]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/logicsegment.cpp
Don't use std:: in the code directly (where possible).
[pulseview.git] / pv / data / logicsegment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <extdef.h>
21
22#include <cassert>
23#include <cstring>
24#include <cstdlib>
25#include <cmath>
26
27#include "logic.hpp"
28#include "logicsegment.hpp"
29
30#include <libsigrokcxx/libsigrokcxx.hpp>
31
32using std::lock_guard;
33using std::recursive_mutex;
34using std::max;
35using std::min;
36using std::pair;
37using std::shared_ptr;
38using std::vector;
39
40using sigrok::Logic;
41
42namespace pv {
43namespace data {
44
45const int LogicSegment::MipMapScalePower = 4;
46const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
47const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
48const uint64_t LogicSegment::MipMapDataUnit = 64*1024; // bytes
49
50LogicSegment::LogicSegment(pv::data::Logic& owner, shared_ptr<sigrok::Logic> data,
51 uint64_t samplerate) :
52 Segment(samplerate, data->unit_size()),
53 owner_(owner),
54 last_append_sample_(0)
55{
56 lock_guard<recursive_mutex> lock(mutex_);
57 memset(mip_map_, 0, sizeof(mip_map_));
58 append_payload(data);
59}
60
61LogicSegment::~LogicSegment()
62{
63 lock_guard<recursive_mutex> lock(mutex_);
64 for (MipMapLevel &l : mip_map_)
65 free(l.data);
66}
67
68uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
69{
70#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
71 return *(uint64_t*)ptr;
72#else
73 uint64_t value = 0;
74 switch (unit_size_) {
75 default:
76 value |= ((uint64_t)ptr[7]) << 56;
77 /* FALLTHRU */
78 case 7:
79 value |= ((uint64_t)ptr[6]) << 48;
80 /* FALLTHRU */
81 case 6:
82 value |= ((uint64_t)ptr[5]) << 40;
83 /* FALLTHRU */
84 case 5:
85 value |= ((uint64_t)ptr[4]) << 32;
86 /* FALLTHRU */
87 case 4:
88 value |= ((uint32_t)ptr[3]) << 24;
89 /* FALLTHRU */
90 case 3:
91 value |= ((uint32_t)ptr[2]) << 16;
92 /* FALLTHRU */
93 case 2:
94 value |= ptr[1] << 8;
95 /* FALLTHRU */
96 case 1:
97 value |= ptr[0];
98 /* FALLTHRU */
99 case 0:
100 break;
101 }
102 return value;
103#endif
104}
105
106void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
107{
108#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
109 *(uint64_t*)ptr = value;
110#else
111 switch (unit_size_) {
112 default:
113 ptr[7] = value >> 56;
114 /* FALLTHRU */
115 case 7:
116 ptr[6] = value >> 48;
117 /* FALLTHRU */
118 case 6:
119 ptr[5] = value >> 40;
120 /* FALLTHRU */
121 case 5:
122 ptr[4] = value >> 32;
123 /* FALLTHRU */
124 case 4:
125 ptr[3] = value >> 24;
126 /* FALLTHRU */
127 case 3:
128 ptr[2] = value >> 16;
129 /* FALLTHRU */
130 case 2:
131 ptr[1] = value >> 8;
132 /* FALLTHRU */
133 case 1:
134 ptr[0] = value;
135 /* FALLTHRU */
136 case 0:
137 break;
138 }
139#endif
140}
141
142void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
143{
144 assert(unit_size_ == logic->unit_size());
145 assert((logic->data_length() % unit_size_) == 0);
146
147 lock_guard<recursive_mutex> lock(mutex_);
148
149 uint64_t prev_sample_count = sample_count_;
150 uint64_t sample_count = logic->data_length() / unit_size_;
151
152 append_samples(logic->data_pointer(), sample_count);
153
154 // Generate the first mip-map from the data
155 append_payload_to_mipmap();
156
157 if (sample_count > 1)
158 owner_.notify_samples_added(this, prev_sample_count + 1,
159 prev_sample_count + 1 + sample_count);
160 else
161 owner_.notify_samples_added(this, prev_sample_count + 1,
162 prev_sample_count + 1);
163}
164
165const uint8_t* LogicSegment::get_samples(int64_t start_sample,
166 int64_t end_sample) const
167{
168 assert(start_sample >= 0);
169 assert(start_sample <= (int64_t)sample_count_);
170 assert(end_sample >= 0);
171 assert(end_sample <= (int64_t)sample_count_);
172 assert(start_sample <= end_sample);
173
174 lock_guard<recursive_mutex> lock(mutex_);
175
176 return get_raw_samples(start_sample, (end_sample-start_sample));
177}
178
179SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
180{
181 return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
182}
183
184void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
185{
186 Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
187}
188
