]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: implement alternative simpler threshold voltage config
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
83#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
84#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
85#define REG_PWM1 0x70 /* Write config for user PWM1. */
86#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 87
852c7d14
GS
88/* Bit patterns to write to REG_RUN, setup run mode. */
89#define RUNMODE_HALT 0x00
90#define RUNMODE_RUN 0x03
91
b711fd8e
GS
92/* Bit patterns when reading from REG_RUN, get run state. */
93#define RUNSTATE_IDLE_BIT (1UL << 0)
94#define RUNSTATE_DRAM_BIT (1UL << 1)
95#define RUNSTATE_TRGD_BIT (1UL << 2)
96#define RUNSTATE_POST_BIT (1UL << 3)
97
edb13f41
GS
98/* Properties related to the layout of capture data downloads. */
99#define NUM_PACKETS_IN_CHUNK 5
100#define TRANSFER_PACKET_LENGTH 16
101
f2cd2deb 102static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
103 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
104 void *data, uint16_t wLength)
f2cd2deb
FS
105{
106 struct sr_usb_dev_inst *usb;
107 int ret;
108
109 usb = sdi->conn;
110
411ad77c
GS
111 ret = libusb_control_transfer(usb->devhdl,
112 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
113 bRequest, wValue, wIndex, data, wLength,
114 DEFAULT_TIMEOUT_MS);
115 if (ret != wLength) {
91f73872
GS
116 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
117 wLength, bRequest, wValue, wIndex,
118 libusb_error_name(ret));
119 sr_err("Cannot read %d bytes from USB: %s.",
120 wLength, libusb_error_name(ret));
f2cd2deb
FS
121 return SR_ERR;
122 }
123
124 return SR_OK;
125}
126
127static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
128 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
129 void *data, uint16_t wLength)
f2cd2deb
FS
130{
131 struct sr_usb_dev_inst *usb;
132 int ret;
133
134 usb = sdi->conn;
135
411ad77c
GS
136 ret = libusb_control_transfer(usb->devhdl,
137 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
138 bRequest, wValue, wIndex, data, wLength,
139 DEFAULT_TIMEOUT_MS);
140 if (ret != wLength) {
91f73872
GS
141 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
142 wLength, bRequest, wValue, wIndex,
143 libusb_error_name(ret));
144 sr_err("Cannot write %d bytes to USB: %s.",
145 wLength, libusb_error_name(ret));
f2cd2deb
FS
146 return SR_ERR;
147 }
148
149 return SR_OK;
150}
151
d6f89d4b
GS
152/*
153 * Check the necessity for FPGA bitstream upload, because another upload
154 * would take some 600ms which is undesirable after program startup. Try
155 * to access some FPGA registers and check the values' plausibility. The
156 * check should fail on the safe side, request another upload when in
157 * doubt. A positive response (the request to continue operation with the
158 * currently active bitstream) should be conservative. Accessing multiple
159 * registers is considered cheap compared to the cost of bitstream upload.
160 *
161 * It helps though that both the vendor software and the sigrok driver
162 * use the same bundle of MCU firmware and FPGA bitstream for any of the
163 * supported models. We don't expect to successfully communicate to the
164 * device yet disagree on its protocol. Ideally we would access version
165 * identifying registers for improved robustness, but are not aware of
166 * any. A bitstream reload can always be forced by a power cycle.
167 */
168static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
169{
170 uint8_t init_rsp;
171 int ret;
172 uint16_t run_state;
173 uint8_t pwm_en;
174 size_t read_len;
175 uint8_t buff[sizeof(run_state)];
176 const uint8_t *rdptr;
177
178 sr_dbg("Checking operation of the FPGA bitstream.");
179
852c7d14 180 init_rsp = ~0;
d6f89d4b
GS
181 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
182 if (ret != SR_OK || init_rsp != 0) {
183 sr_dbg("FPGA init query failed, or unexpected response.");
184 return SR_ERR_IO;
185 }
186
187 read_len = sizeof(run_state);
188 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
189 if (ret != SR_OK) {
190 sr_dbg("FPGA register access failed (run state).");
191 return SR_ERR_IO;
192 }
193 rdptr = buff;
194 run_state = read_u16le_inc(&rdptr);
195 sr_spew("FPGA register: run state 0x%04x.", run_state);
196 if (run_state && (run_state & 0x3) != 0x1) {
197 sr_dbg("Unexpected FPGA register content (run state).");
198 return SR_ERR_DATA;
199 }
200 if (run_state && (run_state & ~0xf) != 0x85e0) {
201 sr_dbg("Unexpected FPGA register content (run state).");
202 return SR_ERR_DATA;
203 }
204
205 read_len = sizeof(pwm_en);
206 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
207 if (ret != SR_OK) {
208 sr_dbg("FPGA register access failed (PWM enable).");
209 return SR_ERR_IO;
210 }
211 rdptr = buff;
212 pwm_en = read_u8_inc(&rdptr);
213 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
214 if ((pwm_en & 0x3) != 0x0) {
215 sr_dbg("Unexpected FPGA register content (PWM enable).");
216 return SR_ERR_DATA;
217 }
218
219 sr_info("Could re-use current FPGA bitstream. No upload required.");
220 return SR_OK;
221}
222
1ed93110
GS
223static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
224 const char *bitstream_fname)
f2cd2deb
FS
225{
226 struct drv_context *drvc;
227 struct sr_usb_dev_inst *usb;
228 struct sr_resource bitstream;
b0d0131e 229 uint32_t bitstream_size;
c3d40037
HK
230 uint8_t buffer[sizeof(uint32_t)];
231 uint8_t *wrptr;
f2cd2deb 232 uint8_t block[4096];
3f48ab02
FS
233 int len, act_len;
234 unsigned int pos;
