]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/logicsnapshot.cpp
Removed spurious declaration
[pulseview.git] / pv / data / logicsnapshot.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include <extdef.h>
22
23#include <assert.h>
24#include <string.h>
25#include <stdlib.h>
26#include <math.h>
27
28#include <boost/foreach.hpp>
29
30#include "logicsnapshot.h"
31
32using namespace boost;
33using namespace std;
34
35namespace pv {
36namespace data {
37
38const int LogicSnapshot::MipMapScalePower = 4;
39const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
40const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
41const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
42
43LogicSnapshot::LogicSnapshot(const sr_datafeed_logic &logic) :
44 Snapshot(logic.unitsize),
45 _last_append_sample(0)
46{
47 lock_guard<recursive_mutex> lock(_mutex);
48 memset(_mip_map, 0, sizeof(_mip_map));
49 append_payload(logic);
50}
51
52LogicSnapshot::~LogicSnapshot()
53{
54 lock_guard<recursive_mutex> lock(_mutex);
55 BOOST_FOREACH(MipMapLevel &l, _mip_map)
56 free(l.data);
57}
58
59void LogicSnapshot::append_payload(
60 const sr_datafeed_logic &logic)
61{
62 assert(_unit_size == logic.unitsize);
63 assert((logic.length % _unit_size) == 0);
64
65 lock_guard<recursive_mutex> lock(_mutex);
66
67 append_data(logic.data, logic.length / _unit_size);
68
69 // Generate the first mip-map from the data
70 append_payload_to_mipmap();
71}
72
73void LogicSnapshot::get_samples(uint8_t *const data,
74 int64_t start_sample, int64_t end_sample) const
75{
76 assert(data);
77 assert(start_sample >= 0);
78 assert(start_sample < (int64_t)_sample_count);
79 assert(end_sample >= 0);
80 assert(end_sample < (int64_t)_sample_count);
81 assert(start_sample <= end_sample);
82
83 lock_guard<recursive_mutex> lock(_mutex);
84
85 const size_t size = (end_sample - start_sample) * _unit_size;
86 memcpy(data, (const uint8_t*)_data + start_sample, size);
87}
88
89void LogicSnapshot::reallocate_mipmap_level(MipMapLevel &m)
90{
91 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
92 MipMapDataUnit) * MipMapDataUnit;
93 if (new_data_length > m.data_length)
94 {
95 m.data_length = new_data_length;
96
97 // Padding is added to allow for the uint64_t write word
98 m.data = realloc(m.data, new_data_length * _unit_size +
99 sizeof(uint64_t));
100 }
101}
102
103void LogicSnapshot::append_payload_to_mipmap()
104{
105 MipMapLevel &m0 = _mip_map[0];
106 uint64_t prev_length;
107 const uint8_t *src_ptr;
108 uint8_t *dest_ptr;
109 uint64_t accumulator;
110 unsigned int diff_counter;
111
112 // Expand the data buffer to fit the new samples
113 prev_length = m0.length;
114 m0.length = _sample_count / MipMapScaleFactor;
115
116 // Break off if there are no new samples to compute
117 if (m0.length == prev_length)
118 return;
119
120 reallocate_mipmap_level(m0);
121
122 dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
123
124 // Iterate through the samples to populate the first level mipmap
125 const uint8_t *const end_src_ptr = (uint8_t*)_data +
126 m0.length * _unit_size * MipMapScaleFactor;
127 for (src_ptr = (uint8_t*)_data +
128 prev_length * _unit_size * MipMapScaleFactor;
129 src_ptr < end_src_ptr;)
130 {
131 // Accumulate transitions which have occurred in this sample
132 accumulator = 0;
133 diff_counter = MipMapScaleFactor;
134 while (diff_counter-- > 0)
135 {
136 const uint64_t sample = *(uint64_t*)src_ptr;
137 accumulator |= _last_append_sample ^ sample;
138 _last_append_sample = sample;
139 src_ptr += _unit_size;
140 }
141
142 *(uint64_t*)dest_ptr = accumulator;
143 dest_ptr += _unit_size;
144 }
145
146 // Compute higher level mipmaps
147 for (unsigned int level = 1; level < ScaleStepCount; level++)
148 {
149 MipMapLevel &m = _mip_map[level];
150 const MipMapLevel &ml = _mip_map[level-1];
151
152 // Expand the data buffer to fit the new samples
153 prev_length = m.length;
154 m.length = ml.length / MipMapScaleFactor;
155
156 // Break off if there are no more samples to computed
157 if (m.length == prev_length)
158 break;
159
160 reallocate_mipmap_level(m);
161
162 // Subsample the level lower level
163 src_ptr = (uint8_t*)ml.data +
164 _unit_size * prev_length * MipMapScaleFactor;
165 const uint8_t *const end_dest_ptr =
166 (uint8_t*)m.data + _unit_size * m.length;
167 for (dest_ptr = (uint8_t*)m.data +
168 _unit_size * prev_length;
169 dest_ptr < end_dest_ptr;
170 dest_ptr += _unit_size)
171 {
172 accumulator = 0;
173 diff_counter = MipMapScaleFactor;
174 while (diff_counter-- > 0)
175 {
176 accumulator |= *(uint64_t*)src_ptr;
177 src_ptr += _unit_size;
178 }
179
180 *(uint64_t*)dest_ptr = accumulator;
181 }
182 }
183}
184
185uint64_t LogicSnapshot::get_sample(uint64_t index) const
186{
187 assert(_data);
188 assert(index < _sample_count);
189
190 return *(uint64_t*)((uint8_t*)_data + index * _unit_size);
191}
192
193void LogicSnapshot::get_subsampled_edges(
194 std::vector<EdgePair> &edges,
195 uint64_t start, uint64_t end,
196 float min_length, int sig_index)
197{
198 uint64_t index = start;
199 unsigned int level;
200 bool last_sample;
201 bool fast_forward;
202
203 assert(end <= get_sample_count());
204 assert(start <= end);
205 assert(min_length > 0);
206 assert(sig_index >= 0);
207 assert(sig_index < 64);
208
209 lock_guard<recursive_mutex> lock(_mutex);
210
211 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
212 const unsigned int min_level = max((int)floorf(logf(min_length) /
213 LogMipMapScaleFactor) - 1, 0);
214 const uint64_t sig_mask = 1ULL << sig_index;
215
216 // Store the initial state
217 last_sample = (get_sample(start) & sig_mask) != 0;
218 edges.push_back(pair<int64_t, bool>(index++, last_sample));
219
220 while (index + block_length <= end)
221 {
222 //----- Continue to search -----//
223 level = min_level;
224
225 // We cannot fast-forward if there is no mip-map data at
226 // at the minimum level.
