]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/logicsegment.cpp
Use identifiers for fixed conversion preset values
[pulseview.git] / pv / data / logicsegment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <extdef.h>
21
22#include <cassert>
23#include <cmath>
24#include <cstdlib>
25#include <cstring>
26
27#include "logic.hpp"
28#include "logicsegment.hpp"
29
30#include <libsigrokcxx/libsigrokcxx.hpp>
31
32using std::lock_guard;
33using std::recursive_mutex;
34using std::max;
35using std::min;
36using std::shared_ptr;
37using std::vector;
38
39using sigrok::Logic;
40
41namespace pv {
42namespace data {
43
44const int LogicSegment::MipMapScalePower = 4;
45const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
46const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
47const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
48
49LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
50 uint64_t samplerate) :
51 Segment(samplerate, unit_size),
52 owner_(owner),
53 last_append_sample_(0)
54{
55 memset(mip_map_, 0, sizeof(mip_map_));
56}
57
58LogicSegment::~LogicSegment()
59{
60 lock_guard<recursive_mutex> lock(mutex_);
61 for (MipMapLevel &l : mip_map_)
62 free(l.data);
63}
64
65uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
66{
67#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
68 return *(uint64_t*)ptr;
69#else
70 uint64_t value = 0;
71 switch (unit_size_) {
72 default:
73 value |= ((uint64_t)ptr[7]) << 56;
74 /* FALLTHRU */
75 case 7:
76 value |= ((uint64_t)ptr[6]) << 48;
77 /* FALLTHRU */
78 case 6:
79 value |= ((uint64_t)ptr[5]) << 40;
80 /* FALLTHRU */
81 case 5:
82 value |= ((uint64_t)ptr[4]) << 32;
83 /* FALLTHRU */
84 case 4:
85 value |= ((uint32_t)ptr[3]) << 24;
86 /* FALLTHRU */
87 case 3:
88 value |= ((uint32_t)ptr[2]) << 16;
89 /* FALLTHRU */
90 case 2:
91 value |= ptr[1] << 8;
92 /* FALLTHRU */
93 case 1:
94 value |= ptr[0];
95 /* FALLTHRU */
96 case 0:
97 break;
98 }
99 return value;
100#endif
101}
102
103void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
104{
105#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
106 *(uint64_t*)ptr = value;
107#else
108 switch (unit_size_) {
109 default:
110 ptr[7] = value >> 56;
111 /* FALLTHRU */
112 case 7:
113 ptr[6] = value >> 48;
114 /* FALLTHRU */
115 case 6:
116 ptr[5] = value >> 40;
117 /* FALLTHRU */
118 case 5:
119 ptr[4] = value >> 32;
120 /* FALLTHRU */
121 case 4:
122 ptr[3] = value >> 24;
123 /* FALLTHRU */
124 case 3:
125 ptr[2] = value >> 16;
126 /* FALLTHRU */
127 case 2:
128 ptr[1] = value >> 8;
129 /* FALLTHRU */
130 case 1:
131 ptr[0] = value;
132 /* FALLTHRU */
133 case 0:
134 break;
135 }
136#endif
137}
138
139void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
140{
141 assert(unit_size_ == logic->unit_size());
142 assert((logic->data_length() % unit_size_) == 0);
143
144 append_payload(logic->data_pointer(), logic->data_length());
145}
146
147void LogicSegment::append_payload(void *data, uint64_t data_size)
148{
149 assert((data_size % unit_size_) == 0);
150
151 lock_guard<recursive_mutex> lock(mutex_);
152
153 uint64_t prev_sample_count = sample_count_;
154 uint64_t sample_count = data_size / unit_size_;
155
156 append_samples(data, sample_count);
157
158 // Generate the first mip-map from the data
159 append_payload_to_mipmap();
160
161 if (sample_count > 1)
162 owner_.notify_samples_added(this, prev_sample_count + 1,
163 prev_sample_count + 1 + sample_count);
164 else
165 owner_.notify_samples_added(this, prev_sample_count + 1,
166 prev_sample_count + 1);
167}
168
169void LogicSegment::get_samples(int64_t start_sample,
170 int64_t end_sample, uint8_t* dest) const
171{
172 assert(start_sample >= 0);
173 assert(start_sample <= (int64_t)sample_count_);
174 assert(end_sample >= 0);
175 assert(end_sample <= (int64_t)sample_count_);
176 assert(start_sample <= end_sample);
177 assert(dest != nullptr);
178
179 lock_guard<recursive_mutex> lock(mutex_);
180
181 get_raw_samples(start_sample, (end_sample - start_sample), dest);
182}
183
184SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
185{
186 return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
187}
188
189void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
190{
191 Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