f2cd2deb 235 int ret;
b0d0131e 236 unsigned int zero_pad_to;
f2cd2deb
FS
237
238 drvc = sdi->driver->context;
239 usb = sdi->conn;
240
9de389b1 241 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 242
411ad77c
GS
243 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
244 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 245 if (ret != SR_OK) {
91f73872 246 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
247 return ret;
248 }
249
b0d0131e 250 bitstream_size = (uint32_t)bitstream.size;
c3d40037 251 wrptr = buffer;
b0d0131e 252 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
253 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
254 if (ret != SR_OK) {
91f73872 255 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
256 sr_resource_close(drvc->sr_ctx, &bitstream);
257 return ret;
258 }
b0d0131e
GS
259 zero_pad_to = bitstream_size;
260 zero_pad_to += LA2016_EP2_PADDING - 1;
261 zero_pad_to /= LA2016_EP2_PADDING;
262 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
263
264 pos = 0;
265 while (1) {
3f48ab02 266 if (pos < bitstream.size) {
411ad77c
GS
267 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
268 block, sizeof(block));
3f48ab02 269 if (len < 0) {
91f73872 270 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
271 sr_resource_close(drvc->sr_ctx, &bitstream);
272 return SR_ERR;
273 }
274 } else {
96dc954e 275 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
276 len = zero_pad_to - pos;
277 if ((unsigned)len > sizeof(block))
278 len = sizeof(block);
279 memset(&block, 0, len);
f2cd2deb
FS
280 }
281 if (len == 0)
282 break;
283
852c7d14 284 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 285 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 286 if (ret != 0) {
91f73872
GS
287 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
288 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
289 ret = SR_ERR;
290 break;
291 }
292 if (act_len != len) {
91f73872
GS
293 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
294 pos, (int)len, act_len);
f2cd2deb
FS
295 ret = SR_ERR;
296 break;
297 }
298 pos += len;
299 }
300 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 301 if (ret != SR_OK)
f2cd2deb 302 return ret;
91f73872
GS
303 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
304 bitstream.size);
f2cd2deb 305
d6f89d4b
GS
306 return SR_OK;
307}
308
309static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
310{
311 int ret;
411ad77c 312 uint8_t resp;
d6f89d4b 313
411ad77c
GS
314 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
315 if (ret != SR_OK) {
91f73872 316 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
317 return ret;
318 }
411ad77c 319 if (resp != 0) {
91f73872 320 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 321 resp);
3f48ab02
FS
322 return SR_ERR;
323 }
852c7d14 324 g_usleep(30 * 1000);
f2cd2deb 325
411ad77c
GS
326 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
327 if (ret != SR_OK) {
91f73872 328 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
329 return ret;
330 }
852c7d14 331 g_usleep(40 * 1000);
d6f89d4b 332
f2cd2deb
FS
333 return SR_OK;
334}
335
336static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
337{
f2cd2deb 338 int ret;
1ed93110 339 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
340 uint8_t buf[2 * sizeof(uint16_t)];
341 uint8_t *wrptr;
342
96dc954e 343 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
344 if (voltage > LA2016_THR_VOLTAGE_MAX) {
345 voltage = LA2016_THR_VOLTAGE_MAX;
346 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
347 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
348 }
349
350 /*
96dc954e
GS
351 * Two PWM output channels feed one DAC which generates a bias
352 * voltage, which offsets the input probe's voltage level, and
353 * in combination with the FPGA pins' fixed threshold result in
354 * a programmable input threshold from the user's perspective.
355 * The PWM outputs can be seen on R79 and R56 respectively, the
356 * frequency is 100kHz and the duty cycle varies. The R79 PWM
357 * uses three discrete settings. The R56 PWM varies with desired
358 * thresholds and depends on the R79 PWM configuration. See the
359 * schematics comments which discuss the formulae.
f2ad79d1
KG
360 */
361 if (voltage >= 2.9) {
96dc954e 362 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 363 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 364 } else if (voltage > -0.4) {
96dc954e 365 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 366 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
367 } else {
368 duty_R79 = 0x02d7; /* 72% duty cycle. */
369 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
370 }
371
96dc954e 372 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
373 if (duty_R56 < 10) {
374 duty_R56 = 10;
1ed93110 375 } else if (duty_R56 > 1100) {
f2ad79d1
KG
376 duty_R56 = 1100;
377 }
378
91f73872
GS
379 sr_dbg("Set threshold voltage %.2fV.", voltage);
380 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
381
382 wrptr = buf;
383 write_u16le_inc(&wrptr, duty_R56);
384 write_u16le_inc(&wrptr, duty_R79);
385
386 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 387 if (ret != SR_OK) {
91f73872 388 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
389 return ret;
390 }
f2cd2deb
FS
391
392 return SR_OK;
393}
394
08a49848
GS
395/*
396 * Communicates a channel's configuration to the device after the
397 * parameters may have changed. Configuration of one channel may
398 * interfere with other channels since they share FPGA registers.
