]> sigrok.org Git - sigrok-firmware-fx2lafw.git/blame - hantek_6022bl.c
scopes: Factor out CTL_BIT, OUT0, and OE_CTL.
[sigrok-firmware-fx2lafw.git] / hantek_6022bl.c
CommitLineData
1d203181
STA
1/*
2 * This file is part of the sigrok-firmware-fx2lafw project.
3 *
4 * Copyright (C) 2009 Ubixum, Inc.
5 * Copyright (C) 2015 Jochen Hoenicke
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <fx2macros.h>
22#include <fx2ints.h>
23#include <autovector.h>
24#include <delay.h>
25#include <setupdat.h>
26
be6d306d
UH
27#define SET_ANALOG_MODE() PA7 = 1
28
e583c3fc
UH
29/* Toggle the 1kHz calibration pin, only accurate up to ca. 8MHz. */
30#define TOGGLE_CALIBRATION_PIN() PC2 = !PC2
31
65b34f7e
UH
32#define LED_CLEAR() PC0 = 1; PC1 = 1;
33#define LED_GREEN() PC0 = 1; PC1 = 0;
34#define LED_RED() PC0 = 0; PC1 = 1;
35
e1c5ba21
UH
36/* CTLx pin index (IFCLK, ADC clock input). */
37#define CTL_BIT 0
38
39#define OUT0 ((1 << CTL_BIT) << 4) /* OEx = 1, CTLx = 0 */
40#define OE_CTL (((1 << CTL_BIT) << 4) | (1 << CTL_BIT)) /* OEx = CTLx = 1 */
41
1d203181
STA
42/* Change to support as many interfaces as you need. */
43static BYTE altiface = 0;
44
45static volatile WORD ledcounter = 0;
46
47static volatile __bit dosud = FALSE;
48static volatile __bit dosuspend = FALSE;
49
50extern __code BYTE highspd_dscr;
51extern __code BYTE fullspd_dscr;
52
53void resume_isr(void) __interrupt RESUME_ISR
54{
55 CLEAR_RESUME();
56}
57
58void sudav_isr(void) __interrupt SUDAV_ISR
59{
60 dosud = TRUE;
61 CLEAR_SUDAV();
62}
63
64void usbreset_isr(void) __interrupt USBRESET_ISR
65{
66 handle_hispeed(FALSE);
67 CLEAR_USBRESET();
68}
69
70void hispeed_isr(void) __interrupt HISPEED_ISR
71{
72 handle_hispeed(TRUE);
73 CLEAR_HISPEED();
74}
75
76void suspend_isr(void) __interrupt SUSPEND_ISR
77{
78 dosuspend = TRUE;
79 CLEAR_SUSPEND();
80}
81
82void timer2_isr(void) __interrupt TF2_ISR
83{
e583c3fc 84 TOGGLE_CALIBRATION_PIN();
cbd1bc65 85
65b34f7e
UH
86 if (ledcounter && (--ledcounter == 0))
87 LED_CLEAR();
3968bbfb 88
1d203181
STA
89 TF2 = 0;
90}
91
92/*
93 * This sets three bits for each channel, one channel at a time.
ae56b4f6
JL
94 * For channel 0 we want to set bits 1, 2 & 3
95 * For channel 1 we want to set bits 4, 5 & 6
1d203181
STA
96 *
97 * We convert the input values that are strange due to original
98 * firmware code into the value of the three bits as follows:
99 *
100 * val -> bits
101 * 1 -> 010b
102 * 2 -> 001b
103 * 5 -> 000b
104 * 10 -> 011b
105 *
106 * The third bit is always zero since there are only four outputs connected
107 * in the serial selector chip.
108 *
109 * The multiplication of the converted value by 0x24 sets the relevant bits in
110 * both channels and then we mask it out to only affect the channel currently
111 * requested.