192}
193
194void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
195{
196 Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
197}
198
199void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
200{
201 lock_guard<recursive_mutex> lock(mutex_);
202
203 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
204 MipMapDataUnit) * MipMapDataUnit;
205
206 if (new_data_length > m.data_length) {
207 m.data_length = new_data_length;
208
209 // Padding is added to allow for the uint64_t write word
210 m.data = realloc(m.data, new_data_length * unit_size_ +
211 sizeof(uint64_t));
212 }
213}
214
215void LogicSegment::append_payload_to_mipmap()
216{
217 MipMapLevel &m0 = mip_map_[0];
218 uint64_t prev_length;
219 uint8_t *dest_ptr;
220 SegmentRawDataIterator* it;
221 uint64_t accumulator;
222 unsigned int diff_counter;
223
224 // Expand the data buffer to fit the new samples
225 prev_length = m0.length;
226 m0.length = sample_count_ / MipMapScaleFactor;
227
228 // Break off if there are no new samples to compute
229 if (m0.length == prev_length)
230 return;
231
232 reallocate_mipmap_level(m0);
233
234 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
235
236 // Iterate through the samples to populate the first level mipmap
237 uint64_t start_sample = prev_length * MipMapScaleFactor;
238 uint64_t end_sample = m0.length * MipMapScaleFactor;
239
240 it = begin_raw_sample_iteration(start_sample);
241 for (uint64_t i = start_sample; i < end_sample;) {
242 // Accumulate transitions which have occurred in this sample
243 accumulator = 0;
244 diff_counter = MipMapScaleFactor;
245 while (diff_counter-- > 0) {
246 const uint64_t sample = unpack_sample(it->value);
247 accumulator |= last_append_sample_ ^ sample;
248 last_append_sample_ = sample;
249 continue_raw_sample_iteration(it, 1);
250 i++;
251 }
252
253 pack_sample(dest_ptr, accumulator);
254 dest_ptr += unit_size_;
255 }
256 end_raw_sample_iteration(it);
257
258 // Compute higher level mipmaps
259 for (unsigned int level = 1; level < ScaleStepCount; level++) {
260 MipMapLevel &m = mip_map_[level];
261 const MipMapLevel &ml = mip_map_[level - 1];
262
263 // Expand the data buffer to fit the new samples
264 prev_length = m.length;
265 m.length = ml.length / MipMapScaleFactor;
266
267 // Break off if there are no more samples to be computed
268 if (m.length == prev_length)
269 break;
270
271 reallocate_mipmap_level(m);
272
273 // Subsample the lower level
274 const uint8_t* src_ptr = (uint8_t*)ml.data +
275 unit_size_ * prev_length * MipMapScaleFactor;
276 const uint8_t *const end_dest_ptr =
277 (uint8_t*)m.data + unit_size_ * m.length;
278
279 for (dest_ptr = (uint8_t*)m.data +
280 unit_size_ * prev_length;
281 dest_ptr < end_dest_ptr;
282 dest_ptr += unit_size_) {
283 accumulator = 0;
284 diff_counter = MipMapScaleFactor;
285 while (diff_counter-- > 0) {
286 accumulator |= unpack_sample(src_ptr);
287 src_ptr += unit_size_;
288 }
289
290 pack_sample(dest_ptr, accumulator);
291 }
292 }
293}
294
295uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
296{
297 assert(index < sample_count_);
298
299 uint8_t* data = new uint8_t[unit_size_];
300 get_raw_samples(index, 1, data);
301 uint64_t sample = unpack_sample(data);
302 delete[] data;
303
304 return sample;
305}
306
307void LogicSegment::get_subsampled_edges(
308 vector<EdgePair> &edges,
309 uint64_t start, uint64_t end,
310 float min_length, int sig_index)
311{
312 uint64_t index = start;
313 unsigned int level;
314 bool last_sample;
315 bool fast_forward;
316
317 assert(end <= get_sample_count());
318 assert(start <= end);
319 assert(min_length > 0);
320 assert(sig_index >= 0);
321 assert(sig_index < 64);
322
323 lock_guard<recursive_mutex> lock(mutex_);
324
325 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
326 const unsigned int min_level = max((int)floorf(logf(min_length) /
327 LogMipMapScaleFactor) - 1, 0);
328 const uint64_t sig_mask = 1ULL << sig_index;
329
330 // Store the initial state
331 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
332 edges.emplace_back(index++, last_sample);
333
334 while (index + block_length <= end) {
335 //----- Continue to search -----//
336 level = min_level;
337
338 // We cannot fast-forward if there is no mip-map data at
339 // at the minimum level.