399 */
400static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 401{
08a49848 402 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 403
f2cd2deb 404 struct dev_context *devc;
08a49848
GS
405 struct pwm_setting *params;
406 uint8_t reg_base;
407 double val_f;
408 uint32_t val_u;
409 uint32_t period, duty;
410 size_t ch;
f2cd2deb 411 int ret;
08a49848
GS
412 uint8_t enable_all, enable_cfg, reg_val;
413 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 414 uint8_t *wrptr;
f2cd2deb
FS
415
416 devc = sdi->priv;
08a49848
GS
417 if (idx >= ARRAY_SIZE(devc->pwm_setting))
418 return SR_ERR_ARG;
419 params = &devc->pwm_setting[idx];
420 if (idx >= ARRAY_SIZE(reg_bases))
421 return SR_ERR_ARG;
422 reg_base = reg_bases[idx];
f2cd2deb 423
08a49848
GS
424 /*
425 * Map application's specs to hardware register values. Do math
426 * in floating point initially, but convert to u32 eventually.
427 */
428 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
429 idx, params->enabled ? 1 : 0, params->freq, params->duty);
430 val_f = PWM_CLOCK;
431 val_f /= params->freq;
432 val_u = val_f;
433 period = val_u;
434 val_f = period;
435 val_f *= params->duty;
436 val_f /= 100.0;
437 val_f += 0.5;
438 val_u = val_f;
439 duty = val_u;
440 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
441 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
442
443 /* Get the "enabled" state of all supported PWM channels. */
444 enable_all = 0;
445 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
446 if (!devc->pwm_setting[ch].enabled)
447 continue;
448 enable_all |= 1U << ch;
f2cd2deb 449 }
08a49848
GS
450 enable_cfg = 1U << idx;
451 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
452 enable_all, enable_cfg);
f2cd2deb 453
08a49848
GS
454 /*
455 * Disable the to-get-configured channel before its parameters
456 * will change. Or disable and exit when the channel is supposed
457 * to get turned off.
458 */
459 sr_spew("PWM config, disabling before param change.");
460 reg_val = enable_all & ~enable_cfg;
461 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
462 &reg_val, sizeof(reg_val));
f2cd2deb 463 if (ret != SR_OK) {
08a49848 464 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
465 return ret;
466 }
08a49848
GS
467 if (!params->enabled)
468 return SR_OK;
86d77b75 469
08a49848
GS
470 /* Write register values to device. */
471 sr_spew("PWM config, sending new parameters.");
472 wrptr = buf;
473 write_u32le_inc(&wrptr, period);
474 write_u32le_inc(&wrptr, duty);
475 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
476 if (ret != SR_OK) {
477 sr_err("Cannot change PWM parameters.");
f2cd2deb 478 return ret;
08a49848 479 }
f2cd2deb 480
08a49848
GS
481 /* Enable configured channel after write completion. */
482 sr_spew("PWM config, enabling after param change.");
483 reg_val = enable_all | enable_cfg;
484 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
485 &reg_val, sizeof(reg_val));
486 if (ret != SR_OK) {
487 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 488 return ret;
08a49848 489 }
f2cd2deb
FS
490
491 return SR_OK;
492}
493
ea436ba7
GS
494static uint16_t get_channels_mask(const struct sr_dev_inst *sdi)
495{
496 uint16_t channels;
497 GSList *l;
498 struct sr_channel *ch;
499
500 channels = 0;
501 for (l = sdi->channels; l; l = l->next) {
502 ch = l->data;
503 if (ch->type != SR_CHANNEL_LOGIC)
504 continue;
505 if (!ch->enabled)
506 continue;
507 channels |= 1UL << ch->index;
508 }
509
510 return channels;
511}
512
f2cd2deb
FS
513static int set_trigger_config(const struct sr_dev_inst *sdi)
514{
515 struct dev_context *devc;
516 struct sr_trigger *trigger;
edb13f41
GS
517 struct trigger_cfg {
518 uint32_t channels;
519 uint32_t enabled;
520 uint32_t level;
521 uint32_t high_or_falling;
522 } cfg;
f2cd2deb
FS
523 GSList *stages;
524 GSList *channel;
525 struct sr_trigger_stage *stage1;
526 struct sr_trigger_match *match;
527 uint16_t ch_mask;
528 int ret;
c3d40037
HK
529 uint8_t buf[4 * sizeof(uint32_t)];
530 uint8_t *wrptr;
f2cd2deb
FS
531
532 devc = sdi->priv;
533 trigger = sr_session_trigger_get(sdi->session);
534
535 memset(&cfg, 0, sizeof(cfg));
536
ea436ba7 537 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
538
539 if (trigger && trigger->stages) {
540 stages = trigger->stages;
541 stage1 = stages->data;
542 if (stages->next) {
543 sr_err("Only one trigger stage supported for now.");
544 return SR_ERR;
545 }
546 channel = stage1->matches;
547 while (channel) {
548 match = channel->data;
cf057ac4 549 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
550
551 switch (match->match) {
552 case SR_TRIGGER_ZERO:
553 cfg.level |= ch_mask;
554 cfg.high_or_falling &= ~ch_mask;
555 break;
556 case SR_TRIGGER_ONE:
557 cfg.level |= ch_mask;
558 cfg.high_or_falling |= ch_mask;
559 break;
560 case SR_TRIGGER_RISING:
561 if ((cfg.enabled & ~cfg.level)) {
91f73872 562 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
563 return SR_ERR;
564 }
565 cfg.level &= ~ch_mask;
566 cfg.high_or_falling &= ~ch_mask;
567 break;
568 case SR_TRIGGER_FALLING:
569 if ((cfg.enabled & ~cfg.level)) {
91f73872 570 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
571 return SR_ERR;
572 }
573 cfg.level &= ~ch_mask;
574 cfg.high_or_falling |= ch_mask;
575 break;
576 default:
91f73872 577 sr_err("Unknown trigger condition.");
f2cd2deb
FS
578 return SR_ERR;
579 }
580 cfg.enabled |= ch_mask;
581 channel = channel->next;
582 }
583 }
91f73872
GS
584 sr_dbg("Set trigger config: "
585 "channels 0x%04x, trigger-enabled 0x%04x, "
586 "level-triggered 0x%04x, high/falling 0x%04x.",
587 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 588
cf057ac4 589 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 590
c3d40037
HK
591 wrptr = buf;
592 write_u32le_inc(&wrptr, cfg.channels);
593 write_u32le_inc(&wrptr, cfg.enabled);
594 write_u32le_inc(&wrptr, cfg.level);
595 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
596 /* TODO
597 * Comment on this literal 16. Origin, meaning? Cannot be the
598 * register offset, nor the transfer length. Is it a channels
599 * count that is relevant for 16 and 32 channel models? Is it
600 * an obsolete experiment?
