]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: determine packets per chunk at runtime per model
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
d466f61c
GS
31/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
32#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
33#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
34
35/*
36 * List of supported devices and their features. See @ref kingst_model
37 * for the fields' type and meaning. Table is sorted by EEPROM magic.
38 *
39 * TODO
40 * - Below LA1016 properties were guessed, need verification.
41 * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
42 * - Does LA1010 fit the driver implementation? Samplerates vary with
43 * channel counts, lack of local sample memory. Most probably not.
44 */
45static const struct kingst_model models[] = {
46 { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
47 { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
48 { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
49 { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
50};
f2cd2deb 51
96dc954e 52/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 53#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
54#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
55#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
56#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
57#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
58#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
59#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 60
42f6dd55 61/*
96dc954e
GS
62 * FPGA register addresses (base addresses when registers span multiple
63 * bytes, in that case data is kept in little endian format). Passed to
64 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
65 * of SPI transfers encoding the read (1) or write (0) direction in the
66 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
67 *
68 * Unfortunately the FPGA registers change their meaning between the
69 * read and write directions of access, or exclusively provide one of
70 * these directions and not the other. This is an arbitrary vendor's
71 * choice, there is nothing which the sigrok driver could do about it.
72 * Values written to registers typically cannot get read back, neither
73 * verified after writing a configuration, nor queried upon startup for
74 * automatic detection of the current configuration. Neither appear to
75 * be there echo registers for presence and communication checks, nor
76 * version identifying registers, as far as we know.
42f6dd55 77 */
96dc954e
GS
78#define REG_RUN 0x00 /* Read capture status, write start capture. */
79#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
80#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
81#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
82#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
3ab60908
GS
83#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
84#define REG_UNKNOWN_30 0x30
96dc954e
GS
85#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
86#define REG_PWM1 0x70 /* Write config for user PWM1. */
87#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 88
852c7d14
GS
89/* Bit patterns to write to REG_RUN, setup run mode. */
90#define RUNMODE_HALT 0x00
91#define RUNMODE_RUN 0x03
92
b711fd8e
GS
93/* Bit patterns when reading from REG_RUN, get run state. */
94#define RUNSTATE_IDLE_BIT (1UL << 0)
95#define RUNSTATE_DRAM_BIT (1UL << 1)
96#define RUNSTATE_TRGD_BIT (1UL << 2)
97#define RUNSTATE_POST_BIT (1UL << 3)
98
f2cd2deb 99static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
100 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
101 void *data, uint16_t wLength)
f2cd2deb
FS
102{
103 struct sr_usb_dev_inst *usb;
104 int ret;
105
106 usb = sdi->conn;
107
411ad77c
GS
108 ret = libusb_control_transfer(usb->devhdl,
109 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
110 bRequest, wValue, wIndex, data, wLength,
111 DEFAULT_TIMEOUT_MS);
112 if (ret != wLength) {
91f73872
GS
113 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
114 wLength, bRequest, wValue, wIndex,
115 libusb_error_name(ret));
116 sr_err("Cannot read %d bytes from USB: %s.",
117 wLength, libusb_error_name(ret));
286b3e13 118 return SR_ERR_IO;
f2cd2deb
FS
119 }
120
121 return SR_OK;
122}
123
124static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
125 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
126 void *data, uint16_t wLength)
f2cd2deb
FS
127{
128 struct sr_usb_dev_inst *usb;
129 int ret;
130
131 usb = sdi->conn;
132
411ad77c
GS
133 ret = libusb_control_transfer(usb->devhdl,
134 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
135 bRequest, wValue, wIndex, data, wLength,
136 DEFAULT_TIMEOUT_MS);
137 if (ret != wLength) {
91f73872
GS
138 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
139 wLength, bRequest, wValue, wIndex,
140 libusb_error_name(ret));
141 sr_err("Cannot write %d bytes to USB: %s.",
142 wLength, libusb_error_name(ret));
286b3e13 143 return SR_ERR_IO;
f2cd2deb
FS
144 }
145
146 return SR_OK;
147}
148
d6f89d4b
GS
149/*
150 * Check the necessity for FPGA bitstream upload, because another upload
151 * would take some 600ms which is undesirable after program startup. Try
152 * to access some FPGA registers and check the values' plausibility. The
153 * check should fail on the safe side, request another upload when in
154 * doubt. A positive response (the request to continue operation with the
155 * currently active bitstream) should be conservative. Accessing multiple
156 * registers is considered cheap compared to the cost of bitstream upload.
157 *
158 * It helps though that both the vendor software and the sigrok driver
159 * use the same bundle of MCU firmware and FPGA bitstream for any of the
160 * supported models. We don't expect to successfully communicate to the
161 * device yet disagree on its protocol. Ideally we would access version
162 * identifying registers for improved robustness, but are not aware of
163 * any. A bitstream reload can always be forced by a power cycle.
