Difference between revisions of "Saleae Logic16"

From sigrok
Jump to navigation Jump to search
(→‎Firmware: Got it working on all three OSes!)
 
(49 intermediate revisions by 7 users not shown)
Line 1: Line 1:
[[File:Saleae logic16 front.jpg|thumb|right|Saleae Logic16, front]]
{{Infobox logic analyzer
[[File:Saleae logic16 back.jpg|thumb|right|Saleae Logic16, back]]
| image            = [[File:Saleae Logic16 bottom.png|180px]]
| name            = Saleae Logic16
| status          = supported
| source_code_dir  = saleae-logic16
| channels        = 3/6/9/16
| samplerate      = 100/50/32/16MHz
| samplerate_state = —
| triggers        = none (SW-only)
| voltages        = -0.9V — 6V
| threshold        = configurable:<br />for 1.8V to 3.6V systems: V<sub>IH</sub>=1.4V, V<sub>IL</sub>=0.7V<br />for 5V systems: V<sub>IH</sub>=3.6V, V<sub>IL</sub>=1.4V
| memory          = none
| compression      = yes
| website          = [http://www.saleae.com/logic16/ saleae.com]
}}


The [http://www.saleae.com/logic16/ Saleae Logic16] is a 16-channel, 100/50/25/12.5MHz USB-based logic analyzer (at 2/4/8/16 enabled channels). See [[Saleae Logic16/Info]] for '''lsusb -vvv''' output) of the device.
The '''Saleae Logic16''' is a USB-based, 16-channel logic analyzer with 100/50/32/16MHz sampling rate (at 3/6/9/16 enabled channels).  


The case requires a '''Torx T5''' screwdriver to open.


== Components ==
See [[Saleae Logic16/Info]] for more details (such as '''lsusb -v''' output) about the device.


TODO.
See [[Saleae Logic]] for the predecessor product of the Saleae Logic16.  
 
== Hardware ==
 
* '''FPGA''': [http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_devices/fpga/spartan-3a.html Xilinx Spartan-3A XC3S200A], 200K gates ([http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf datasheeet])
* '''USB interface chip''': [http://www.cypress.com/?mpn=CY7C68013A-56PVXC Cypress CY7C68013A-56PVXC (FX2LP)] ([http://www.cypress.com/file/138911/download datasheet])
* '''Ultralow capacitance ESD protection''': 4x [http://www.st.com/web/catalog/sense_power/FM114/CL1137/SC1490/PF109008 ST DVIULC6-4SC6] ([http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00065974.pdf datasheet])
* '''2Kbit I2C EEPROM''': [http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010774 Microchip 24AA02] ([http://ww1.microchip.com/downloads/en/DeviceDoc/21709J.pdf datasheet]) (marking: "B2TH", starts with "B2" always, the last 2 characters are a "traceability code")
* '''2.5MHz, 1.5A synchronous step down switching regulator (1.2V)''': [http://www.semtech.com/power-management/switching-regulators/sc189 Semtech SC189] ([http://www.semtech.com/images/datasheet/sc189.pdf datasheet]) (marking: "189C")
* '''2.5MHz, 1.5A synchronous step down switching regulator (3.3V)''': [http://www.semtech.com/power-management/switching-regulators/sc189 Semtech SC189] ([http://www.semtech.com/images/datasheet/sc189.pdf datasheet]) (marking: "189Z")
* '''N-MOSFET''': 2x 2N7002 type MOSFET (marking: "72Y7"). Connected as "low-side" switch/LED driver and inverter.
 
