]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/logicsegment.cpp
Avoid wrapping driver names etc in about box.
[pulseview.git] / pv / data / logicsegment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <extdef.h>
21
22#include <cassert>
23#include <cmath>
24#include <cstdlib>
25#include <cstring>
26
27#include "logic.hpp"
28#include "logicsegment.hpp"
29
30#include <libsigrokcxx/libsigrokcxx.hpp>
31
32using std::lock_guard;
33using std::recursive_mutex;
34using std::max;
35using std::min;
36using std::shared_ptr;
37using std::vector;
38
39using sigrok::Logic;
40
41namespace pv {
42namespace data {
43
44const int LogicSegment::MipMapScalePower = 4;
45const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
46const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
47const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
48
49LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
50 uint64_t samplerate) :
51 Segment(samplerate, unit_size),
52 owner_(owner),
53 last_append_sample_(0)
54{
55 memset(mip_map_, 0, sizeof(mip_map_));
56}
57
58LogicSegment::~LogicSegment()
59{
60 lock_guard<recursive_mutex> lock(mutex_);
61 for (MipMapLevel &l : mip_map_)
62 free(l.data);
63}
64
65uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
66{
67#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
68 return *(uint64_t*)ptr;
69#else
70 uint64_t value = 0;
71 switch (unit_size_) {
72 default:
73 value |= ((uint64_t)ptr[7]) << 56;
74 /* FALLTHRU */
75 case 7:
76 value |= ((uint64_t)ptr[6]) << 48;
77 /* FALLTHRU */
78 case 6:
79 value |= ((uint64_t)ptr[5]) << 40;
80 /* FALLTHRU */
81 case 5:
82 value |= ((uint64_t)ptr[4]) << 32;
83 /* FALLTHRU */
84 case 4:
85 value |= ((uint32_t)ptr[3]) << 24;
86 /* FALLTHRU */
87 case 3:
88 value |= ((uint32_t)ptr[2]) << 16;
89 /* FALLTHRU */
90 case 2:
91 value |= ptr[1] << 8;
92 /* FALLTHRU */
93 case 1:
94 value |= ptr[0];
95 /* FALLTHRU */
96 case 0:
97 break;
98 }
99 return value;
100#endif
101}
102
103void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
104{
105#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
106 *(uint64_t*)ptr = value;
107#else
108 switch (unit_size_) {
109 default:
110 ptr[7] = value >> 56;
111 /* FALLTHRU */
112 case 7:
113 ptr[6] = value >> 48;
114 /* FALLTHRU */
115 case 6:
116 ptr[5] = value >> 40;
117 /* FALLTHRU */
118 case 5:
119 ptr[4] = value >> 32;
120 /* FALLTHRU */
121 case 4:
122 ptr[3] = value >> 24;
123 /* FALLTHRU */
124 case 3:
125 ptr[2] = value >> 16;
126 /* FALLTHRU */
127 case 2:
128 ptr[1] = value >> 8;
129 /* FALLTHRU */
130 case 1:
131 ptr[0] = value;
132 /* FALLTHRU */
133 case 0:
134 break;
135 }
136#endif
137}
138
139void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
140{
141 assert(unit_size_ == logic->unit_size());
142 assert((logic->data_length() % unit_size_) == 0);
143
144 append_payload(logic->data_pointer(), logic->data_length());
145}
146
147void LogicSegment::append_payload(void *data, uint64_t data_size)
148{
149 assert((data_size % unit_size_) == 0);
150
151 lock_guard<recursive_mutex> lock(mutex_);
152
153 uint64_t prev_sample_count = sample_count_;
154 uint64_t sample_count = data_size / unit_size_;
155
156 append_samples(data, sample_count);
157
158 // Generate the first mip-map from the data
159 append_payload_to_mipmap();
160
161 if (sample_count > 1)
162 owner_.notify_samples_added(this, prev_sample_count + 1,
163 prev_sample_count + 1 + sample_count);
164 else
165 owner_.notify_samples_added(this, prev_sample_count + 1,
166 prev_sample_count + 1);
167}
168
169const uint8_t* LogicSegment::get_samples(int64_t start_sample,
170 int64_t end_sample) const
171{
172 assert(start_sample >= 0);
173 assert(start_sample <= (int64_t)sample_count_);
174 assert(end_sample >= 0);
175 assert(end_sample <= (int64_t)sample_count_);
176 assert(start_sample <= end_sample);
177
178 lock_guard<recursive_mutex> lock(mutex_);
179
180 return get_raw_samples(start_sample, (end_sample - start_sample));
181}
182
183SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
184{
185 return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
186}
187
188void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
189{
190 Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
191}
192
193void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