164 */
165static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
166{
167 uint8_t init_rsp;
3ab60908 168 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
d6f89d4b
GS
169 int ret;
170 uint16_t run_state;
171 uint8_t pwm_en;
172 size_t read_len;
d6f89d4b
GS
173 const uint8_t *rdptr;
174
175 sr_dbg("Checking operation of the FPGA bitstream.");
176
852c7d14 177 init_rsp = ~0;
d6f89d4b
GS
178 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
179 if (ret != SR_OK || init_rsp != 0) {
180 sr_dbg("FPGA init query failed, or unexpected response.");
181 return SR_ERR_IO;
182 }
183
184 read_len = sizeof(run_state);
185 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
186 if (ret != SR_OK) {
187 sr_dbg("FPGA register access failed (run state).");
188 return SR_ERR_IO;
189 }
190 rdptr = buff;
191 run_state = read_u16le_inc(&rdptr);
192 sr_spew("FPGA register: run state 0x%04x.", run_state);
193 if (run_state && (run_state & 0x3) != 0x1) {
194 sr_dbg("Unexpected FPGA register content (run state).");
195 return SR_ERR_DATA;
196 }
197 if (run_state && (run_state & ~0xf) != 0x85e0) {
198 sr_dbg("Unexpected FPGA register content (run state).");
199 return SR_ERR_DATA;
200 }
201
202 read_len = sizeof(pwm_en);
203 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
204 if (ret != SR_OK) {
205 sr_dbg("FPGA register access failed (PWM enable).");
206 return SR_ERR_IO;
207 }
208 rdptr = buff;
209 pwm_en = read_u8_inc(&rdptr);
210 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
211 if ((pwm_en & 0x3) != 0x0) {
212 sr_dbg("Unexpected FPGA register content (PWM enable).");
213 return SR_ERR_DATA;
214 }
215
216 sr_info("Could re-use current FPGA bitstream. No upload required.");
217 return SR_OK;
218}
219
1ed93110
GS
220static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
221 const char *bitstream_fname)
f2cd2deb
FS
222{
223 struct drv_context *drvc;
224 struct sr_usb_dev_inst *usb;
225 struct sr_resource bitstream;
b0d0131e 226 uint32_t bitstream_size;
c3d40037
HK
227 uint8_t buffer[sizeof(uint32_t)];
228 uint8_t *wrptr;
f2cd2deb 229 uint8_t block[4096];
3f48ab02
FS
230 int len, act_len;
231 unsigned int pos;
f2cd2deb 232 int ret;
b0d0131e 233 unsigned int zero_pad_to;
f2cd2deb
FS
234
235 drvc = sdi->driver->context;
236 usb = sdi->conn;
237
9de389b1 238 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 239
411ad77c
GS
240 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
241 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 242 if (ret != SR_OK) {
91f73872 243 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
244 return ret;
245 }
246
b0d0131e 247 bitstream_size = (uint32_t)bitstream.size;
c3d40037 248 wrptr = buffer;
b0d0131e 249 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
250 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
251 if (ret != SR_OK) {
91f73872 252 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
253 sr_resource_close(drvc->sr_ctx, &bitstream);
254 return ret;
255 }
b0d0131e
GS
256 zero_pad_to = bitstream_size;
257 zero_pad_to += LA2016_EP2_PADDING - 1;
258 zero_pad_to /= LA2016_EP2_PADDING;
259 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
260
261 pos = 0;
262 while (1) {
3f48ab02 263 if (pos < bitstream.size) {
411ad77c
GS
264 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
265 block, sizeof(block));
3f48ab02 266 if (len < 0) {
91f73872 267 sr_err("Cannot read FPGA bitstream.");
3f48ab02 268 sr_resource_close(drvc->sr_ctx, &bitstream);
286b3e13 269 return SR_ERR_IO;
3f48ab02
FS
270 }
271 } else {
96dc954e 272 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
273 len = zero_pad_to - pos;
274 if ((unsigned)len > sizeof(block))
275 len = sizeof(block);
276 memset(&block, 0, len);
f2cd2deb
FS
277 }
278 if (len == 0)
279 break;
280
852c7d14 281 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 282 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 283 if (ret != 0) {
91f73872
GS
284 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
285 pos, (int)len, libusb_error_name(ret));
286b3e13 286 ret = SR_ERR_IO;
f2cd2deb
FS
287 break;
288 }
289 if (act_len != len) {
91f73872
GS
290 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
291 pos, (int)len, act_len);
286b3e13 292 ret = SR_ERR_IO;
f2cd2deb
FS
293 break;
294 }
295 pos += len;
296 }
297 sr_resource_close(drvc->sr_ctx, &bitstream);
5eb1b63d 298 if (ret != SR_OK)
f2cd2deb 299 return ret;
91f73872
GS
300 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
301 bitstream.size);
f2cd2deb 302
d6f89d4b
GS
303 return SR_OK;
304}
305
306static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
307{
308 int ret;
411ad77c 309 uint8_t resp;
d6f89d4b 310
411ad77c
GS
311 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
312 if (ret != SR_OK) {
91f73872 313 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
314 return ret;
315 }
411ad77c 316 if (resp != 0) {
91f73872 317 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 318 resp);
286b3e13 319 return SR_ERR_DATA;
3f48ab02 320 }
852c7d14 321 g_usleep(30 * 1000);
f2cd2deb 322
411ad77c
GS
323 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
324 if (ret != SR_OK) {
91f73872 325 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
326 return ret;
327 }
852c7d14 328 g_usleep(40 * 1000);
d6f89d4b 329
f2cd2deb
FS
330 return SR_OK;
331}
332
333static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
334{
f2cd2deb 335 int ret;
1ed93110 336 uint16_t duty_R79, duty_R56;
3ab60908 337 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
f2ad79d1
KG
338 uint8_t *wrptr;
339
96dc954e 340 /* Clamp threshold setting to valid range for LA2016. */
c35baf6e
GS
341 if (voltage > LA2016_THR_VOLTAGE_MAX) {
342 voltage = LA2016_THR_VOLTAGE_MAX;
343 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
344 voltage = -LA2016_THR_VOLTAGE_MAX;
f2ad79d1
KG
345 }
346
347 /*
96dc954e
GS
348 * Two PWM output channels feed one DAC which generates a bias
349 * voltage, which offsets the input probe's voltage level, and
350 * in combination with the FPGA pins' fixed threshold result in
351 * a programmable input threshold from the user's perspective.
352 * The PWM outputs can be seen on R79 and R56 respectively, the
353 * frequency is 100kHz and the duty cycle varies. The R79 PWM
354 * uses three discrete settings. The R56 PWM varies with desired
355 * thresholds and depends on the R79 PWM configuration. See the
356 * schematics comments which discuss the formulae.
f2ad79d1
KG
357 */
358 if (voltage >= 2.9) {
96dc954e 359 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 360 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 361 } else if (voltage > -0.4) {
96dc954e 362 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 363 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
364 } else {
365 duty_R79 = 0x02d7; /* 72% duty cycle. */
366 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
367 }
368
96dc954e 369 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
370 if (duty_R56 < 10) {
371 duty_R56 = 10;
1ed93110 372 } else if (duty_R56 > 1100) {
f2ad79d1
KG
373 duty_R56 = 1100;
374 }
375
91f73872
GS
376 sr_dbg("Set threshold voltage %.2fV.", voltage);
377 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
378
379 wrptr = buf;
380 write_u16le_inc(&wrptr, duty_R56);
381 write_u16le_inc(&wrptr, duty_R79);
382
383 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 384 if (ret != SR_OK) {
91f73872 385 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
386 return ret;
387 }
f2cd2deb
FS
388
389 return SR_OK;
390}
391
08a49848
GS
392/*
393 * Communicates a channel's configuration to the device after the
394 * parameters may have changed. Configuration of one channel may
395 * interfere with other channels since they share FPGA registers.