'''Pinouts and connections:'''
 
'''JTAG header (FPGA):'''
 
The '''J3''' pin header is a JTAG connector wired to the FPGA. The pins are (from left to right, the right-most pin, pin number 1, is square):
 
{| border="0" style="font-size: smaller" class="sigroktable"
|-
!5
!4
!3
!2
!1
 
|-
| GND
| TMS
| TCK
| TDO
| TDI
 
|}
 
'''Testpoints:'''
 
{| border="0" style="font-size: smaller" class="sigroktable"
|-
!T1
!T2
!T3
 
|-
| 1.2V
| 3.3V
| GND (FX2)
 
|}
 
'''Cypress FX2:'''
 
<small>
{{chip_56pin
| 1=<span style="color:green">(FPGA 15, IO_L05P_3)</span> PD5
| 2=<span style="color:green">(FPGA 13, IO_L04N_3)</span> PD6
| 3=<span style="color:green">(FPGA 10, IO_L03N_3)</span> PD7
| 4=GND
| 5=<span style="color:green">(FPGA 90, IO_0)</span> CLKOUT
| 6=VCC
| 7=GND
| 8=<span style="color:green">(FPGA 3, IO_L01P_3)</span> RDY0/*SLRD
| 9=<span style="color:green">(FPGA 16, IO_L05N_3)</span> RDY1/*SLWR
| 10=AVCC
| 11=<span style="color:brown">(24MHz crystal)</span> XTALOUT
| 12=<span style="color:brown">(24MHz crystal)</span> XTALIN
| 13=AGND
| 14=AVCC
 
| 15=<span style="color:blue">(USB D+)</span> DPLUS
| 16=<span style="color:blue">(USB D-)</span> DMINUS
| 17=AGND
| 18=VCC
| 19=GND
| 20=<span style="color:green">(FPGA 84, IO_L02N_0)</span> *IFCLK
| 21=RESERVED
| 22=<span style="color:purple">(EEPROM SCL)</span> SCL
| 23=<span style="color:purple">(EEPROM SDA)</span> SDA
| 24=VCC
| 25=<span style="color:green">(FPGA 40, IO_L08P_2)</span> PB0
| 26=<span style="color:green">(FPGA 78, IO_L01N_0)</span> PB1
| 27=<span style="color:green">(FPGA 77, IO_L01P_0)</span> PB2
| 28=<span style="color:green">(FPGA 49, IO_L10N_2)</span> PB3
 
| 29=PB4 <span style="color:green">(FPGA 46, MOSI)</span>
| 30=PB5 <span style="color:green">(FPGA 41, IO_L08N_2)</span>
| 31=PB6 <span style="color:green">(FPGA 37, IO_L07N_2)</span>
| 32=PB7 <span style="color:green">(FPGA 93, IO_L05P_0)</span>
| 33=GND
| 34=VCC
| 35=GND
| 36=CTL0 <span style="color:green">(FPGA 94, IO_L05N_0)</span>
| 37=CTL1 <span style="color:green">(FPGA 97, IP_0)</span>
| 38=CTL2 <span style="color:green">(FPGA 100, PROG_B)</span>
| 39=VCC
| 40=PA0 <span style="color:green">(FPGA 54, DONE)</span>
| 41=PA1 <span style="color:green">(FPGA 48, INIT_B)</span>
| 42=PA2 <span style="color:green">(FPGA 53, CCLK)</span>
 
| 43=PA3 <span style="color:green">(FPGA 51, MISO)</span>
| 44=PA4 <span style="color:green">(FPGA 98, IO_L06P_0)</span>
| 45=PA5 <span style="color:green">(FPGA 85, IO_L03P_0)</span>
| 46=PA6 <span style="color:green">(FPGA 30, IO_L04P_2)</span>
| 47=PA7 <span style="color:green">(FPGA 9, IO_L03P_3)</span>
| 48=GND
| 49=RESET# <span style="color:orange">(3.3V via D2 (diode?))</span>
| 50=VCC
| 51=*WAKEUP <span style="color:orange">(3.3V)</span>
| 52=PD0 <span style="color:green">(FPGA 6, IO_L02N_3)</span>
| 53=PD1 <span style="color:green">(FPGA 4, IO_L01N_3)</span>
| 54=PD2 <span style="color:green">(FPGA 5, IO_L02P_3)</span>
| 55=PD3 <span style="color:green">(FPGA 44, IO_L09N_2)</span>
| 56=PD4 <span style="color:green">(FPGA 12, IO_L04P_3)</span>
 
}}
</small>
 
'''Other FPGA connections:'''
 