601 */
42f6dd55 602 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 603 if (ret != SR_OK) {
91f73872 604 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
605 return ret;
606 }
607
608 return SR_OK;
609}
610
611static int set_sample_config(const struct sr_dev_inst *sdi)
612{
613 struct dev_context *devc;
d8fbfcd9 614 uint64_t min_samplerate, eff_samplerate;
adab4d91 615 uint16_t divider_u16;
a38f0f5e 616 uint64_t limit_samples;
adab4d91
GS
617 uint64_t pre_trigger_samples;
618 uint64_t pre_trigger_memory;
619 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 620 uint8_t *wrptr;
adab4d91 621 int ret;
f2cd2deb
FS
622
623 devc = sdi->priv;
f2cd2deb 624
d466f61c 625 if (devc->cur_samplerate > devc->model->samplerate) {
91f73872
GS
626 sr_err("Too high a sample rate: %" PRIu64 ".",
627 devc->cur_samplerate);
ea436ba7
GS
628 return SR_ERR_ARG;
629 }
d8fbfcd9
GS
630 min_samplerate = devc->model->samplerate;
631 min_samplerate /= 65536;
632 if (devc->cur_samplerate < min_samplerate) {
ea436ba7
GS
633 sr_err("Too low a sample rate: %" PRIu64 ".",
634 devc->cur_samplerate);
635 return SR_ERR_ARG;
f2cd2deb 636 }
d8fbfcd9
GS
637 divider_u16 = devc->model->samplerate / devc->cur_samplerate;
638 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 639
a38f0f5e
GS
640 ret = sr_sw_limits_get_remain(&devc->sw_limits,
641 &limit_samples, NULL, NULL, NULL);
642 if (ret != SR_OK) {
643 sr_err("Cannot get acquisition limits.");
644 return ret;
f2cd2deb 645 }
a38f0f5e 646 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
647 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
648 limit_samples);
649 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 650 }
d8fbfcd9
GS
651 if (limit_samples == 0) {
652 limit_samples = LA2016_NUM_SAMPLES_MAX;
653 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
654 limit_samples);
ea436ba7 655 }
f2cd2deb 656
adab4d91
GS
657 /*
658 * The acquisition configuration communicates "pre-trigger"
659 * specs in several formats. sigrok users provide a percentage
660 * (0-100%), which translates to a pre-trigger samples count
661 * (assuming that a total samples count limit was specified).
662 * The device supports hardware compression, which depends on
663 * slowly changing input data to be effective. Fast changing
664 * input data may occupy more space in sample memory than its
665 * uncompressed form would. This is why a third parameter can
666 * limit the amount of sample memory to use for pre-trigger
667 * data. Only the upper 24 bits of that memory size spec get
668 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
669 *
670 * TODO Determine whether the pre-trigger memory size gets
671 * specified in samples or in bytes. A previous implementation
672 * suggests bytes but this is suspicious when every other spec
673 * is in terms of samples.
adab4d91 674 */
d8fbfcd9
GS
675 if (devc->trigger_involved) {
676 pre_trigger_samples = limit_samples;
677 pre_trigger_samples *= devc->capture_ratio;
678 pre_trigger_samples /= 100;
679 pre_trigger_memory = devc->model->memory_bits;
680 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
681 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
682 pre_trigger_memory *= devc->capture_ratio;
683 pre_trigger_memory /= 100;
684 } else {
685 sr_dbg("No trigger setup, skipping pre-trigger config.");
686 pre_trigger_samples = 1;
687 pre_trigger_memory = 0;
688 }
689 /* Ensure non-zero value after LSB shift out in HW reg. */
690 if (pre_trigger_memory < 0x100) {
691 pre_trigger_memory = 0x100;
692 }
f2cd2deb 693
adab4d91 694 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 695 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
696 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
697 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 698
b1a17c1a
GS
699 /*
700 * The acquisition configuration occupies a total of 16 bytes:
701 * - A 34bit total samples count limit (up to 10 billions) that
702 * is kept in a 40bit register.
703 * - A 34bit pre-trigger samples count limit (up to 10 billions)
704 * in another 40bit register.
705 * - A 32bit pre-trigger memory space limit (in bytes) of which
706 * the upper 24bits are kept in an FPGA register.
707 * - A 16bit clock divider which gets applied to the maximum
708 * samplerate of the device.
709 * - An 8bit register of unknown meaning. Currently always 0.
710 */
c3d40037 711 wrptr = buf;
a38f0f5e 712 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
713 write_u40le_inc(&wrptr, pre_trigger_samples);
714 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 715 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 716 write_u8_inc(&wrptr, 0);
42f6dd55 717 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 718 if (ret != SR_OK) {
91f73872 719 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
720 return ret;
721 }
722
723 return SR_OK;
724}
725
96dc954e
GS
726/*
727 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
728 * of interest:
729 * bit 0: value 1 = idle
730 * bit 1: value 1 = writing to SDRAM
731 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
732 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
733 * The meaning of other bit fields is unknown.