396 */
397static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
f2cd2deb 398{
08a49848 399 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
86d77b75 400
f2cd2deb 401 struct dev_context *devc;
08a49848
GS
402 struct pwm_setting *params;
403 uint8_t reg_base;
404 double val_f;
405 uint32_t val_u;
406 uint32_t period, duty;
407 size_t ch;
f2cd2deb 408 int ret;
08a49848
GS
409 uint8_t enable_all, enable_cfg, reg_val;
410 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
c3d40037 411 uint8_t *wrptr;
f2cd2deb
FS
412
413 devc = sdi->priv;
08a49848
GS
414 if (idx >= ARRAY_SIZE(devc->pwm_setting))
415 return SR_ERR_ARG;
416 params = &devc->pwm_setting[idx];
417 if (idx >= ARRAY_SIZE(reg_bases))
418 return SR_ERR_ARG;
419 reg_base = reg_bases[idx];
f2cd2deb 420
08a49848
GS
421 /*
422 * Map application's specs to hardware register values. Do math
423 * in floating point initially, but convert to u32 eventually.
424 */
425 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
426 idx, params->enabled ? 1 : 0, params->freq, params->duty);
427 val_f = PWM_CLOCK;
428 val_f /= params->freq;
429 val_u = val_f;
430 period = val_u;
431 val_f = period;
432 val_f *= params->duty;
433 val_f /= 100.0;
434 val_f += 0.5;
435 val_u = val_f;
436 duty = val_u;
437 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
438 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
439
440 /* Get the "enabled" state of all supported PWM channels. */
441 enable_all = 0;
442 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
443 if (!devc->pwm_setting[ch].enabled)
444 continue;
445 enable_all |= 1U << ch;
f2cd2deb 446 }
08a49848
GS
447 enable_cfg = 1U << idx;
448 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
449 enable_all, enable_cfg);
f2cd2deb 450
08a49848
GS
451 /*
452 * Disable the to-get-configured channel before its parameters
453 * will change. Or disable and exit when the channel is supposed
454 * to get turned off.
455 */
456 sr_spew("PWM config, disabling before param change.");
457 reg_val = enable_all & ~enable_cfg;
458 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
459 &reg_val, sizeof(reg_val));
f2cd2deb 460 if (ret != SR_OK) {
08a49848 461 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb
FS
462 return ret;
463 }
08a49848
GS
464 if (!params->enabled)
465 return SR_OK;
86d77b75 466
08a49848
GS
467 /* Write register values to device. */
468 sr_spew("PWM config, sending new parameters.");
469 wrptr = buf;
470 write_u32le_inc(&wrptr, period);
471 write_u32le_inc(&wrptr, duty);
472 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
473 if (ret != SR_OK) {
474 sr_err("Cannot change PWM parameters.");
f2cd2deb 475 return ret;
08a49848 476 }
f2cd2deb 477
08a49848
GS
478 /* Enable configured channel after write completion. */
479 sr_spew("PWM config, enabling after param change.");
480 reg_val = enable_all | enable_cfg;
481 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
482 &reg_val, sizeof(reg_val));
483 if (ret != SR_OK) {
484 sr_err("Cannot adjust PWM enabled state.");
f2cd2deb 485 return ret;
08a49848 486 }
f2cd2deb
FS
487
488 return SR_OK;
489}
490
4276ca94 491static uint32_t get_channels_mask(const struct sr_dev_inst *sdi)
ea436ba7 492{
4276ca94 493 uint32_t channels;
ea436ba7
GS
494 GSList *l;
495 struct sr_channel *ch;
496
497 channels = 0;
498 for (l = sdi->channels; l; l = l->next) {
499 ch = l->data;
500 if (ch->type != SR_CHANNEL_LOGIC)
501 continue;
502 if (!ch->enabled)
503 continue;
504 channels |= 1UL << ch->index;
505 }
506
507 return channels;
508}
509
f2cd2deb
FS
510static int set_trigger_config(const struct sr_dev_inst *sdi)
511{
512 struct dev_context *devc;
513 struct sr_trigger *trigger;
edb13f41
GS
514 struct trigger_cfg {
515 uint32_t channels;
516 uint32_t enabled;
517 uint32_t level;
518 uint32_t high_or_falling;
519 } cfg;
f2cd2deb
FS
520 GSList *stages;
521 GSList *channel;
522 struct sr_trigger_stage *stage1;
523 struct sr_trigger_match *match;
4276ca94 524 uint32_t ch_mask;
f2cd2deb 525 int ret;
3ab60908 526 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
c3d40037 527 uint8_t *wrptr;
f2cd2deb
FS
528
529 devc = sdi->priv;
530 trigger = sr_session_trigger_get(sdi->session);
531
532 memset(&cfg, 0, sizeof(cfg));
533
ea436ba7 534 cfg.channels = get_channels_mask(sdi);
f2cd2deb
FS
535
536 if (trigger && trigger->stages) {
537 stages = trigger->stages;
538 stage1 = stages->data;
539 if (stages->next) {
540 sr_err("Only one trigger stage supported for now.");
286b3e13 541 return SR_ERR_ARG;
f2cd2deb
FS
542 }
543 channel = stage1->matches;
544 while (channel) {
545 match = channel->data;
cf057ac4 546 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
547
548 switch (match->match) {
549 case SR_TRIGGER_ZERO:
550 cfg.level |= ch_mask;
551 cfg.high_or_falling &= ~ch_mask;
552 break;
553 case SR_TRIGGER_ONE:
554 cfg.level |= ch_mask;
555 cfg.high_or_falling |= ch_mask;
556 break;
557 case SR_TRIGGER_RISING:
558 if ((cfg.enabled & ~cfg.level)) {
91f73872 559 sr_err("Device only supports one edge trigger.");
286b3e13 560 return SR_ERR_ARG;
f2cd2deb
FS
561 }
562 cfg.level &= ~ch_mask;
563 cfg.high_or_falling &= ~ch_mask;
564 break;
565 case SR_TRIGGER_FALLING:
566 if ((cfg.enabled & ~cfg.level)) {
91f73872 567 sr_err("Device only supports one edge trigger.");
286b3e13 568 return SR_ERR_ARG;
f2cd2deb
FS
569 }
570 cfg.level &= ~ch_mask;
571 cfg.high_or_falling |= ch_mask;
572 break;
573 default:
91f73872 574 sr_err("Unknown trigger condition.");
286b3e13 575 return SR_ERR_ARG;
f2cd2deb
FS
576 }
577 cfg.enabled |= ch_mask;
578 channel = channel->next;
579 }
580 }
91f73872
GS
581 sr_dbg("Set trigger config: "
582 "channels 0x%04x, trigger-enabled 0x%04x, "
583 "level-triggered 0x%04x, high/falling 0x%04x.",
584 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 585
cf057ac4 586 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 587
c3d40037
HK
588 wrptr = buf;
589 write_u32le_inc(&wrptr, cfg.channels);
590 write_u32le_inc(&wrptr, cfg.enabled);
591 write_u32le_inc(&wrptr, cfg.level);
592 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
593 /* TODO
594 * Comment on this literal 16. Origin, meaning? Cannot be the
595 * register offset, nor the transfer length. Is it a channels
596 * count that is relevant for 16 and 32 channel models? Is it
597 * an obsolete experiment?
