['num_data_bits'] - 1))
198 elif self.options['bit_order'] == 'msb-first':
199 self.databyte[rxtx] <<= 1
200 self.databyte[rxtx] |= (signal << 0)
201 else:
202 raise Exception('Invalid bit order value: %s',
203 self.options['bit_order'])
204
205 # Return here, unless we already received all data bits.
206 # TODO? Off-by-one?
207 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
208 self.cur_data_bit[rxtx] += 1
209 return
210
211 self.state[rxtx] = GET_PARITY_BIT
212
213 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
214 ['DATA', rxtx, self.databyte[rxtx]])
215
216 s = 'RX: ' if (rxtx == RX) else 'TX: '
217 self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
218 self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
219 self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
220 s + hex(self.databyte[rxtx])[2:]]])
221 self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
222 s + oct(self.databyte[rxtx])[2:]]])
223 self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
224 s + bin(self.databyte[rxtx])[2:]]])
225
226 def get_parity_bit(self, rxtx, signal):
227 # If no parity is used/configured, skip to the next state immediately.
228 if self.options['parity_type'] == 'none':
229 self.state[rxtx] = GET_STOP_BITS
230 return
231
232 # Skip samples until we're in the middle of the parity bit.
233 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
234 return
235
236 self.paritybit[rxtx] = signal
237
238 self.state[rxtx] = GET_STOP_BITS
239
240 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
241 self.databyte[rxtx], self.options['num_data_bits']):
242 # TODO: Fix range.
243 self.put(self.samplenum, self.samplenum, self.out_proto,
244 ['PARITYBIT', rxtx, self.paritybit[rxtx]])
245 self.put(self.samplenum, self.samplenum, self.out_ann,
246 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
247 else:
248 # TODO: Fix range.
249 # TODO: Return expected/actual parity values.
250 self.put(self.samplenum, self.samplenum, self.out_proto,
251 ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
252 self.put(self.samplenum, self.samplenum, self.out_ann,
253 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
254
255 # TODO: Currently only supports 1 stop bit.
256 def get_stop_bits(self, rxtx, signal):
257 # Skip samples until we're in the middle of the stop bit(s).
258 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
259 b = self.options['num_data_bits'] + 1 + skip_parity
260 if not self.reached_bit(rxtx, b):
261 return
262
263 self.stopbit1[rxtx] = signal
264
265 # Stop bits must be 1. If not, we report an error.
266 if self.stopbit1[rxtx] != 1:
267 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
268 ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
269 # TODO: Abort? Ignore the frame? Other?
270
271 self.state[rxtx] = WAIT_FOR_START_BIT
272
273 # TODO: Fix range.
274 self.put(self.samplenum, self.samplenum, self.out_proto,
275 ['STOPBIT', rxtx, self.stopbit1[rxtx]])
276 self.put(self.samplenum, self.samplenum, self.out_ann,
277 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
278
279 def decode(self, ss, es, data):
280 # TODO: Either RX or TX could be omitted (optional probe).
281 for (samplenum, (rx, tx)) in data:
282
283 # TODO: Start counting at 0 or 1? Increase before or after?
284 self.samplenum += 1
285
286 # First sample: Save RX/TX value.
287 if self.oldbit[RX] == None:
288 self.oldbit[RX] = rx
289 continue
290 if self.oldbit[TX] == None:
291 self.oldbit[TX] = tx
292 continue
293
294 # State machine.
295 for rxtx in (RX, TX):
296 signal = rx if (rxtx == RX) else tx
297
298 if self.state[rxtx] == WAIT_FOR_START_BIT:
299 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
300 elif self.state[rxtx] == GET_START_BIT:
301 self.get_start_bit(rxtx, signal)
302 elif self.state[rxtx] == GET_DATA_BITS:
303 self.get_data_bits(rxtx, signal)
304 elif self.state[rxtx] == GET_PARITY_BIT:
305 self.get_parity_bit(rxtx, signal)
306 elif self.state[rxtx] == GET_STOP_BITS:
307 self.get_stop_bits(rxtx, signal)
308 else:
309 raise Exception('Invalid state: %d' % self.state[rxtx])
310
311 # Save current RX/TX values for the next round.
312 self.oldbit[rxtx] = signal
313