7601dca7 734 *
96dc954e 735 * Typical values in order of appearance during execution:
b711fd8e
GS
736 * 0x85e1: idle, no acquisition pending
737 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
738 * "In idle state." Takes precedence over all others.
96dc954e
GS
739 * 0x85e2: pre-sampling, samples before the trigger position,
740 * when capture ratio > 0%
b711fd8e
GS
741 * IDLE clear, TRGD clear, POST clear; DRAM don't care
742 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
743 * 0x85ea: pre-sampling complete, now waiting for the trigger
744 * (whilst sampling continuously)
b711fd8e
GS
745 * IDLE clear, TRGD clear, POST set; DRAM don't care
746 * "Post set thus after pre, not triggered yet"
96dc954e 747 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
748 * IDLE clear, TRGD set, POST set; DRAM don't care
749 * "Triggered and in post, not idle yet."
96dc954e 750 * 0x85ed: idle
b711fd8e
GS
751 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
752 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 753 */
b711fd8e
GS
754static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
755static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
756static const uint16_t runstate_mask_step =
757 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
758static const uint16_t runstate_patt_pre_trig = 0;
759static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
760static const uint16_t runstate_patt_post_trig =
761 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
762
f2cd2deb
FS
763static uint16_t run_state(const struct sr_dev_inst *sdi)
764{
21d68fd9
GS
765 static uint16_t previous_state;
766
f2cd2deb 767 int ret;
21d68fd9
GS
768 uint16_t state;
769 uint8_t buff[sizeof(state)];
770 const uint8_t *rdptr;
771 const char *label;
f2cd2deb 772
411ad77c
GS
773 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
774 if (ret != SR_OK) {
91f73872 775 sr_err("Cannot read run state.");
f2cd2deb
FS
776 return ret;
777 }
21d68fd9
GS
778 rdptr = buff;
779 state = read_u16le_inc(&rdptr);
7601dca7 780
96dc954e
GS
781 /*
782 * Avoid flooding the log, only dump values as they change.
783 * The routine is called about every 50ms.
7601dca7 784 */
b711fd8e
GS
785 if (state == previous_state)
786 return state;
787
788 previous_state = state;
789 label = NULL;
790 if ((state & runstate_mask_idle) == runstate_patt_idle)
791 label = "idle";
792 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
793 label = "pre-trigger sampling";
794 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
795 label = "sampling, waiting for trigger";
796 if ((state & runstate_mask_step) == runstate_patt_post_trig)
797 label = "post-trigger sampling";
798 if (label && *label)
799 sr_dbg("Run state: 0x%04x (%s).", state, label);
800 else
801 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
802
803 return state;
804}
805
cf057ac4 806static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
807{
808 uint16_t state;
809
810 state = run_state(sdi);
b711fd8e 811 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
812 return 1;
813
814 return 0;
815}
816
817static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
818{
819 int ret;
820
411ad77c
GS
821 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
822 if (ret != SR_OK) {
c34f4a89 823 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
824 return ret;
825 }
826
827 return SR_OK;
828}
829
830static int get_capture_info(const struct sr_dev_inst *sdi)
831{
832 struct dev_context *devc;
833 int ret;
c3d40037
HK
834 uint8_t buf[3 * sizeof(uint32_t)];
835 const uint8_t *rdptr;
f2cd2deb
FS
836
837 devc = sdi->priv;
838
411ad77c
GS
839 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
840 if (ret != SR_OK) {
91f73872 841 sr_err("Cannot read capture info.");
f2cd2deb
FS
842 return ret;
843 }
c3d40037
HK
844
845 rdptr = buf;
846 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
847 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
848 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 849
cf057ac4 850 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
851 devc->info.n_rep_packets, devc->info.n_rep_packets,
852 devc->info.n_rep_packets_before_trigger,
853 devc->info.n_rep_packets_before_trigger,
854 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 855
852c7d14
GS
856 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
857 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
858 (unsigned long)devc->info.n_rep_packets,
859 NUM_PACKETS_IN_CHUNK);
91f73872 860 }
f2cd2deb
FS
861
862 return SR_OK;
863}
864
d466f61c
GS
865SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
866 struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
f2cd2deb 867{
d466f61c
GS
868 struct dev_context *devc;
869 char *fw_file;
870 int ret;
871
872 devc = sdi ? sdi->priv : NULL;
873
874 fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
875 sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
876
877 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
878 if (ret != SR_OK) {
879 g_free(fw_file);
880 return ret;
881 }
882
883 if (devc) {
884 devc->mcu_firmware = fw_file;
885 fw_file = NULL;
886 }
887 g_free(fw_file);
888
889 return SR_OK;
f2cd2deb
FS
890}
891
9270f8f4
GS
892SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
893 double voltage)
f2cd2deb 894{
f2cd2deb
FS
895 int ret;
896 uint8_t cmd;
897
9270f8f4 898 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
899 if (ret != SR_OK)
900 return ret;
901
902 cmd = 0;
411ad77c
GS
903 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
904 if (ret != SR_OK) {
91f73872 905 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
906 return ret;
907 }
908
909 ret = set_trigger_config(sdi);
910 if (ret != SR_OK)
911 return ret;
912
913 ret = set_sample_config(sdi);
914 if (ret != SR_OK)
915 return ret;
916
917 return SR_OK;
918}
919
920SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
921{
3ebc1cb2
GS
922 int ret;
923
852c7d14 924 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
925 if (ret != SR_OK)
926 return ret;
927
928 return SR_OK;
f2cd2deb
FS
929}
930
3ebc1cb2 931static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 932{
3ebc1cb2
GS
933 int ret;
934
852c7d14 935 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
936 if (ret != SR_OK)
937 return ret;
938
939 return SR_OK;
f2cd2deb