340 fast_forward = (mip_map_[level].data != nullptr);
341
342 if (min_length < MipMapScaleFactor) {
343 // Search individual samples up to the beginning of
344 // the next first level mip map block
345 const uint64_t final_index = min(end,
346 pow2_ceil(index, MipMapScalePower));
347
348 for (; index < final_index &&
349 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
350 index++) {
351 const bool sample =
352 (get_unpacked_sample(index) & sig_mask) != 0;
353
354 // If there was a change we cannot fast forward
355 if (sample != last_sample) {
356 fast_forward = false;
357 break;
358 }
359 }
360 } else {
361 // If resolution is less than a mip map block,
362 // round up to the beginning of the mip-map block
363 // for this level of detail
364 const int min_level_scale_power =
365 (level + 1) * MipMapScalePower;
366 index = pow2_ceil(index, min_level_scale_power);
367 if (index >= end)
368 break;
369
370 // We can fast forward only if there was no change
371 const bool sample =
372 (get_unpacked_sample(index) & sig_mask) != 0;
373 if (last_sample != sample)
374 fast_forward = false;
375 }
376
377 if (fast_forward) {
378
379 // Fast forward: This involves zooming out to higher
380 // levels of the mip map searching for changes, then
381 // zooming in on them to find the point where the edge
382 // begins.
383
384 // Slide right and zoom out at the beginnings of mip-map
385 // blocks until we encounter a change
386 while (true) {
387 const int level_scale_power =
388 (level + 1) * MipMapScalePower;
389 const uint64_t offset =
390 index >> level_scale_power;
391
392 // Check if we reached the last block at this
393 // level, or if there was a change in this block
394 if (offset >= mip_map_[level].length ||
395 (get_subsample(level, offset) &
396 sig_mask))
397 break;
398
399 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
400 // If we are now at the beginning of a
401 // higher level mip-map block ascend one
402 // level
403 if (level + 1 >= ScaleStepCount ||
404 !mip_map_[level + 1].data)
405 break;
406
407 level++;
408 } else {
409 // Slide right to the beginning of the
410 // next mip map block
411 index = pow2_ceil(index + 1,
412 level_scale_power);
413 }
414 }
415
416 // Zoom in, and slide right until we encounter a change,
417 // and repeat until we reach min_level
418 while (true) {
419 assert(mip_map_[level].data);
420
421 const int level_scale_power =
422 (level + 1) * MipMapScalePower;
423 const uint64_t offset =
424 index >> level_scale_power;
425
426 // Check if we reached the last block at this
427 // level, or if there was a change in this block
428 if (offset >= mip_map_[level].length ||
429 (get_subsample(level, offset) &
430 sig_mask)) {
431 // Zoom in unless we reached the minimum
432 // zoom
433 if (level == min_level)
434 break;
435
436 level--;
437 } else {
438 // Slide right to the beginning of the
439 // next mip map block
440 index = pow2_ceil(index + 1,
441 level_scale_power);
442 }
443 }
444
445 // If individual samples within the limit of resolution,
446 // do a linear search for the next transition within the
447 // block
448 if (min_length < MipMapScaleFactor) {
449 for (; index < end; index++) {
450 const bool sample = (get_unpacked_sample(index) &
451 sig_mask) != 0;
452 if (sample != last_sample)
453 break;
454 }
455 }
456 }
457
458 //----- Store the edge -----//
459
460 // Take the last sample of the quanization block
461 const int64_t final_index = index + block_length;
462 if (index + block_length > end)
463 break;
464
465 // Store the final state
466 const bool final_sample =
467 (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
468 edges.emplace_back(index, final_sample);
469
470 index = final_index;
471 last_sample = final_sample;
472 }
473
474 // Add the final state
475 const bool end_sample = get_unpacked_sample(end) & sig_mask;
476 if (last_sample != end_sample)
477 edges.emplace_back(end, end_sample);
478 edges.emplace_back(end + 1, end_sample);
479}
480
481uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
482{
483 assert(level >= 0);
484 assert(mip_map_[level].data);
485 return unpack_sample((uint8_t*)mip_map_[level].data +
486 unit_size_ * offset);
487}
488
489uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
490{
491 const uint64_t p = 1 << power;
492 return (x + p - 1) / p * p;
493}
494
495} // namespace data
496} // namespace pv