112 */
113static BOOL set_voltage(BYTE channel, BYTE val)
114{
115 BYTE bits, mask;
116
117 switch (val) {
118 case 1:
ae56b4f6 119 bits = 0x02;
1d203181
STA
120 break;
121 case 2:
ae56b4f6 122 bits = 0x01;
1d203181
STA
123 break;
124 case 5:
ae56b4f6 125 bits = 0x00;
1d203181
STA
126 break;
127 case 10:
ae56b4f6 128 bits = 0x03;
1d203181
STA
129 break;
130 default:
131 return FALSE;
132 }
133
ae56b4f6
JL
134 bits = bits << (channel ? 1 : 4);
135 mask = (channel) ? 0x70 : 0x0e;
136 IOA = (IOA & ~mask) | (bits & mask);
1d203181
STA
137
138 return TRUE;
139}
140
141static BOOL set_numchannels(BYTE numchannels)
142{
143 if (numchannels == 1 || numchannels == 2) {
144 BYTE fifocfg = 7 + numchannels;
145 EP2FIFOCFG = fifocfg;
146 EP6FIFOCFG = fifocfg;
147 return TRUE;
148 }
149
150 return FALSE;
151}
152
153static void clear_fifo(void)
154{
155 GPIFABORT = 0xff;
156 SYNCDELAY3;
157 FIFORESET = 0x80;
158 SYNCDELAY3;
159 FIFORESET = 0x82;
160 SYNCDELAY3;
161 FIFORESET = 0x86;
162 SYNCDELAY3;
163 FIFORESET = 0;
164}
165
166static void stop_sampling(void)
167{
168 GPIFABORT = 0xff;
169 SYNCDELAY3;
170 INPKTEND = (altiface == 0) ? 6 : 2;
171}
172
173static void start_sampling(void)
174{
175 int i;
176
be6d306d 177 SET_ANALOG_MODE();
59562384 178
1d203181
STA
179 clear_fifo();
180
181 for (i = 0; i < 1000; i++);
182
183 while (!(GPIFTRIG & 0x80))
184 ;
185
186 SYNCDELAY3;
187 GPIFTCB1 = 0x28;
188 SYNCDELAY3;
189 GPIFTCB0 = 0;
190 GPIFTRIG = (altiface == 0) ? 6 : 4;
191
65b34f7e
UH
192 /* Set green LED, don't clear LED afterwards (ledcounter = 0). */
193 LED_GREEN();
1d203181 194 ledcounter = 0;
1d203181
STA
195}
196
197static void select_interface(BYTE alt)
198{
199 const BYTE *pPacketSize = \
200 ((USBCS & bmHSM) ? &highspd_dscr : &fullspd_dscr)
201 + (9 + (16 * alt) + 9 + 4);
202
203 altiface = alt;
204
205 if (alt == 0) {
206 /* Bulk on EP6. */
207 EP2CFG = 0x00;
208 EP6CFG = 0xe0;
209 EP6GPIFFLGSEL = 1;
210 EP6AUTOINLENL = pPacketSize[0];
211 EP6AUTOINLENH = pPacketSize[1];
212 } else {
213 /* Iso on EP2. */
214 EP2CFG = 0xd8;
215 EP6CFG = 0x00;
216 EP2GPIFFLGSEL = 1;
217 EP2AUTOINLENL = pPacketSize[0];
218 EP2AUTOINLENH = pPacketSize[1] & 0x7;
219 EP2ISOINPKTS = (pPacketSize[1] >> 3) + 1;
220 }
221}
222
223static const struct samplerate_info {
224 BYTE rate;
225 BYTE wait0;
226 BYTE wait1;
227 BYTE opc0;
228 BYTE opc1;
229 BYTE out0;
230 BYTE ifcfg;
231} samplerates[] = {
232 { 48, 0x80, 0, 3, 0, 0x00, 0xea },
233 { 30, 0x80, 0, 3, 0, 0x00, 0xaa },
e1c5ba21
UH
234 { 24, 1, 0, 2, 1, OUT0, 0xca },