227 fast_forward = (_mip_map[level].data != NULL);
228
229 if (min_length < MipMapScaleFactor)
230 {
231 // Search individual samples up to the beginning of
232 // the next first level mip map block
233 const uint64_t final_index = min(end,
234 pow2_ceil(index, MipMapScalePower));
235
236 for (; index < final_index &&
237 (index & ~(~0 << MipMapScalePower)) != 0;
238 index++)
239 {
240 const bool sample =
241 (get_sample(index) & sig_mask) != 0;
242
243 // If there was a change we cannot fast forward
244 if (sample != last_sample) {
245 fast_forward = false;
246 break;
247 }
248 }
249 }
250 else
251 {
252 // If resolution is less than a mip map block,
253 // round up to the beginning of the mip-map block
254 // for this level of detail
255 const int min_level_scale_power =
256 (level + 1) * MipMapScalePower;
257 index = pow2_ceil(index, min_level_scale_power);
258 if (index >= end)
259 break;
260
261 // We can fast forward only if there was no change
262 const bool sample =
263 (get_sample(index) & sig_mask) != 0;
264 if (last_sample != sample)
265 fast_forward = false;
266 }
267
268 if (fast_forward) {
269
270 // Fast forward: This involves zooming out to higher
271 // levels of the mip map searching for changes, then
272 // zooming in on them to find the point where the edge
273 // begins.
274
275 // Slide right and zoom out at the beginnings of mip-map
276 // blocks until we encounter a change
277 while (1) {
278 const int level_scale_power =
279 (level + 1) * MipMapScalePower;
280 const uint64_t offset =
281 index >> level_scale_power;
282
283 // Check if we reached the last block at this
284 // level, or if there was a change in this block
285 if (offset >= _mip_map[level].length ||
286 (get_subsample(level, offset) &
287 sig_mask))
288 break;
289
290 if ((offset & ~(~0 << MipMapScalePower)) == 0) {
291 // If we are now at the beginning of a
292 // higher level mip-map block ascend one
293 // level
294 if (level + 1 >= ScaleStepCount ||
295 !_mip_map[level + 1].data)
296 break;
297
298 level++;
299 } else {
300 // Slide right to the beginning of the
301 // next mip map block
302 index = pow2_ceil(index + 1,
303 level_scale_power);
304 }
305 }
306
307 // Zoom in, and slide right until we encounter a change,
308 // and repeat until we reach min_level
309 while (1) {
310 assert(_mip_map[level].data);
311
312 const int level_scale_power =
313 (level + 1) * MipMapScalePower;
314 const uint64_t offset =
315 index >> level_scale_power;
316
317 // Check if we reached the last block at this
318 // level, or if there was a change in this block
319 if (offset >= _mip_map[level].length ||
320 (get_subsample(level, offset) &
321 sig_mask)) {
322 // Zoom in unless we reached the minimum
323 // zoom
324 if (level == min_level)
325 break;
326
327 level--;
328 } else {
329 // Slide right to the beginning of the
330 // next mip map block
331 index = pow2_ceil(index + 1,
332 level_scale_power);
333 }
334 }
335
336 // If individual samples within the limit of resolution,
337 // do a linear search for the next transition within the
338 // block
339 if (min_length < MipMapScaleFactor) {
340 for (; index < end; index++) {
341 const bool sample = (get_sample(index) &
342 sig_mask) != 0;
343 if (sample != last_sample)
344 break;
345 }
346 }
347 }
348
349 //----- Store the edge -----//
350
351 // Take the last sample of the quanization block
352 const int64_t final_index = index + block_length;
353 if (index + block_length > end)
354 break;
355
356 // Store the final state
357 const bool final_sample =
358 (get_sample(final_index - 1) & sig_mask) != 0;
359 edges.push_back(pair<int64_t, bool>(index, final_sample));
360
361 index = final_index;
362 last_sample = final_sample;
363 }
364
365 // Add the final state
366 edges.push_back(pair<int64_t, bool>(end,
367 get_sample(end) & sig_mask));
368}
369
370uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
371{
372 assert(level >= 0);
373 assert(_mip_map[level].data);
374 return *(uint64_t*)((uint8_t*)_mip_map[level].data +
375 _unit_size * offset);
376}
377
378uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
379{
380 const uint64_t p = 1 << power;
381 return (x + p - 1) / p * p;
382}
383
384} // namespace data
385} // namespace pv