FS
940}
941
942SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
943{
3ebc1cb2
GS
944 int ret;
945 struct dev_context *devc;
946
947 ret = la2016_stop_acquisition(sdi);
948 if (ret != SR_OK)
949 return ret;
950
951 devc = sdi ? sdi->priv : NULL;
952 if (devc && devc->transfer)
953 libusb_cancel_transfer(devc->transfer);
954
955 return SR_OK;
f2cd2deb
FS
956}
957
cf057ac4 958static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 959 libusb_transfer_cb_fn cb)
f2cd2deb
FS
960{
961 struct dev_context *devc;
962 struct sr_usb_dev_inst *usb;
963 int ret;
c3d40037
HK
964 uint8_t wrbuf[2 * sizeof(uint32_t)];
965 uint8_t *wrptr;
f2cd2deb
FS
966 uint32_t to_read;
967 uint8_t *buffer;
968
969 devc = sdi->priv;
970 usb = sdi->conn;
971
411ad77c
GS
972 ret = get_capture_info(sdi);
973 if (ret != SR_OK)
f2cd2deb
FS
974 return ret;
975
c3d40037
HK
976 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
977 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
978 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
979 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
980
91f73872 981 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 982 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 983
411ad77c
GS
984 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
985 if (ret != SR_OK) {
91f73872 986 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
987 return ret;
988 }
91f73872
GS
989 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
990 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
991 wrptr = wrbuf;
992 write_u32le_inc(&wrptr, devc->read_pos);
993 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
994 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
995 if (ret != SR_OK) {
91f73872 996 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
997 return ret;
998 }
411ad77c
GS
999 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1000 if (ret != SR_OK) {
91f73872 1001 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1002 return ret;
1003 }
1004
96dc954e
GS
1005 /*
1006 * Pick a buffer size for all USB transfers. The buffer size
1007 * must be a multiple of the endpoint packet size. And cannot
1008 * exceed a maximum value.
1009 */
f2cd2deb 1010 to_read = devc->n_bytes_to_read;
96dc954e
GS
1011 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1012 to_read = LA2016_USB_BUFSZ;
1013 else /* One transfer. */
e847645b 1014 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
1015 buffer = g_try_malloc(to_read);
1016 if (!buffer) {
91f73872
GS
1017 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1018 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1019 return SR_ERR_MALLOC;
1020 }
1021
1022 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1023 libusb_fill_bulk_transfer(devc->transfer,
1024 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1025 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1026
411ad77c
GS
1027 ret = libusb_submit_transfer(devc->transfer);
1028 if (ret != 0) {
91f73872 1029 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1030 libusb_free_transfer(devc->transfer);
1031 devc->transfer = NULL;
1032 g_free(buffer);
1033 return SR_ERR;
1034 }
1035
1036 return SR_OK;
1037}
1038
480efba2
GS
1039/*
1040 * A chunk (received via USB) contains a number of transfers (USB length
1041 * divided by 16) which contain a number of packets (5 per transfer) which
1042 * contain a number of samples (8bit repeat count per 16bit sample data).
1043 */
dfac9592 1044static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1045 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1046{
1047 struct dev_context *devc;
480efba2 1048 size_t num_pkts;
dfac9592 1049 const uint8_t *rp;
480efba2
GS
1050 uint16_t sample_value;
1051 size_t repetitions;
1052 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1053
1054 devc = sdi->priv;
1055
a38f0f5e
GS
1056 /* Ignore incoming USB data after complete sample data download. */
1057 if (devc->download_finished)
1058 return;
dfac9592 1059
cf057ac4 1060 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1061 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1062 devc->trigger_marked = TRUE;
dfac9592
GS
1063 }
1064
1065 rp = packets;
480efba2
GS
1066 while (num_xfers--) {
1067 num_pkts = NUM_PACKETS_IN_CHUNK;
1068 while (num_pkts--) {
dfac9592 1069
480efba2 1070 sample_value = read_u16le_inc(&rp);
dfac9592 1071 repetitions = read_u8_inc(&rp);
dfac9592 1072
dfac9592 1073 devc->total_samples += repetitions;
480efba2
GS
1074
1075 write_u16le(sample_buff, sample_value);
a38f0f5e
GS
1076 feed_queue_logic_submit(devc->feed_queue,
1077 sample_buff, repetitions);
1078 sr_sw_limits_update_samples_read(&devc->sw_limits,
1079 repetitions);
480efba2 1080
cf057ac4
GS
1081 if (devc->trigger_involved && !devc->trigger_marked) {
1082 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1083 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1084 devc->trigger_marked = TRUE;
91f73872 1085 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1086 devc->total_samples,
1087 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1088 }
1089 }
1090 }
1091 (void)read_u8_inc(&rp); /* Skip sequence number. */
1092 }
a38f0f5e
GS
1093
1094 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1095 sr_dbg("Acquisition limit reached.");
1096 devc->download_finished = TRUE;
1097 }
1098 if (devc->download_finished) {
1099 sr_dbg("Download finished, flushing session feed queue.");
1100 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1101 }
a38f0f5e 1102 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1103}
1104
1105static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1106{
1107 struct sr_dev_inst *sdi;
1108 struct dev_context *devc;
1109 struct sr_usb_dev_inst *usb;
a38f0f5e 1110 size_t num_xfers;
dfac9592
GS
1111 int ret;
1112
1113 sdi = transfer->user_data;
1114 devc = sdi->priv;
1115 usb = sdi->conn;
1116
1117 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1118 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1119 /*
1120 * Implementation detail: A USB transfer timeout is not fatal
1121 * here. We just process whatever was received, empty input is
1122 * perfectly acceptable. Reaching (or exceeding) the sw limits
1123 * or exhausting the device's captured data will complete the
1124 * sample data download.