{| border="0" style="font-size: smaller" class="sigroktable"
|-
!28
|CH0
!52
|CH8
|-
!29
|CH1
!56
|CH9
|-
!32
|CH2
!57
|CH10
|-
!33
|CH3
!60
|CH11
|-
!34
|CH4
!61
|CH12
|-
!36
|CH5
!62
|CH13
|-
!43
|CH6
!64
|CH14
|-
!50
|CH7
!65
|CH15
|-
!73
|colspan="3"|LED (active low)
|}
 
== Photos ==
 
<gallery>
File:Saleae Logic16.jpg|<small>Device, front</small>
File:Saleae Logic16 bottom.jpg|<small>Device, bottom</small>
File:Saleae Logic16 PCB top.jpg|<small>PCB, top</small>
File:Saleae Logic16 PCB bottom.jpg|<small>PCB, bottom</small>
File:Saleae logic16 xilinx xc3s200a.jpg|<small>Xilinx XC3S200A</small>
File:Saleae logic16 cypress fx2lp.jpg|<small>Cypress FX2LP</small>
File:Saleae logic16 eeprom b2th.jpg|<small>I2C EEPROM</small>
File:Saleae logic16 dl46.jpg|<small>ST DVIULC6-4SC6</small>
File:Saleae logic16 189z 189c.jpg|<small>Voltage regulators</small>
File:Saleae logic16 72y7.jpg|<small>N-MOSFETs</small>
 
</gallery>
 
== Firmware ==
 
=== Firmware and FPGA bitstream usage ===
 
To use the Saleae Logic16 (or its clones) with sigrok, you must first use a Python script to extract the FX2 firmware and the FPGA bitstreams from version 1.2.10 of Saleae's ''Logic'' software.
 
First download the Saleae vendor software.  This version has been tested to work, but more recent versions are not supported currently (see [https://sigrok.org/bugzilla/show_bug.cgi?id=989 bug #989]).  Old Saleae vendor software versions can be downloaded from [https://support.saleae.com/logic-software/legacy-software/older-software-releases support.saleae.com].  (32-bit vs 64-bit download doesn't matter; both produce the same output.)
 
Then extract the <code>Logic</code> Linux binary from the zip file and use the [http://sigrok.org/gitweb/?p=sigrok-util.git;a=tree;f=firmware/saleae-logic16 sigrok-fwextract-saleae-logic16] tool to extract the files from it.  On Windows, [https://github.com/anno73/Saleae-Logic16-Clone/wiki#extract-from-logic this Python script can be run from python.exe].  On Linux, it can be executed directly:
 
$ '''sigrok-fwextract-saleae-logic16 Logic'''
saved 5214 bytes to saleae-logic16-fx2.fw
saved 149516 bytes to saleae-logic16-fpga-18.bitstream
saved 149516 bytes to saleae-logic16-fpga-33.bitstream
 
Copy these files to the directory where your [[libsigrok]] installation expects them and they will be found and used automatically by the libsigrok '''saleae-logic16''' driver. 
 
On Linux, [https://sigrok.org/bugzilla/show_bug.cgi?id=67 this is usually] <code>/usr/local/share/sigrok-firmware</code> or <code>/usr/share/sigrok-firmware</code>.  The latter is correct on Ubuntu (and where files are created by the unrelated [https://packages.ubuntu.com/lunar/all/sigrok-firmware-fx2lafw/filelist <code>sigrok-firmware-fx2lafw</code> package]). 
 
On Windows, they should be placed in <code>C:\Program Files\sigrok\PulseView\share\sigrok-firmware\</code>. 
 
On macOS, they should be placed in <code>/[…]/PulseView.app/Contents/share/sigrok-firmware/</code>.
 
=== Technical firmware details ===
 
The firmware for the FX2LP is embedded in the vendor application as a set of Intel HEX lines.  Each line is uploaded individually with a separate control transfer.  The firmware currently occupies the address range [0x0000-0x145d], but is uploaded out of order.
 
See [[Saleae Logic16/Firmware]] for more details on the vendor firmware.
 