598 */
42f6dd55 599 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 600 if (ret != SR_OK) {
91f73872 601 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
602 return ret;
603 }
604
605 return SR_OK;
606}
607
608static int set_sample_config(const struct sr_dev_inst *sdi)
609{
610 struct dev_context *devc;
d8fbfcd9 611 uint64_t min_samplerate, eff_samplerate;
adab4d91 612 uint16_t divider_u16;
a38f0f5e 613 uint64_t limit_samples;
adab4d91
GS
614 uint64_t pre_trigger_samples;
615 uint64_t pre_trigger_memory;
616 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 617 uint8_t *wrptr;
adab4d91 618 int ret;
f2cd2deb
FS
619
620 devc = sdi->priv;
f2cd2deb 621
edc0b015 622 if (devc->samplerate > devc->model->samplerate) {
91f73872 623 sr_err("Too high a sample rate: %" PRIu64 ".",
edc0b015 624 devc->samplerate);
ea436ba7
GS
625 return SR_ERR_ARG;
626 }
d8fbfcd9
GS
627 min_samplerate = devc->model->samplerate;
628 min_samplerate /= 65536;
edc0b015 629 if (devc->samplerate < min_samplerate) {
ea436ba7 630 sr_err("Too low a sample rate: %" PRIu64 ".",
edc0b015 631 devc->samplerate);
ea436ba7 632 return SR_ERR_ARG;
f2cd2deb 633 }
edc0b015 634 divider_u16 = devc->model->samplerate / devc->samplerate;
d8fbfcd9 635 eff_samplerate = devc->model->samplerate / divider_u16;
f2cd2deb 636
a38f0f5e
GS
637 ret = sr_sw_limits_get_remain(&devc->sw_limits,
638 &limit_samples, NULL, NULL, NULL);
639 if (ret != SR_OK) {
640 sr_err("Cannot get acquisition limits.");
641 return ret;
f2cd2deb 642 }
a38f0f5e 643 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
d8fbfcd9
GS
644 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
645 limit_samples);
646 limit_samples = LA2016_NUM_SAMPLES_MAX;
a38f0f5e 647 }
d8fbfcd9
GS
648 if (limit_samples == 0) {
649 limit_samples = LA2016_NUM_SAMPLES_MAX;
650 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
651 limit_samples);
ea436ba7 652 }
f2cd2deb 653
adab4d91
GS
654 /*
655 * The acquisition configuration communicates "pre-trigger"
656 * specs in several formats. sigrok users provide a percentage
657 * (0-100%), which translates to a pre-trigger samples count
658 * (assuming that a total samples count limit was specified).
659 * The device supports hardware compression, which depends on
660 * slowly changing input data to be effective. Fast changing
661 * input data may occupy more space in sample memory than its
662 * uncompressed form would. This is why a third parameter can
663 * limit the amount of sample memory to use for pre-trigger
664 * data. Only the upper 24 bits of that memory size spec get
665 * communicated to the device (written to its FPGA register).
d8fbfcd9
GS
666 *
667 * TODO Determine whether the pre-trigger memory size gets
668 * specified in samples or in bytes. A previous implementation
669 * suggests bytes but this is suspicious when every other spec
670 * is in terms of samples.
adab4d91 671 */
d8fbfcd9
GS
672 if (devc->trigger_involved) {
673 pre_trigger_samples = limit_samples;
674 pre_trigger_samples *= devc->capture_ratio;
675 pre_trigger_samples /= 100;
676 pre_trigger_memory = devc->model->memory_bits;
677 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
678 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
679 pre_trigger_memory *= devc->capture_ratio;
680 pre_trigger_memory /= 100;
681 } else {
682 sr_dbg("No trigger setup, skipping pre-trigger config.");
683 pre_trigger_samples = 1;
684 pre_trigger_memory = 0;
685 }
686 /* Ensure non-zero value after LSB shift out in HW reg. */
687 if (pre_trigger_memory < 0x100) {
688 pre_trigger_memory = 0x100;
689 }
f2cd2deb 690
adab4d91 691 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
d8fbfcd9 692 eff_samplerate / SR_KHZ(1), limit_samples);
adab4d91
GS
693 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
694 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 695
b1a17c1a
GS
696 /*
697 * The acquisition configuration occupies a total of 16 bytes:
698 * - A 34bit total samples count limit (up to 10 billions) that
699 * is kept in a 40bit register.
700 * - A 34bit pre-trigger samples count limit (up to 10 billions)
701 * in another 40bit register.
702 * - A 32bit pre-trigger memory space limit (in bytes) of which
703 * the upper 24bits are kept in an FPGA register.
704 * - A 16bit clock divider which gets applied to the maximum
705 * samplerate of the device.
706 * - An 8bit register of unknown meaning. Currently always 0.