1125 */
1126 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1127 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1128
1129 devc->n_bytes_to_read -= transfer->actual_length;
1130 if (devc->n_bytes_to_read) {
1131 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1132 /*
1133 * Determine read size for the next USB transfer. Make
1134 * the buffer size a multiple of the endpoint packet
1135 * size. Don't exceed a maximum value.
1136 */
dfac9592
GS
1137 if (to_read >= LA2016_USB_BUFSZ)
1138 to_read = LA2016_USB_BUFSZ;
96dc954e 1139 else
dfac9592 1140 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1141 libusb_fill_bulk_transfer(transfer,
1142 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1143 transfer->buffer, to_read,
dfac9592
GS
1144 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1145
411ad77c
GS
1146 ret = libusb_submit_transfer(transfer);
1147 if (ret == 0)
dfac9592 1148 return;
91f73872
GS
1149 sr_err("Cannot submit another USB transfer: %s.",
1150 libusb_error_name(ret));
dfac9592
GS
1151 }
1152
1153 g_free(transfer->buffer);
1154 libusb_free_transfer(transfer);
cf057ac4 1155 devc->download_finished = TRUE;
dfac9592
GS
1156}
1157
1158SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1159{
1160 const struct sr_dev_inst *sdi;
1161 struct dev_context *devc;
1162 struct drv_context *drvc;
1163 struct timeval tv;
a38f0f5e 1164 int ret;
dfac9592
GS
1165
1166 (void)fd;
1167 (void)revents;
1168
1169 sdi = cb_data;
1170 devc = sdi->priv;
1171 drvc = sdi->driver->context;
1172
a38f0f5e
GS
1173 /*
1174 * Wait for the acquisition to complete in hardware.
1175 * Periodically check a potentially configured msecs timeout.
1176 */
cf057ac4
GS
1177 if (!devc->completion_seen) {
1178 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1179 if (sr_sw_limits_check(&devc->sw_limits)) {
1180 devc->sw_limits.limit_msec = 0;
1181 sr_dbg("Limit reached. Stopping acquisition.");
1182 la2016_stop_acquisition(sdi);
1183 }
96dc954e 1184 /* Not yet ready for sample data download. */
dfac9592
GS
1185 return TRUE;
1186 }
a38f0f5e
GS
1187 sr_dbg("Acquisition completion seen (hardware).");
1188 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1189 devc->completion_seen = TRUE;
1190 devc->download_finished = FALSE;
1191 devc->trigger_marked = FALSE;
dfac9592 1192 devc->total_samples = 0;
a38f0f5e
GS
1193
1194 /* Initiate the download of acquired sample data. */
1195 std_session_send_df_frame_begin(sdi);
1196 ret = la2016_start_download(sdi, receive_transfer);
1197 if (ret != SR_OK) {
91f73872 1198 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1199 return FALSE;
1200 }
91f73872 1201 sr_dbg("Acquisition data download started.");
dfac9592
GS
1202
1203 return TRUE;
1204 }
1205
a38f0f5e 1206 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1207 tv.tv_sec = tv.tv_usec = 0;
1208 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1209
a38f0f5e 1210 /* Postprocess completion of sample data download. */
cf057ac4 1211 if (devc->download_finished) {
91f73872 1212 sr_dbg("Download finished, post processing.");
dfac9592
GS
1213
1214 la2016_stop_acquisition(sdi);
a38f0f5e 1215 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1216 devc->transfer = NULL;
1217
a38f0f5e
GS
1218 feed_queue_logic_flush(devc->feed_queue);
1219 feed_queue_logic_free(devc->feed_queue);
1220 devc->feed_queue = NULL;
1221 std_session_send_df_frame_end(sdi);
1222 std_session_send_df_end(sdi);
1223
91f73872 1224 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1225 }
1226
1227 return TRUE;
1228}
1229
d466f61c
GS
1230SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1231 gboolean show_message)
f2cd2deb 1232{
8b172e78 1233 struct dev_context *devc;
9de389b1 1234 uint8_t buf[8];
64172b16 1235 size_t rdoff, rdlen;
43d2e52f
GS
1236 const uint8_t *rdptr;
1237 uint8_t date_yy, date_mm;
1238 uint8_t dinv_yy, dinv_mm;
9de389b1 1239 uint8_t magic;
d466f61c
GS
1240 size_t model_idx;
1241 const struct kingst_model *model;
9de389b1 1242 int ret;
f2cd2deb 1243
8b172e78
KG
1244 devc = sdi->priv;
1245
96dc954e 1246 /*
43d2e52f
GS
1247 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1248 * year and month in BCD format, followed by inverted values for
1249 * consistency checks. For example bytes 20 04 df fb translate
1250 * to 2020-04. This information can help identify the vintage of
1251 * devices when unknown magic numbers are seen.