== Driver ==
In Windows, the [https://github.com/anno73/Saleae-Logic16-Clone/wiki#install-usb-driver USB driver must also be installed using Zadig], similar to other devices, or you will get <code>sr: saleae-logic16: Failed to init device.</code>


== Protocol ==
== Protocol ==


TODO.
'''Sample format''':
 
The samples (as received via USB) for the enabled probes (3, 6, 9, or 16) are organized as follows:
 
'''<span style="background-color: yellow">0xLL 0xLL  0xMM 0xMM  0xNN 0xNN</span>  <span style="background-color: cyan">0xPP 0xPP  0xQQ 0xQQ  0xRR 0xRR</span> ...'''
 
In the above example, 3 probes are enabled. For each probe there are 2 bytes / 16 bits (e.g. 0xLL 0xLL for probe 0), then the next probe's data is received (0xMM 0xMM for probe 1), then 0xNN 0xNN for probe 2. When 2 bytes have been received for all enabled probes, the process restarts with probe 0 again.
 
The 16 bits of data per probe seem to contain the pin state of the respective probe (1: high, 0: low) at 16 different sampling points/times (which ones depends on the samplerate).
 
'''Configuration''':
 
Endpoint 1 is used for configuration of the analyzer.  The transfers are "encrypted" using a simple series of additions and XORs.  Two kinds of transfers are used; a 3 byte out transfer starting with 0x81 followed by a 1 byte in transfer, and a 4 byte out transfer starting with 0x80.  It's quite plausible that these provide raw read/write access to memory locations.
 
{| border="0" style="font-size: smaller; white-space: nowrap;" class="alternategrey sigroktable"
!colspan="2"|Channel number configuration
|-
| 3 channels
| <tt><span style="background-color: yellow">0x80 0x01 0x02 '''0x07'''</span>  <span style="background-color: cyan">0x80 0x01 0x03 '''0x00'''</span></tt>
|-
| 6 channels
| <tt><span style="background-color: yellow">0x80 0x01 0x02 '''0x3f'''</span>  <span style="background-color: cyan">0x80 0x01 0x03 '''0x00'''</span></tt>
|-
| 9 channels
| <tt><span style="background-color: yellow">0x80 0x01 0x02 '''0xff'''</span>  <span style="background-color: cyan">0x80 0x01 0x03 '''0x01'''</span></tt>
|-
| 16 channels
| <tt><span style="background-color: yellow">0x80 0x01 0x02 '''0xff'''</span>  <span style="background-color: cyan">0x80 0x01 0x03 '''0xff'''</span></tt>
|}
 
{| border="0" style="font-size: smaller; white-space: nowrap;" class="alternategrey sigroktable"
!colspan="2"|Sampling frequency
|-
| 500kHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0xc7'''</span></tt>
|-
| 1MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x63'''</span></tt>
|-
| 2MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x31'''</span></tt>
|-
| 4MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x18'''</span></tt>
|-
| 5MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x13'''</span></tt>
|-
| 8MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x01'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x13'''</span></tt>
|-
| 10MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x09'''</span></tt>
|-
| 12.5MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x07'''</span></tt>
|-
| 16MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x01'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x09'''</span></tt>
|-
| 25MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x03'''</span></tt>
|-
| 32MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x01'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x04'''</span></tt>
|-
| 40MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x01'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x03'''</span></tt>
|-
| 50MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x01'''</span></tt>
|-
| 80MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x01'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x01'''</span></tt>
|-
| 100MHz
| <tt><span style="background-color: yellow">0x80 0x01 0x0a '''0x00'''</span>  <span style="background-color: cyan">0x80 0x01 0x04 '''0x00'''</span></tt>
|}
 
== Resources ==
 
* [http://downloads.saleae.com/Logic+Guide.pdf Manual]
* [http://www.saleae.com/downloads Vendor software (current release)]
** [https://support.saleae.com/logic-software/latest-beta-release Vendor software (beta releases)]
** [https://support.saleae.com/logic-software/legacy-software/older-software-releases Vendor software (older releases)]
* [https://support.saleae.com/saleae-api-and-sdk/what-apis-are-available SDKs]
 
[[Category:Device]]
[[Category:Logic analyzer]]
[[Category:Supported]]

