]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/segment.cpp
Rework all subthread-based workers to make notifications more robust
[pulseview.git] / pv / data / segment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2017 Soeren Apel <soeren@apelpie.net>
5 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include "segment.hpp"
22
23#include <cassert>
24#include <cstdlib>
25#include <cstring>
26
27#include <QDebug>
28
29using std::bad_alloc;
30using std::lock_guard;
31using std::min;
32using std::recursive_mutex;
33
34namespace pv {
35namespace data {
36
37const uint64_t Segment::MaxChunkSize = 10 * 1024 * 1024; /* 10MiB */
38
39Segment::Segment(uint32_t segment_id, uint64_t samplerate, unsigned int unit_size) :
40 segment_id_(segment_id),
41 sample_count_(0),
42 start_time_(0),
43 samplerate_(samplerate),
44 unit_size_(unit_size),
45 iterator_count_(0),
46 mem_optimization_requested_(false),
47 is_complete_(false)
48{
49 lock_guard<recursive_mutex> lock(mutex_);
50 assert(unit_size_ > 0);
51
52 // Determine the number of samples we can fit in one chunk
53 // without exceeding MaxChunkSize
54 chunk_size_ = min(MaxChunkSize, (MaxChunkSize / unit_size_) * unit_size_);
55
56 // Create the initial chunk
57 current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
58 data_chunks_.push_back(current_chunk_);
59 used_samples_ = 0;
60 unused_samples_ = chunk_size_ / unit_size_;
61}
62
63Segment::~Segment()
64{
65 lock_guard<recursive_mutex> lock(mutex_);
66
67 for (uint8_t* chunk : data_chunks_)
68 delete[] chunk;
69}
70
71uint64_t Segment::get_sample_count() const
72{
73 return sample_count_;
74}
75
76const pv::util::Timestamp& Segment::start_time() const
77{
78 return start_time_;
79}
80
81double Segment::samplerate() const
82{
83 return samplerate_;
84}
85
86void Segment::set_samplerate(double samplerate)
87{
88 samplerate_ = samplerate;
89}
90
91unsigned int Segment::unit_size() const
92{
93 return unit_size_;
94}
95
96uint32_t Segment::segment_id() const
97{
98 return segment_id_;
99}
100
101void Segment::set_complete()
102{
103 is_complete_ = true;
104
105 completed();
106}
107
108bool Segment::is_complete() const
109{
110 return is_complete_;
111}
112
113void Segment::free_unused_memory()
114{
115 lock_guard<recursive_mutex> lock(mutex_);
116
117 // Do not mess with the data chunks if we have iterators pointing at them
118 if (iterator_count_ > 0) {
119 mem_optimization_requested_ = true;
120 return;
121 }
122
123 if (current_chunk_) {
124 // No more data will come in, so re-create the last chunk accordingly
125 uint8_t* resized_chunk = new uint8_t[used_samples_ * unit_size_ + 7]; /* FIXME +7 is workaround for #1284 */
126 memcpy(resized_chunk, current_chunk_, used_samples_ * unit_size_);
127
128 delete[] current_chunk_;
129 current_chunk_ = resized_chunk;
130
131 data_chunks_.pop_back();
132 data_chunks_.push_back(resized_chunk);
133 }
134}
135
136void Segment::append_single_sample(void *data)
137{
138 lock_guard<recursive_mutex> lock(mutex_);
139
140 // There will always be space for at least one sample in
141 // the current chunk, so we do not need to test for space
142
143 memcpy(current_chunk_ + (used_samples_ * unit_size_), data, unit_size_);
144 used_samples_++;
145 unused_samples_--;
146
147 if (unused_samples_ == 0) {
148 current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
149 data_chunks_.push_back(current_chunk_);
150 used_samples_ = 0;
151 unused_samples_ = chunk_size_ / unit_size_;
152 }
153
154 sample_count_++;
155}
156
157void Segment::append_samples(void* data, uint64_t samples)
158{
159 lock_guard<recursive_mutex> lock(mutex_);
160
161 const uint8_t* data_byte_ptr = (uint8_t*)data;
162 uint64_t remaining_samples = samples;
163 uint64_t data_offset = 0;
164
165 do {
166 uint64_t copy_count = 0;
167
168 if (remaining_samples <= unused_samples_) {
169 // All samples fit into the current chunk
170 copy_count = remaining_samples;
171 } else {
172 // Only a part of the samples fit, fill up current chunk
173 copy_count = unused_samples_;
174 }
175
176 const uint8_t* dest = &(current_chunk_[used_samples_ * unit_size_]);
177 const uint8_t* src = &(data_byte_ptr[data_offset]);
178 memcpy((void*)dest, (void*)src, (copy_count * unit_size_));
179
180 used_samples_ += copy_count;
181 unused_samples_ -= copy_count;
182 remaining_samples -= copy_count;
183 data_offset += (copy_count * unit_size_);
184
185 if (unused_samples_ == 0) {
186 try {
187 // If we're out of memory, allocating a chunk will throw
188 // std::bad_alloc. To give the application some usable memory
189 // to work with in case chunk allocation fails, we allocate
190 // extra memory and throw it away if it all succeeded.