9de389b1 1252 */
64172b16
GS
1253 rdoff = 0x20;
1254 rdlen = 4 * sizeof(uint8_t);
1255 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1256 if (ret != SR_OK && !show_message) {
64172b16 1257 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1258 sr_dbg("Cannot access EEPROM.");
1259 return SR_ERR_IO;
1260 } else if (ret != SR_OK) {
64172b16 1261 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1262 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1263 } else {
64172b16
GS
1264 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1265 GString *txt;
1266 txt = sr_hexdump_new(buf, rdlen);
1267 sr_spew("Manufacture date bytes %s.", txt->str);
1268 sr_hexdump_free(txt);
1269 }
43d2e52f
GS
1270 rdptr = &buf[0];
1271 date_yy = read_u8_inc(&rdptr);
1272 date_mm = read_u8_inc(&rdptr);
1273 dinv_yy = read_u8_inc(&rdptr);
1274 dinv_mm = read_u8_inc(&rdptr);
1275 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1276 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1277 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1278 }
f2cd2deb 1279
9de389b1 1280 /*
96dc954e
GS
1281 * Several Kingst logic analyzer devices share the same USB VID
1282 * and PID. The product ID determines which MCU firmware to load.
1283 * The MCU firmware provides access to EEPROM content which then
1284 * allows to identify the device model. Which in turn determines
1285 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1286 * to get inspected.
9de389b1 1287 *
96dc954e
GS
1288 * EEPROM content for model identification is kept redundantly
1289 * in memory. The values are stored in verbatim and in inverted
1290 * form, multiple copies are kept at different offsets. Example
1291 * data:
9de389b1 1292 *
96dc954e
GS
1293 * magic 0x08
1294 * | ~magic 0xf7
1295 * | |
1296 * 08f7000008f710ef
1297 * | |
1298 * | ~magic backup
1299 * magic backup
9de389b1 1300 *
96dc954e
GS
1301 * Exclusively inspecting the magic byte appears to be sufficient,
1302 * other fields seem to be 'don't care'.
9de389b1 1303 *
96dc954e
GS
1304 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1305 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1306 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1307 * (latest v1.3.0 PCB, perhaps others)
1308 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1309 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1310 *
96dc954e
GS
1311 * When EEPROM content does not match the hardware configuration
1312 * (the board layout), the software may load but yield incorrect
1313 * results (like swapped channels). The FPGA bitstream itself
1314 * will authenticate with IC U10 and fail when its capabilities
1315 * do not match the hardware model. An LA1016 won't become a
1316 * LA2016 by faking its EEPROM content.
9de389b1 1317 */
d466f61c 1318 devc->identify_magic = 0;
64172b16
GS
1319 rdoff = 0x08;
1320 rdlen = 8 * sizeof(uint8_t);
1321 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1322 if (ret != SR_OK) {
91f73872 1323 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1324 return ret;
1325 }
64172b16
GS
1326 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1327 GString *txt;
1328 txt = sr_hexdump_new(buf, rdlen);
1329 sr_spew("EEPROM magic bytes %s.", txt->str);
1330 sr_hexdump_free(txt);
1331 }
43d2e52f 1332 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1333 /* Primary copy of magic passes complement check. */
9de389b1 1334 magic = buf[0];
64172b16 1335 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1336 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1337 /* Backup copy of magic passes complement check. */
9de389b1 1338 magic = buf[4];
64172b16 1339 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1340 } else {
1341 sr_err("Cannot find consistent device type identification.");
1342 magic = 0;
f2cd2deb 1343 }
d466f61c 1344 devc->identify_magic = magic;
9de389b1 1345
d466f61c
GS
1346 devc->model = NULL;
1347 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1348 model = &models[model_idx];
1349 if (model->magic != magic)
1350 continue;
1351 devc->model = model;
64172b16
GS
1352 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1353 model->name, model->channel_count,
1354 model->samplerate / SR_MHZ(1));
d466f61c
GS
1355 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1356 model->fpga_stem);
d466f61c 1357 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1358 break;
1359 }
d466f61c 1360 if (!devc->model) {
91f73872 1361 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1362 return SR_ERR;
1363 }
f2cd2deb 1364
d466f61c
GS
1365 return SR_OK;
1366}
1367
6d53e949 1368SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1369{
1370 struct dev_context *devc;
1371 const char *bitstream_fn;
1372 int ret;
1373 uint16_t state;
1374
1375 devc = sdi->priv;
1376 bitstream_fn = devc ? devc->fpga_bitstream : "";
1377
1378 ret = check_fpga_bitstream(sdi);
1379 if (ret != SR_OK) {
d6f89d4b
GS
1380 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1381 if (ret != SR_OK) {
1382 sr_err("Cannot upload FPGA bitstream.");
1383 return ret;
1384 }
1385 }
1386 ret = enable_fpga_bitstream(sdi);
9de389b1 1387 if (ret != SR_OK) {
d6f89d4b 1388 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1389 return ret;
1390 }
1391
f2cd2deb 1392 state = run_state(sdi);
9de389b1 1393 if (state != 0x85e9) {
91f73872 1394 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1395 }
f2cd2deb 1396
6d53e949
GS
1397 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1398 if (ret != SR_OK) {
91f73872 1399 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1400 return ret;
1401 }
9de389b1 1402
91f73872 1403 sr_dbg("Device should be initialized.");
f2cd2deb 1404
6d53e949
GS
1405 return SR_OK;
1406}
1407
6d53e949 1408SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1409{
1410 int ret;
1411
6d53e949
GS
1412 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1413 if (ret != SR_OK) {
91f73872 1414 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1415 return ret;
1416 }
1417
1418 return SR_OK;
1419}
08a49848
GS
1420
1421SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1422{
1423 return set_pwm_config(sdi, idx);
1424}