Latest revision as of 22:03, 23 May 2023

Saleae Logic16
Saleae Logic16 bottom.png
Status supported
Source code saleae-logic16
Channels 3/6/9/16
Samplerate 100/50/32/16MHz
Samplerate (state)
Triggers none (SW-only)
Min/max voltage -0.9V — 6V
Threshold voltage configurable:
for 1.8V to 3.6V systems: VIH=1.4V, VIL=0.7V
for 5V systems: VIH=3.6V, VIL=1.4V
Memory none
Compression yes
Website saleae.com

The Saleae Logic16 is a USB-based, 16-channel logic analyzer with 100/50/32/16MHz sampling rate (at 3/6/9/16 enabled channels).

The case requires a Torx T5 screwdriver to open.

See Saleae Logic16/Info for more details (such as lsusb -v output) about the device.

See Saleae Logic for the predecessor product of the Saleae Logic16.

Hardware

Pinouts and connections:

JTAG header (FPGA):

The J3 pin header is a JTAG connector wired to the FPGA. The pins are (from left to right, the right-most pin, pin number 1, is square):

5 4 3 2 1
GND TMS TCK TDO TDI

Testpoints:

T1 T2 T3
1.2V 3.3V GND (FX2)

Cypress FX2:

(FPGA 15, IO_L05P_3) PD5 1-   O -56 PD4 (FPGA 12, IO_L04P_3)
(FPGA 13, IO_L04N_3) PD6 2- -55 PD3 (FPGA 44, IO_L09N_2)
(FPGA 10, IO_L03N_3) PD7 3- -54 PD2 (FPGA 5, IO_L02P_3)
GND 4- -53 PD1 (FPGA 4, IO_L01N_3)
(FPGA 90, IO_0) CLKOUT 5- -52 PD0 (FPGA 6, IO_L02N_3)
VCC 6- -51 *WAKEUP (3.3V)
GND 7- -50 VCC
(FPGA 3, IO_L01P_3) RDY0/*SLRD 8- -49 RESET# (3.3V via D2 (diode?))
(FPGA 16, IO_L05N_3) RDY1/*SLWR 9- -48 GND
AVCC 10- -47 PA7 (FPGA 9, IO_L03P_3)
(24MHz crystal) XTALOUT 11- -46 PA6 (FPGA 30, IO_L04P_2)
(24MHz crystal) XTALIN 12- -45 PA5 (FPGA 85, IO_L03P_0)
AGND 13- -44 PA4 (FPGA 98, IO_L06P_0)
AVCC 14- -43 PA3 (FPGA 51, MISO)
(USB D+) DPLUS 15- -42 PA2 (FPGA 53, CCLK)
(USB D-) DMINUS 16- -41 PA1 (FPGA 48, INIT_B)
AGND 17- -40 PA0 (FPGA 54, DONE)
VCC 18- -39 VCC
GND 19- -38 CTL2 (FPGA 100, PROG_B)
(FPGA 84, IO_L02N_0) *IFCLK 20- -37 CTL1 (FPGA 97, IP_0)
RESERVED 21- -36 CTL0 (FPGA 94, IO_L05N_0)
(EEPROM SCL) SCL 22- -35 GND
(EEPROM SDA) SDA 23- -34 VCC
VCC 24- -33 GND
(FPGA 40, IO_L08P_2) PB0 25- -32 PB7 (FPGA 93, IO_L05P_0)
(FPGA 78, IO_L01N_0) PB1 26- -31 PB6 (FPGA 37, IO_L07N_2)
(FPGA 77, IO_L01P_0) PB2 27- -30 PB5 (FPGA 41, IO_L08N_2)
(FPGA 49, IO_L10N_2) PB3 28- -29 PB4 (FPGA 46, MOSI)

Other FPGA connections:

28 CH0 52 CH8
29 CH1 56 CH9
32 CH2 57 CH10
33 CH3 60 CH11
34 CH4 61 CH12
36 CH5 62 CH13
43 CH6 64 CH14
50 CH7 65 CH15
73 LED (active low)

Photos

Firmware

Firmware and FPGA bitstream usage

To use the Saleae Logic16 (or its clones) with sigrok, you must first use a Python script to extract the FX2 firmware and the FPGA bitstreams from version 1.2.10 of Saleae's Logic software.