189void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
190{
191 Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
192}
193
194void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
195{
196 lock_guard<recursive_mutex> lock(mutex_);
197
198 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
199 MipMapDataUnit) * MipMapDataUnit;
200
201 if (new_data_length > m.data_length) {
202 m.data_length = new_data_length;
203
204 // Padding is added to allow for the uint64_t write word
205 m.data = realloc(m.data, new_data_length * unit_size_ +
206 sizeof(uint64_t));
207 }
208}
209
210void LogicSegment::append_payload_to_mipmap()
211{
212 MipMapLevel &m0 = mip_map_[0];
213 uint64_t prev_length;
214 uint8_t *dest_ptr;
215 SegmentRawDataIterator* it;
216 uint64_t accumulator;
217 unsigned int diff_counter;
218
219 // Expand the data buffer to fit the new samples
220 prev_length = m0.length;
221 m0.length = sample_count_ / MipMapScaleFactor;
222
223 // Break off if there are no new samples to compute
224 if (m0.length == prev_length)
225 return;
226
227 reallocate_mipmap_level(m0);
228
229 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
230
231 // Iterate through the samples to populate the first level mipmap
232 uint64_t start_sample = prev_length * MipMapScaleFactor;
233 uint64_t end_sample = m0.length * MipMapScaleFactor;
234
235 it = begin_raw_sample_iteration(start_sample);
236 for (uint64_t i = start_sample; i < end_sample;) {
237 // Accumulate transitions which have occurred in this sample
238 accumulator = 0;
239 diff_counter = MipMapScaleFactor;
240 while (diff_counter-- > 0) {
241 const uint64_t sample = unpack_sample(it->value);
242 accumulator |= last_append_sample_ ^ sample;
243 last_append_sample_ = sample;
244 continue_raw_sample_iteration(it, 1);
245 i++;
246 }
247
248 pack_sample(dest_ptr, accumulator);
249 dest_ptr += unit_size_;
250 }
251 end_raw_sample_iteration(it);
252
253 // Compute higher level mipmaps
254 for (unsigned int level = 1; level < ScaleStepCount; level++) {
255 MipMapLevel &m = mip_map_[level];
256 const MipMapLevel &ml = mip_map_[level-1];
257
258 // Expand the data buffer to fit the new samples
259 prev_length = m.length;
260 m.length = ml.length / MipMapScaleFactor;
261
262 // Break off if there are no more samples to be computed
263 if (m.length == prev_length)
264 break;
265
266 reallocate_mipmap_level(m);
267
268 // Subsample the lower level
269 const uint8_t* src_ptr = (uint8_t*)ml.data +
270 unit_size_ * prev_length * MipMapScaleFactor;
271 const uint8_t *const end_dest_ptr =
272 (uint8_t*)m.data + unit_size_ * m.length;
273
274 for (dest_ptr = (uint8_t*)m.data +
275 unit_size_ * prev_length;
276 dest_ptr < end_dest_ptr;
277 dest_ptr += unit_size_) {
278 accumulator = 0;
279 diff_counter = MipMapScaleFactor;
280 while (diff_counter-- > 0) {
281 accumulator |= unpack_sample(src_ptr);
282 src_ptr += unit_size_;
283 }
284
285 pack_sample(dest_ptr, accumulator);
286 }
287 }
288}
289
290uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
291{
292 assert(index < sample_count_);
293
294 const uint8_t* data = get_raw_samples(index, 1);
295 uint64_t sample = unpack_sample(data);
296 delete[] data;
297
298 return sample;
299}
300
301void LogicSegment::get_subsampled_edges(
302 vector<EdgePair> &edges,
303 uint64_t start, uint64_t end,
304 float min_length, int sig_index)
305{
306 uint64_t index = start;
307 unsigned int level;
308 bool last_sample;
309 bool fast_forward;
310
311 assert(end <= get_sample_count());
312 assert(start <= end);
313 assert(min_length > 0);
314 assert(sig_index >= 0);
315 assert(sig_index < 64);
316
317 lock_guard<recursive_mutex> lock(mutex_);
318
319 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
320 const unsigned int min_level = max((int)floorf(logf(min_length) /
321 LogMipMapScaleFactor) - 1, 0);
322 const uint64_t sig_mask = 1ULL << sig_index;
323
324 // Store the initial state
325 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
326 edges.emplace_back(index++, last_sample);
327
328 while (index + block_length <= end) {
329 //----- Continue to search -----//
330 level = min_level;
331
332 // We cannot fast-forward if there is no mip-map data at
333 // at the minimum level.