191 // This way, memory allocation will fail early enough to let
192 // PV remain alive. Otherwise, PV will crash in a random
193 // memory-allocating part of the application.
194 current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
195
196 const int dummy_size = 2 * chunk_size_;
197 auto dummy_chunk = new uint8_t[dummy_size];
198 memset(dummy_chunk, 0xFF, dummy_size);
199 delete[] dummy_chunk;
200 } catch (bad_alloc&) {
201 delete[] current_chunk_; // The new may have succeeded
202 current_chunk_ = nullptr;
203 throw;
204 }
205
206 data_chunks_.push_back(current_chunk_);
207 used_samples_ = 0;
208 unused_samples_ = chunk_size_ / unit_size_;
209 }
210 } while (remaining_samples > 0);
211
212 sample_count_ += samples;
213}
214
215const uint8_t* Segment::get_raw_sample(uint64_t sample_num) const
216{
217 assert(sample_num <= sample_count_);
218
219 uint64_t chunk_num = (sample_num * unit_size_) / chunk_size_;
220 uint64_t chunk_offs = (sample_num * unit_size_) % chunk_size_;
221
222 lock_guard<recursive_mutex> lock(mutex_); // Because of free_unused_memory()
223
224 const uint8_t* chunk = data_chunks_[chunk_num];
225
226 return chunk + chunk_offs;
227}
228
229void Segment::get_raw_samples(uint64_t start, uint64_t count, uint8_t* dest) const
230{
231 assert(start < sample_count_);
232 assert(start + count <= sample_count_);
233 assert(count > 0);
234 assert(dest != nullptr);
235
236 uint8_t* dest_ptr = dest;
237
238 uint64_t chunk_num = (start * unit_size_) / chunk_size_;
239 uint64_t chunk_offs = (start * unit_size_) % chunk_size_;
240
241 lock_guard<recursive_mutex> lock(mutex_); // Because of free_unused_memory()
242
243 while (count > 0) {
244 const uint8_t* chunk = data_chunks_[chunk_num];
245
246 uint64_t copy_size = min(count * unit_size_,
247 chunk_size_ - chunk_offs);
248
249 memcpy(dest_ptr, chunk + chunk_offs, copy_size);
250
251 dest_ptr += copy_size;
252 count -= (copy_size / unit_size_);
253
254 chunk_num++;
255 chunk_offs = 0;
256 }
257}
258
259SegmentDataIterator* Segment::begin_sample_iteration(uint64_t start)
260{
261 SegmentDataIterator* it = new SegmentDataIterator;
262
263 assert(start < sample_count_);
264
265 iterator_count_++;
266
267 it->sample_index = start;
268 it->chunk_num = (start * unit_size_) / chunk_size_;
269 it->chunk_offs = (start * unit_size_) % chunk_size_;
270 it->chunk = data_chunks_[it->chunk_num];
271
272 return it;
273}
274
275void Segment::continue_sample_iteration(SegmentDataIterator* it, uint64_t increase)
276{
277 it->sample_index += increase;
278 it->chunk_offs += (increase * unit_size_);
279
280 if (it->chunk_offs > (chunk_size_ - 1)) {
281 it->chunk_num++;
282 it->chunk_offs -= chunk_size_;
283 it->chunk = data_chunks_[it->chunk_num];
284 }
285}
286
287void Segment::end_sample_iteration(SegmentDataIterator* it)
288{
289 delete it;
290
291 iterator_count_--;
292
293 if ((iterator_count_ == 0) && mem_optimization_requested_) {
294 mem_optimization_requested_ = false;
295 free_unused_memory();
296 }
297}
298
299uint8_t* Segment::get_iterator_value(SegmentDataIterator* it)
300{
301 assert(it->sample_index <= (sample_count_ - 1));
302
303 return (it->chunk + it->chunk_offs);
304}
305
306uint64_t Segment::get_iterator_valid_length(SegmentDataIterator* it)
307{
308 assert(it->sample_index <= (sample_count_ - 1));
309
310 return ((chunk_size_ - it->chunk_offs) / unit_size_);
311}
312
313} // namespace data
314} // namespace pv