707 */
c3d40037 708 wrptr = buf;
a38f0f5e 709 write_u40le_inc(&wrptr, limit_samples);
b1a17c1a
GS
710 write_u40le_inc(&wrptr, pre_trigger_samples);
711 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 712 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 713 write_u8_inc(&wrptr, 0);
42f6dd55 714 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 715 if (ret != SR_OK) {
91f73872 716 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
717 return ret;
718 }
719
720 return SR_OK;
721}
722
96dc954e
GS
723/*
724 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
725 * of interest:
726 * bit 0: value 1 = idle
727 * bit 1: value 1 = writing to SDRAM
728 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
729 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
730 * The meaning of other bit fields is unknown.
7601dca7 731 *
96dc954e 732 * Typical values in order of appearance during execution:
b711fd8e
GS
733 * 0x85e1: idle, no acquisition pending
734 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
735 * "In idle state." Takes precedence over all others.
96dc954e
GS
736 * 0x85e2: pre-sampling, samples before the trigger position,
737 * when capture ratio > 0%
b711fd8e
GS
738 * IDLE clear, TRGD clear, POST clear; DRAM don't care
739 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
740 * 0x85ea: pre-sampling complete, now waiting for the trigger
741 * (whilst sampling continuously)
b711fd8e
GS
742 * IDLE clear, TRGD clear, POST set; DRAM don't care
743 * "Post set thus after pre, not triggered yet"
96dc954e 744 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
745 * IDLE clear, TRGD set, POST set; DRAM don't care
746 * "Triggered and in post, not idle yet."
96dc954e 747 * 0x85ed: idle
b711fd8e
GS
748 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
749 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 750 */
b711fd8e
GS
751static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
752static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
753static const uint16_t runstate_mask_step =
754 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
755static const uint16_t runstate_patt_pre_trig = 0;
756static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
757static const uint16_t runstate_patt_post_trig =
758 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
759
f2cd2deb
FS
760static uint16_t run_state(const struct sr_dev_inst *sdi)
761{
21d68fd9
GS
762 static uint16_t previous_state;
763
f2cd2deb 764 int ret;
21d68fd9 765 uint16_t state;
3ab60908 766 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
21d68fd9
GS
767 const uint8_t *rdptr;
768 const char *label;
f2cd2deb 769
411ad77c
GS
770 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
771 if (ret != SR_OK) {
91f73872 772 sr_err("Cannot read run state.");
f2cd2deb
FS
773 return ret;
774 }
21d68fd9
GS
775 rdptr = buff;
776 state = read_u16le_inc(&rdptr);
7601dca7 777
96dc954e
GS
778 /*
779 * Avoid flooding the log, only dump values as they change.
780 * The routine is called about every 50ms.
7601dca7 781 */
b711fd8e
GS
782 if (state == previous_state)
783 return state;
784
785 previous_state = state;
786 label = NULL;
787 if ((state & runstate_mask_idle) == runstate_patt_idle)
788 label = "idle";
789 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
790 label = "pre-trigger sampling";
791 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
792 label = "sampling, waiting for trigger";
793 if ((state & runstate_mask_step) == runstate_patt_post_trig)
794 label = "post-trigger sampling";
795 if (label && *label)
796 sr_dbg("Run state: 0x%04x (%s).", state, label);
797 else
798 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
799
800 return state;
801}
802
cf057ac4 803static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
804{
805 uint16_t state;
806
807 state = run_state(sdi);
b711fd8e 808 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
809 return 1;
810
811 return 0;
812}
813
814static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
815{
816 int ret;
817
411ad77c
GS
818 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
819 if (ret != SR_OK) {
c34f4a89 820 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
821 return ret;
822 }
823
824 return SR_OK;
825}
826
827static int get_capture_info(const struct sr_dev_inst *sdi)
828{
829 struct dev_context *devc;
830 int ret;
3ab60908 831 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 832 const uint8_t *rdptr;
f2cd2deb
FS
833
834 devc = sdi->priv;
835
411ad77c
GS
836 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
837 if (ret != SR_OK) {
91f73872 838 sr_err("Cannot read capture info.");
f2cd2deb
FS
839 return ret;
840 }
c3d40037
HK
841
842 rdptr = buf;
843 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
844 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
845 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 846
cf057ac4 847 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
848 devc->info.n_rep_packets, devc->info.n_rep_packets,
849 devc->info.n_rep_packets_before_trigger,
850 devc->info.n_rep_packets_before_trigger,
851 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 852
038e65c1
GS
853 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
854 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
852c7d14 855 (unsigned long)devc->info.n_rep_packets,
038e65c1 856 (unsigned long)devc->packets_per_chunk);
91f73872 857 }
f2cd2deb
FS
858
859 return SR_OK;
860}
861
d466f61c
GS
862SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
863 struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
f2cd2deb 864{
d466f61c
GS
865 struct dev_context *devc;
866 char *fw_file;
867 int ret;
868
869 devc = sdi ? sdi->priv : NULL;
870
871 fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
872 sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
873
874 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
875 if (ret != SR_OK) {
876 g_free(fw_file);
877 return ret;
878 }
879
880 if (devc) {
881 devc->mcu_firmware = fw_file;
882 fw_file = NULL;
883 }
884 g_free(fw_file);
885
886 return SR_OK;
f2cd2deb
FS
887}
888
9270f8f4
GS
889SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
890 double voltage)
f2cd2deb 891{
f2cd2deb
FS
892 int ret;
893 uint8_t cmd;
894
9270f8f4 895 ret = set_threshold_voltage(sdi, voltage);
f2cd2deb
FS
896 if (ret != SR_OK)
897 return ret;
898
899 cmd = 0;
411ad77c
GS
900 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
901 if (ret != SR_OK) {
91f73872 902 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
903 return ret;
904 }
905
906 ret = set_trigger_config(sdi);
907 if (ret != SR_OK)
908 return ret;
909
910 ret = set_sample_config(sdi);
911 if (ret != SR_OK)
912 return ret;
913
914 return SR_OK;
915}
916
917SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
918{
3ebc1cb2
GS
919 int ret;
920
852c7d14 921 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
922 if (ret != SR_OK)
923 return ret;
924
925 return SR_OK;
f2cd2deb
FS
926}
927
3ebc1cb2 928static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 929{