First download the Saleae vendor software. This version has been tested to work, but more recent versions are not supported currently (see bug #989). Old Saleae vendor software versions can be downloaded from support.saleae.com. (32-bit vs 64-bit download doesn't matter; both produce the same output.)

Then extract the Logic Linux binary from the zip file and use the sigrok-fwextract-saleae-logic16 tool to extract the files from it. On Windows, this Python script can be run from python.exe. On Linux, it can be executed directly:

$ sigrok-fwextract-saleae-logic16 Logic
saved 5214 bytes to saleae-logic16-fx2.fw
saved 149516 bytes to saleae-logic16-fpga-18.bitstream
saved 149516 bytes to saleae-logic16-fpga-33.bitstream

Copy these files to the directory where your libsigrok installation expects them and they will be found and used automatically by the libsigrok saleae-logic16 driver.

On Linux, this is usually /usr/local/share/sigrok-firmware or /usr/share/sigrok-firmware. The latter is correct on Ubuntu (and where files are created by the unrelated sigrok-firmware-fx2lafw package).

On Windows, they should be placed in C:\Program Files\sigrok\PulseView\share\sigrok-firmware\.

On macOS, they should be placed in /[…]/PulseView.app/Contents/share/sigrok-firmware/.

Technical firmware details

The firmware for the FX2LP is embedded in the vendor application as a set of Intel HEX lines. Each line is uploaded individually with a separate control transfer. The firmware currently occupies the address range [0x0000-0x145d], but is uploaded out of order.

See Saleae Logic16/Firmware for more details on the vendor firmware.

Driver

In Windows, the USB driver must also be installed using Zadig, similar to other devices, or you will get sr: saleae-logic16: Failed to init device.

Protocol

Sample format:

The samples (as received via USB) for the enabled probes (3, 6, 9, or 16) are organized as follows:

0xLL 0xLL  0xMM 0xMM  0xNN 0xNN   0xPP 0xPP  0xQQ 0xQQ  0xRR 0xRR ...

In the above example, 3 probes are enabled. For each probe there are 2 bytes / 16 bits (e.g. 0xLL 0xLL for probe 0), then the next probe's data is received (0xMM 0xMM for probe 1), then 0xNN 0xNN for probe 2. When 2 bytes have been received for all enabled probes, the process restarts with probe 0 again.

The 16 bits of data per probe seem to contain the pin state of the respective probe (1: high, 0: low) at 16 different sampling points/times (which ones depends on the samplerate).

Configuration:

Endpoint 1 is used for configuration of the analyzer. The transfers are "encrypted" using a simple series of additions and XORs. Two kinds of transfers are used; a 3 byte out transfer starting with 0x81 followed by a 1 byte in transfer, and a 4 byte out transfer starting with 0x80. It's quite plausible that these provide raw read/write access to memory locations.

Channel number configuration
3 channels 0x80 0x01 0x02 0x07 0x80 0x01 0x03 0x00
6 channels 0x80 0x01 0x02 0x3f 0x80 0x01 0x03 0x00
9 channels 0x80 0x01 0x02 0xff 0x80 0x01 0x03 0x01
16 channels 0x80 0x01 0x02 0xff 0x80 0x01 0x03 0xff
Sampling frequency
500kHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0xc7
1MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x63
2MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x31
4MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x18
5MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x13
8MHz 0x80 0x01 0x0a 0x01 0x80 0x01 0x04 0x13
10MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x09
12.5MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x07
16MHz 0x80 0x01 0x0a 0x01 0x80 0x01 0x04 0x09
25MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x03
32MHz 0x80 0x01 0x0a 0x01 0x80 0x01 0x04 0x04
40MHz 0x80 0x01 0x0a 0x01 0x80 0x01 0x04 0x03
50MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x01
80MHz 0x80 0x01 0x0a 0x01 0x80 0x01 0x04 0x01
100MHz 0x80 0x01 0x0a 0x00 0x80 0x01 0x04 0x00

Resources