334 fast_forward = (mip_map_[level].data != nullptr);
335
336 if (min_length < MipMapScaleFactor) {
337 // Search individual samples up to the beginning of
338 // the next first level mip map block
339 const uint64_t final_index = min(end,
340 pow2_ceil(index, MipMapScalePower));
341
342 for (; index < final_index &&
343 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
344 index++) {
345 const bool sample =
346 (get_unpacked_sample(index) & sig_mask) != 0;
347
348 // If there was a change we cannot fast forward
349 if (sample != last_sample) {
350 fast_forward = false;
351 break;
352 }
353 }
354 } else {
355 // If resolution is less than a mip map block,
356 // round up to the beginning of the mip-map block
357 // for this level of detail
358 const int min_level_scale_power =
359 (level + 1) * MipMapScalePower;
360 index = pow2_ceil(index, min_level_scale_power);
361 if (index >= end)
362 break;
363
364 // We can fast forward only if there was no change
365 const bool sample =
366 (get_unpacked_sample(index) & sig_mask) != 0;
367 if (last_sample != sample)
368 fast_forward = false;
369 }
370
371 if (fast_forward) {
372
373 // Fast forward: This involves zooming out to higher
374 // levels of the mip map searching for changes, then
375 // zooming in on them to find the point where the edge
376 // begins.
377
378 // Slide right and zoom out at the beginnings of mip-map
379 // blocks until we encounter a change
380 while (true) {
381 const int level_scale_power =
382 (level + 1) * MipMapScalePower;
383 const uint64_t offset =
384 index >> level_scale_power;
385
386 // Check if we reached the last block at this
387 // level, or if there was a change in this block
388 if (offset >= mip_map_[level].length ||
389 (get_subsample(level, offset) &
390 sig_mask))
391 break;
392
393 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
394 // If we are now at the beginning of a
395 // higher level mip-map block ascend one
396 // level
397 if (level + 1 >= ScaleStepCount ||
398 !mip_map_[level + 1].data)
399 break;
400
401 level++;
402 } else {
403 // Slide right to the beginning of the
404 // next mip map block
405 index = pow2_ceil(index + 1,
406 level_scale_power);
407 }
408 }
409
410 // Zoom in, and slide right until we encounter a change,
411 // and repeat until we reach min_level
412 while (true) {
413 assert(mip_map_[level].data);
414
415 const int level_scale_power =
416 (level + 1) * MipMapScalePower;
417 const uint64_t offset =
418 index >> level_scale_power;
419
420 // Check if we reached the last block at this
421 // level, or if there was a change in this block
422 if (offset >= mip_map_[level].length ||
423 (get_subsample(level, offset) &
424 sig_mask)) {
425 // Zoom in unless we reached the minimum
426 // zoom
427 if (level == min_level)
428 break;
429
430 level--;
431 } else {
432 // Slide right to the beginning of the
433 // next mip map block
434 index = pow2_ceil(index + 1,
435 level_scale_power);
436 }
437 }
438
439 // If individual samples within the limit of resolution,
440 // do a linear search for the next transition within the
441 // block
442 if (min_length < MipMapScaleFactor) {
443 for (; index < end; index++) {
444 const bool sample = (get_unpacked_sample(index) &
445 sig_mask) != 0;
446 if (sample != last_sample)
447 break;
448 }
449 }
450 }
451
452 //----- Store the edge -----//
453
454 // Take the last sample of the quanization block
455 const int64_t final_index = index + block_length;
456 if (index + block_length > end)
457 break;
458
459 // Store the final state
460 const bool final_sample =
461 (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
462 edges.emplace_back(index, final_sample);
463
464 index = final_index;
465 last_sample = final_sample;
466 }
467
468 // Add the final state
469 const bool end_sample = get_unpacked_sample(end) & sig_mask;
470 if (last_sample != end_sample)
471 edges.emplace_back(end, end_sample);
472 edges.emplace_back(end + 1, end_sample);
473}
474
475uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
476{
477 assert(level >= 0);
478 assert(mip_map_[level].data);
479 return unpack_sample((uint8_t*)mip_map_[level].data +
480 unit_size_ * offset);
481}
482
483uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
484{
485 const uint64_t p = 1 << power;
486 return (x + p - 1) / p * p;
487}
488
489} // namespace data
490} // namespace pv