3ebc1cb2
GS
930 int ret;
931
852c7d14 932 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
933 if (ret != SR_OK)
934 return ret;
935
936 return SR_OK;
f2cd2deb
FS
937}
938
939SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
940{
3ebc1cb2
GS
941 int ret;
942 struct dev_context *devc;
943
944 ret = la2016_stop_acquisition(sdi);
945 if (ret != SR_OK)
946 return ret;
947
948 devc = sdi ? sdi->priv : NULL;
949 if (devc && devc->transfer)
950 libusb_cancel_transfer(devc->transfer);
951
952 return SR_OK;
f2cd2deb
FS
953}
954
cf057ac4 955static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 956 libusb_transfer_cb_fn cb)
f2cd2deb
FS
957{
958 struct dev_context *devc;
959 struct sr_usb_dev_inst *usb;
960 int ret;
3ab60908 961 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
c3d40037 962 uint8_t *wrptr;
f2cd2deb
FS
963 uint32_t to_read;
964 uint8_t *buffer;
965
966 devc = sdi->priv;
967 usb = sdi->conn;
968
411ad77c
GS
969 ret = get_capture_info(sdi);
970 if (ret != SR_OK)
f2cd2deb
FS
971 return ret;
972
038e65c1
GS
973 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
974 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
975 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
976 devc->n_bytes_to_read *= TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
977 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
978 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
979
91f73872 980 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 981 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 982
411ad77c
GS
983 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
984 if (ret != SR_OK) {
91f73872 985 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
986 return ret;
987 }
91f73872
GS
988 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
989 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
990 wrptr = wrbuf;
991 write_u32le_inc(&wrptr, devc->read_pos);
992 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
993 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
994 if (ret != SR_OK) {
91f73872 995 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
996 return ret;
997 }
411ad77c
GS
998 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
999 if (ret != SR_OK) {
91f73872 1000 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
1001 return ret;
1002 }
1003
96dc954e
GS
1004 /*
1005 * Pick a buffer size for all USB transfers. The buffer size
1006 * must be a multiple of the endpoint packet size. And cannot
1007 * exceed a maximum value.
1008 */
f2cd2deb 1009 to_read = devc->n_bytes_to_read;
96dc954e
GS
1010 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
1011 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1012 to_read += LA2016_EP6_PKTSZ - 1;
1013 to_read /= LA2016_EP6_PKTSZ;
1014 to_read *= LA2016_EP6_PKTSZ;
f2cd2deb
FS
1015 buffer = g_try_malloc(to_read);
1016 if (!buffer) {
91f73872
GS
1017 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
1018 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
1019 return SR_ERR_MALLOC;
1020 }
1021
1022 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
1023 libusb_fill_bulk_transfer(devc->transfer,
1024 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 1025 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 1026
411ad77c
GS
1027 ret = libusb_submit_transfer(devc->transfer);
1028 if (ret != 0) {
91f73872 1029 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
1030 libusb_free_transfer(devc->transfer);
1031 devc->transfer = NULL;
1032 g_free(buffer);
286b3e13 1033 return SR_ERR_IO;
f2cd2deb
FS
1034 }
1035
1036 return SR_OK;
1037}
1038
480efba2
GS
1039/*
1040 * A chunk (received via USB) contains a number of transfers (USB length
1041 * divided by 16) which contain a number of packets (5 per transfer) which
1042 * contain a number of samples (8bit repeat count per 16bit sample data).
1043 */
dfac9592 1044static void send_chunk(struct sr_dev_inst *sdi,
480efba2 1045 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
1046{
1047 struct dev_context *devc;
480efba2 1048 size_t num_pkts;
dfac9592 1049 const uint8_t *rp;
4276ca94 1050 uint32_t sample_value;
480efba2
GS
1051 size_t repetitions;
1052 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1053
1054 devc = sdi->priv;
1055
a38f0f5e
GS
1056 /* Ignore incoming USB data after complete sample data download. */
1057 if (devc->download_finished)
1058 return;
dfac9592 1059
cf057ac4 1060 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
a38f0f5e 1061 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1062 devc->trigger_marked = TRUE;
dfac9592
GS
1063 }
1064
4276ca94 1065 sample_value = 0;
dfac9592 1066 rp = packets;
480efba2 1067 while (num_xfers--) {
038e65c1 1068 num_pkts = devc->packets_per_chunk;
480efba2 1069 while (num_pkts--) {
dfac9592 1070
4276ca94
GS
1071 /* TODO Verify 32channel layout. */
1072 if (devc->model->channel_count == 32)
1073 sample_value = read_u32le_inc(&rp);
1074 else if (devc->model->channel_count == 16)
1075 sample_value = read_u16le_inc(&rp);
dfac9592 1076 repetitions = read_u8_inc(&rp);
dfac9592 1077
dfac9592 1078 devc->total_samples += repetitions;
480efba2 1079
4276ca94 1080 write_u32le(sample_buff, sample_value);
a38f0f5e
GS
1081 feed_queue_logic_submit(devc->feed_queue,
1082 sample_buff, repetitions);
1083 sr_sw_limits_update_samples_read(&devc->sw_limits,
1084 repetitions);
480efba2 1085
cf057ac4
GS
1086 if (devc->trigger_involved && !devc->trigger_marked) {
1087 if (!--devc->n_reps_until_trigger) {
a38f0f5e 1088 feed_queue_logic_send_trigger(devc->feed_queue);
cf057ac4 1089 devc->trigger_marked = TRUE;
91f73872 1090 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110 1091 devc->total_samples,
edc0b015 1092 (double)devc->total_samples / devc->samplerate * 1e3);
dfac9592
GS
1093 }
1094 }
1095 }
1096 (void)read_u8_inc(&rp); /* Skip sequence number. */
1097 }
a38f0f5e
GS
1098
1099 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1100 sr_dbg("Acquisition limit reached.");
1101 devc->download_finished = TRUE;
1102 }
1103 if (devc->download_finished) {
1104 sr_dbg("Download finished, flushing session feed queue.");
1105 feed_queue_logic_flush(devc->feed_queue);
dfac9592 1106 }
a38f0f5e 1107 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
dfac9592
GS
1108}
1109
1110static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1111{
1112 struct sr_dev_inst *sdi;
1113 struct dev_context *devc;
1114 struct sr_usb_dev_inst *usb;
a38f0f5e 1115 size_t num_xfers;
dfac9592
GS
1116 int ret;
1117
1118 sdi = transfer->user_data;
1119 devc = sdi->priv;
1120 usb = sdi->conn;
1121
1122 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1123 libusb_error_name(transfer->status), transfer->actual_length);
a38f0f5e
GS
1124 /*
1125 * Implementation detail: A USB transfer timeout is not fatal
1126 * here. We just process whatever was received, empty input is
1127 * perfectly acceptable. Reaching (or exceeding) the sw limits
1128 * or exhausting the device's captured data will complete the
1129 * sample data download.