235 { 16, 1, 1, 2, 0, OUT0, 0xca },
236 { 12, 2, 1, 2, 0, OUT0, 0xca },
237 { 8, 3, 2, 2, 0, OUT0, 0xca },
238 { 4, 6, 5, 2, 0, OUT0, 0xca },
239 { 2, 12, 11, 2, 0, OUT0, 0xca },
240 { 1, 24, 23, 2, 0, OUT0, 0xca },
241 { 50, 48, 47, 2, 0, OUT0, 0xca },
242 { 20, 120, 119, 2, 0, OUT0, 0xca },
243 { 10, 240, 239, 2, 0, OUT0, 0xca },
1d203181
STA
244};
245
246static BOOL set_samplerate(BYTE rate)
247{
248 BYTE i = 0;
249
250 while (samplerates[i].rate != rate) {
251 i++;
252 if (i == sizeof(samplerates) / sizeof(samplerates[0]))
253 return FALSE;
254 }
255
256 IFCONFIG = samplerates[i].ifcfg;
257
258 AUTOPTRSETUP = 7;
259 AUTOPTRH2 = 0xE4; /* 0xE400: GPIF waveform descriptor 0. */
260 AUTOPTRL2 = 0x00;
261
262 /*
263 * The program for low-speed, e.g. 1 MHz, is:
3968bbfb
UH
264 * wait 24, CTLx=0, FIFO
265 * wait 23, CTLx=1
266 * jump 0, CTLx=1
1d203181
STA
267 *
268 * The program for 24 MHz is:
3968bbfb
UH
269 * wait 1, CTLx=0, FIFO
270 * jump 0, CTLx=1
1d203181
STA
271 *
272 * The program for 30/48 MHz is:
3968bbfb
UH
273 * jump 0, CTLx=Z, FIFO, LOOP
274 *
275 * (CTLx is device-dependent, could be e.g. CTL0 or CTL2.)
1d203181
STA
276 */
277
278 /* LENGTH / BRANCH 0-7 */
279 EXTAUTODAT2 = samplerates[i].wait0;
280 EXTAUTODAT2 = samplerates[i].wait1;
281 EXTAUTODAT2 = 1;
282 EXTAUTODAT2 = 0;
283 EXTAUTODAT2 = 0;
284 EXTAUTODAT2 = 0;
285 EXTAUTODAT2 = 0;
286 EXTAUTODAT2 = 0;
287
288 /* OPCODE 0-7 */
289 EXTAUTODAT2 = samplerates[i].opc0;
290 EXTAUTODAT2 = samplerates[i].opc1;
291 EXTAUTODAT2 = 1; /* DATA=0 DP=1 */
292 EXTAUTODAT2 = 0;
293 EXTAUTODAT2 = 0;
294 EXTAUTODAT2 = 0;
295 EXTAUTODAT2 = 0;
296 EXTAUTODAT2 = 0;
297
298 /* OUTPUT 0-7 */
299 EXTAUTODAT2 = samplerates[i].out0;
e1c5ba21
UH
300 EXTAUTODAT2 = OE_CTL;
301 EXTAUTODAT2 = OE_CTL;
1d203181
STA
302 EXTAUTODAT2 = 0;
303 EXTAUTODAT2 = 0;
304 EXTAUTODAT2 = 0;
305 EXTAUTODAT2 = 0;
306 EXTAUTODAT2 = 0;
307
308 /* LOGIC FUNCTION 0-7 */
309 EXTAUTODAT2 = 0;
310 EXTAUTODAT2 = 0;
311 EXTAUTODAT2 = 0;
312 EXTAUTODAT2 = 0;
313 EXTAUTODAT2 = 0;
314 EXTAUTODAT2 = 0;
315 EXTAUTODAT2 = 0;
316 EXTAUTODAT2 = 0;
317
318 for (i = 0; i < 96; i++)
319 EXTAUTODAT2 = 0;
320
321 return TRUE;
322}
323
324/* Set *alt_ifc to the current alt interface for ifc. */
325BOOL handle_get_interface(BYTE ifc, BYTE *alt_ifc)
326{
327 (void)ifc;
328
329 *alt_ifc = altiface;
330
331 return TRUE;
332}
333
334/*
335 * Return TRUE if you set the interface requested.
336 *
337 * Note: This function should reconfigure and reset the endpoints
338 * according to the interface descriptors you provided.