1130 */
1131 num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
1132 send_chunk(sdi, transfer->buffer, num_xfers);
dfac9592
GS
1133
1134 devc->n_bytes_to_read -= transfer->actual_length;
1135 if (devc->n_bytes_to_read) {
1136 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1137 /*
1138 * Determine read size for the next USB transfer. Make
1139 * the buffer size a multiple of the endpoint packet
1140 * size. Don't exceed a maximum value.
1141 */
dfac9592
GS
1142 if (to_read >= LA2016_USB_BUFSZ)
1143 to_read = LA2016_USB_BUFSZ;
418dfd7e
GS
1144 to_read += LA2016_EP6_PKTSZ - 1;
1145 to_read /= LA2016_EP6_PKTSZ;
1146 to_read *= LA2016_EP6_PKTSZ;
852c7d14
GS
1147 libusb_fill_bulk_transfer(transfer,
1148 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1149 transfer->buffer, to_read,
dfac9592
GS
1150 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1151
411ad77c
GS
1152 ret = libusb_submit_transfer(transfer);
1153 if (ret == 0)
dfac9592 1154 return;
91f73872
GS
1155 sr_err("Cannot submit another USB transfer: %s.",
1156 libusb_error_name(ret));
dfac9592
GS
1157 }
1158
1159 g_free(transfer->buffer);
1160 libusb_free_transfer(transfer);
cf057ac4 1161 devc->download_finished = TRUE;
dfac9592
GS
1162}
1163
1164SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1165{
1166 const struct sr_dev_inst *sdi;
1167 struct dev_context *devc;
1168 struct drv_context *drvc;
1169 struct timeval tv;
a38f0f5e 1170 int ret;
dfac9592
GS
1171
1172 (void)fd;
1173 (void)revents;
1174
1175 sdi = cb_data;
1176 devc = sdi->priv;
1177 drvc = sdi->driver->context;
1178
a38f0f5e
GS
1179 /*
1180 * Wait for the acquisition to complete in hardware.
1181 * Periodically check a potentially configured msecs timeout.
1182 */
cf057ac4
GS
1183 if (!devc->completion_seen) {
1184 if (!la2016_is_idle(sdi)) {
a38f0f5e
GS
1185 if (sr_sw_limits_check(&devc->sw_limits)) {
1186 devc->sw_limits.limit_msec = 0;
1187 sr_dbg("Limit reached. Stopping acquisition.");
1188 la2016_stop_acquisition(sdi);
1189 }
96dc954e 1190 /* Not yet ready for sample data download. */
dfac9592
GS
1191 return TRUE;
1192 }
a38f0f5e
GS
1193 sr_dbg("Acquisition completion seen (hardware).");
1194 devc->sw_limits.limit_msec = 0;
cf057ac4
GS
1195 devc->completion_seen = TRUE;
1196 devc->download_finished = FALSE;
1197 devc->trigger_marked = FALSE;
dfac9592 1198 devc->total_samples = 0;
a38f0f5e
GS
1199
1200 /* Initiate the download of acquired sample data. */
1201 std_session_send_df_frame_begin(sdi);
1202 ret = la2016_start_download(sdi, receive_transfer);
1203 if (ret != SR_OK) {
91f73872 1204 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1205 return FALSE;
1206 }
91f73872 1207 sr_dbg("Acquisition data download started.");
dfac9592
GS
1208
1209 return TRUE;
1210 }
1211
a38f0f5e 1212 /* Handle USB reception. Drives sample data download. */
dfac9592
GS
1213 tv.tv_sec = tv.tv_usec = 0;
1214 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1215
a38f0f5e 1216 /* Postprocess completion of sample data download. */
cf057ac4 1217 if (devc->download_finished) {
91f73872 1218 sr_dbg("Download finished, post processing.");
dfac9592
GS
1219
1220 la2016_stop_acquisition(sdi);
a38f0f5e 1221 usb_source_remove(sdi->session, drvc->sr_ctx);
dfac9592
GS
1222 devc->transfer = NULL;
1223
a38f0f5e
GS
1224 feed_queue_logic_flush(devc->feed_queue);
1225 feed_queue_logic_free(devc->feed_queue);
1226 devc->feed_queue = NULL;
1227 std_session_send_df_frame_end(sdi);
1228 std_session_send_df_end(sdi);
1229
91f73872 1230 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1231 }
1232
1233 return TRUE;
1234}
1235
d466f61c
GS
1236SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1237 gboolean show_message)
f2cd2deb 1238{
8b172e78 1239 struct dev_context *devc;
3ab60908 1240 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
64172b16 1241 size_t rdoff, rdlen;
43d2e52f
GS
1242 const uint8_t *rdptr;
1243 uint8_t date_yy, date_mm;
1244 uint8_t dinv_yy, dinv_mm;
9de389b1 1245 uint8_t magic;
d466f61c
GS
1246 size_t model_idx;
1247 const struct kingst_model *model;
9de389b1 1248 int ret;
f2cd2deb 1249
8b172e78
KG
1250 devc = sdi->priv;
1251
96dc954e 1252 /*
43d2e52f
GS
1253 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1254 * year and month in BCD format, followed by inverted values for
1255 * consistency checks. For example bytes 20 04 df fb translate
1256 * to 2020-04. This information can help identify the vintage of
1257 * devices when unknown magic numbers are seen.