339 */
340BOOL handle_set_interface(BYTE ifc,BYTE alt_ifc)
341{
342 if (ifc == 0)
343 select_interface(alt_ifc);
344
345 return TRUE;
346}
347
348BYTE handle_get_configuration(void)
349{
350 /* We only support configuration 0. */
351 return 0;
352}
353
354BOOL handle_set_configuration(BYTE cfg)
355{
356 /* We only support configuration 0. */
357 (void)cfg;
358
359 return TRUE;
360}
361
362BOOL handle_vendorcommand(BYTE cmd)
363{
364 stop_sampling();
365
65b34f7e
UH
366 /* Set red LED, clear after timeout. */
367 LED_RED();
1d203181
STA
368 ledcounter = 1000;
369
370 /* Clear EP0BCH/L for each valid command. */
371 if (cmd >= 0xe0 && cmd <= 0xe4) {
372 EP0BCH = 0;
373 EP0BCL = 0;
374 while (EP0CS & bmEPBUSY);
375 }
376
377 switch (cmd) {
378 case 0xe0:
379 case 0xe1:
380 set_voltage(cmd - 0xe0, EP0BUF[0]);
381 return TRUE;
382 case 0xe2:
383 set_samplerate(EP0BUF[0]);
384 return TRUE;
385 case 0xe3:
386 if (EP0BUF[0] == 1)
387 start_sampling();
388 return TRUE;
389 case 0xe4:
390 set_numchannels(EP0BUF[0]);
391 return TRUE;
392 }
393
394 return FALSE; /* Not handled by handlers. */
395}
396
397static void init(void)
398{
399 EP4CFG = 0;
400 EP8CFG = 0;
401
be6d306d 402 SET_ANALOG_MODE();
eb52aca4 403
1d203181
STA
404 /* In idle mode tristate all outputs. */
405 GPIFIDLECTL = 0x00; /* Don't enable CTL0-5 outputs. */
406 GPIFCTLCFG = 0x80; /* TRICTL=1. CTL0-2: CMOS outputs, tri-statable. */
407 GPIFWFSELECT = 0x00;
408 GPIFREADYSTAT = 0x00;
409
410 stop_sampling();
411
412 set_voltage(0, 1);
413 set_voltage(1, 1);
414 set_samplerate(1);
415 set_numchannels(2);
416 select_interface(0);
417}
418
419static void main(void)
420{
421 /* Save energy. */
422 SETCPUFREQ(CLK_12M);
423
424 init();
425
426 /* Set up interrupts. */
427 USE_USB_INTS();
428
429 ENABLE_SUDAV();
430 ENABLE_USBRESET();
431 ENABLE_HISPEED();
432 ENABLE_SUSPEND();
433 ENABLE_RESUME();
434
435 /* Global (8051) interrupt enable. */
436 EA = 1;
437
438 /* Init timer2. */
439 RCAP2L = -500 & 0xff;
440 RCAP2H = (-500 & 0xff00) >> 8;
441 T2CON = 0;
442 ET2 = 1;
443 TR2 = 1;
444
beaa03fc 445 RENUMERATE_UNCOND();
1d203181 446
4d971e01 447 PORTECFG = 0;
1d203181
STA
448 PORTCCFG = 0;
449 PORTACFG = 0;
4d971e01 450 OEE = 0xff;
1d203181 451 OEC = 0xff;
f6eb6aec 452 OEA = 0xff;
1d203181
STA
453
454 while (TRUE) {
455 if (dosud) {
456 dosud = FALSE;
457 handle_setupdata();
458 }
459
460 if (dosuspend) {
461 dosuspend = FALSE;
462 do {
463 /* Make sure ext wakeups are cleared. */
3968bbfb 464 WAKEUPCS |= bmWU | bmWU2;
1d203181
STA
465 SUSPEND = 1;
466 PCON |= 1;
467 __asm
468 nop
469 nop
470 nop
471 nop
472 nop
473 nop
474 nop
475 __endasm;
476 } while (!remote_wakeup_allowed && REMOTE_WAKEUP());
477
478 /* Resume (TRM 6.4). */
479 if (REMOTE_WAKEUP()) {
480 delay(5);
481 USBCS |= bmSIGRESUME;
482 delay(15);
483 USBCS &= ~bmSIGRESUME;
484 }
485 }
486 }
487}