9de389b1 1258 */
64172b16
GS
1259 rdoff = 0x20;
1260 rdlen = 4 * sizeof(uint8_t);
1261 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
d466f61c 1262 if (ret != SR_OK && !show_message) {
64172b16 1263 /* Non-fatal weak attempt during probe. Not worth logging. */
d466f61c
GS
1264 sr_dbg("Cannot access EEPROM.");
1265 return SR_ERR_IO;
1266 } else if (ret != SR_OK) {
64172b16 1267 /* Failed attempt in regular use. Non-fatal. Worth logging. */
43d2e52f 1268 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1269 } else {
64172b16
GS
1270 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1271 GString *txt;
1272 txt = sr_hexdump_new(buf, rdlen);
1273 sr_spew("Manufacture date bytes %s.", txt->str);
1274 sr_hexdump_free(txt);
1275 }
43d2e52f
GS
1276 rdptr = &buf[0];
1277 date_yy = read_u8_inc(&rdptr);
1278 date_mm = read_u8_inc(&rdptr);
1279 dinv_yy = read_u8_inc(&rdptr);
1280 dinv_mm = read_u8_inc(&rdptr);
1281 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1282 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1283 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1284 }
f2cd2deb 1285
9de389b1 1286 /*
96dc954e
GS
1287 * Several Kingst logic analyzer devices share the same USB VID
1288 * and PID. The product ID determines which MCU firmware to load.
1289 * The MCU firmware provides access to EEPROM content which then
1290 * allows to identify the device model. Which in turn determines
1291 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1292 * to get inspected.
9de389b1 1293 *
96dc954e
GS
1294 * EEPROM content for model identification is kept redundantly
1295 * in memory. The values are stored in verbatim and in inverted
1296 * form, multiple copies are kept at different offsets. Example
1297 * data:
9de389b1 1298 *
96dc954e
GS
1299 * magic 0x08
1300 * | ~magic 0xf7
1301 * | |
1302 * 08f7000008f710ef
1303 * | |
1304 * | ~magic backup
1305 * magic backup
9de389b1 1306 *
96dc954e
GS
1307 * Exclusively inspecting the magic byte appears to be sufficient,
1308 * other fields seem to be 'don't care'.
9de389b1 1309 *
96dc954e
GS
1310 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1311 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1312 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1313 * (latest v1.3.0 PCB, perhaps others)
1314 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1315 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1316 *
96dc954e
GS
1317 * When EEPROM content does not match the hardware configuration
1318 * (the board layout), the software may load but yield incorrect
1319 * results (like swapped channels). The FPGA bitstream itself
1320 * will authenticate with IC U10 and fail when its capabilities
1321 * do not match the hardware model. An LA1016 won't become a
1322 * LA2016 by faking its EEPROM content.
9de389b1 1323 */
d466f61c 1324 devc->identify_magic = 0;
64172b16
GS
1325 rdoff = 0x08;
1326 rdlen = 8 * sizeof(uint8_t);
1327 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1328 if (ret != SR_OK) {
91f73872 1329 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1330 return ret;
1331 }
64172b16
GS
1332 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1333 GString *txt;
1334 txt = sr_hexdump_new(buf, rdlen);
1335 sr_spew("EEPROM magic bytes %s.", txt->str);
1336 sr_hexdump_free(txt);
1337 }
43d2e52f 1338 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1339 /* Primary copy of magic passes complement check. */
9de389b1 1340 magic = buf[0];
64172b16 1341 sr_dbg("Using primary magic, value %d.", (int)magic);
43d2e52f 1342 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1343 /* Backup copy of magic passes complement check. */
9de389b1 1344 magic = buf[4];
64172b16 1345 sr_dbg("Using backup magic, value %d.", (int)magic);
43d2e52f
GS
1346 } else {
1347 sr_err("Cannot find consistent device type identification.");
1348 magic = 0;
f2cd2deb 1349 }
d466f61c 1350 devc->identify_magic = magic;
9de389b1 1351
d466f61c
GS
1352 devc->model = NULL;
1353 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1354 model = &models[model_idx];
1355 if (model->magic != magic)
1356 continue;
1357 devc->model = model;
64172b16
GS
1358 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1359 model->name, model->channel_count,
1360 model->samplerate / SR_MHZ(1));
d466f61c
GS
1361 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1362 model->fpga_stem);
d466f61c 1363 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
d6f89d4b
GS
1364 break;
1365 }
d466f61c 1366 if (!devc->model) {
91f73872 1367 sr_err("Cannot identify as one of the supported models.");
286b3e13 1368 return SR_ERR_DATA;
3f48ab02 1369 }
f2cd2deb 1370
d466f61c
GS
1371 return SR_OK;
1372}
1373
6d53e949 1374SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
d466f61c
GS
1375{
1376 struct dev_context *devc;
1377 const char *bitstream_fn;
1378 int ret;
1379 uint16_t state;
1380
1381 devc = sdi->priv;
1382 bitstream_fn = devc ? devc->fpga_bitstream : "";
1383
1384 ret = check_fpga_bitstream(sdi);
1385 if (ret != SR_OK) {
d6f89d4b
GS
1386 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1387 if (ret != SR_OK) {
1388 sr_err("Cannot upload FPGA bitstream.");
1389 return ret;
1390 }
1391 }
1392 ret = enable_fpga_bitstream(sdi);
9de389b1 1393 if (ret != SR_OK) {
d6f89d4b 1394 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1395 return ret;
1396 }
1397
f2cd2deb 1398 state = run_state(sdi);
9de389b1 1399 if (state != 0x85e9) {
91f73872 1400 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1401 }
f2cd2deb 1402
6d53e949
GS
1403 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1404 if (ret != SR_OK) {
91f73872 1405 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1406 return ret;
1407 }
9de389b1 1408
91f73872 1409 sr_dbg("Device should be initialized.");
f2cd2deb 1410
6d53e949
GS
1411 return SR_OK;
1412}
1413
6d53e949 1414SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
f2cd2deb
FS
1415{
1416 int ret;
1417
6d53e949
GS
1418 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1419 if (ret != SR_OK) {
91f73872 1420 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1421 return ret;
1422 }
1423
1424 return SR_OK;
1425}
08a49848
GS
1426
1427SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1428{
1429 return set_pwm_config(sdi, idx);
1430}