194{
195 Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
196}
197
198void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
199{
200 lock_guard<recursive_mutex> lock(mutex_);
201
202 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
203 MipMapDataUnit) * MipMapDataUnit;
204
205 if (new_data_length > m.data_length) {
206 m.data_length = new_data_length;
207
208 // Padding is added to allow for the uint64_t write word
209 m.data = realloc(m.data, new_data_length * unit_size_ +
210 sizeof(uint64_t));
211 }
212}
213
214void LogicSegment::append_payload_to_mipmap()
215{
216 MipMapLevel &m0 = mip_map_[0];
217 uint64_t prev_length;
218 uint8_t *dest_ptr;
219 SegmentRawDataIterator* it;
220 uint64_t accumulator;
221 unsigned int diff_counter;
222
223 // Expand the data buffer to fit the new samples
224 prev_length = m0.length;
225 m0.length = sample_count_ / MipMapScaleFactor;
226
227 // Break off if there are no new samples to compute
228 if (m0.length == prev_length)
229 return;
230
231 reallocate_mipmap_level(m0);
232
233 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
234
235 // Iterate through the samples to populate the first level mipmap
236 uint64_t start_sample = prev_length * MipMapScaleFactor;
237 uint64_t end_sample = m0.length * MipMapScaleFactor;
238
239 it = begin_raw_sample_iteration(start_sample);
240 for (uint64_t i = start_sample; i < end_sample;) {
241 // Accumulate transitions which have occurred in this sample
242 accumulator = 0;
243 diff_counter = MipMapScaleFactor;
244 while (diff_counter-- > 0) {
245 const uint64_t sample = unpack_sample(it->value);
246 accumulator |= last_append_sample_ ^ sample;
247 last_append_sample_ = sample;
248 continue_raw_sample_iteration(it, 1);
249 i++;
250 }
251
252 pack_sample(dest_ptr, accumulator);
253 dest_ptr += unit_size_;
254 }
255 end_raw_sample_iteration(it);
256
257 // Compute higher level mipmaps
258 for (unsigned int level = 1; level < ScaleStepCount; level++) {
259 MipMapLevel &m = mip_map_[level];
260 const MipMapLevel &ml = mip_map_[level - 1];
261
262 // Expand the data buffer to fit the new samples
263 prev_length = m.length;
264 m.length = ml.length / MipMapScaleFactor;
265
266 // Break off if there are no more samples to be computed
267 if (m.length == prev_length)
268 break;
269
270 reallocate_mipmap_level(m);
271
272 // Subsample the lower level
273 const uint8_t* src_ptr = (uint8_t*)ml.data +
274 unit_size_ * prev_length * MipMapScaleFactor;
275 const uint8_t *const end_dest_ptr =
276 (uint8_t*)m.data + unit_size_ * m.length;
277
278 for (dest_ptr = (uint8_t*)m.data +
279 unit_size_ * prev_length;
280 dest_ptr < end_dest_ptr;
281 dest_ptr += unit_size_) {
282 accumulator = 0;
283 diff_counter = MipMapScaleFactor;
284 while (diff_counter-- > 0) {
285 accumulator |= unpack_sample(src_ptr);
286 src_ptr += unit_size_;
287 }
288
289 pack_sample(dest_ptr, accumulator);
290 }
291 }
292}
293
294uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
295{
296 assert(index < sample_count_);
297
298 const uint8_t* data = get_raw_samples(index, 1);
299 uint64_t sample = unpack_sample(data);
300 delete[] data;
301
302 return sample;
303}
304
305void LogicSegment::get_subsampled_edges(
306 vector<EdgePair> &edges,
307 uint64_t start, uint64_t end,
308 float min_length, int sig_index)
309{
310 uint64_t index = start;
311 unsigned int level;
312 bool last_sample;
313 bool fast_forward;
314
315 assert(end <= get_sample_count());
316 assert(start <= end);
317 assert(min_length > 0);
318 assert(sig_index >= 0);
319 assert(sig_index < 64);
320
321 lock_guard<recursive_mutex> lock(mutex_);
322
323 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
324 const unsigned int min_level = max((int)floorf(logf(min_length) /
325 LogMipMapScaleFactor) - 1, 0);
326 const uint64_t sig_mask = 1ULL << sig_index;
327
328 // Store the initial state
329 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
330 edges.emplace_back(index++, last_sample);
331
332 while (index + block_length <= end) {
333 //----- Continue to search -----//
334 level = min_level;
335
336 // We cannot fast-forward if there is no mip-map data at
337 // at the minimum level.
338 fast_forward = (mip_map_[level].data != nullptr);
339
340 if (min_length < MipMapScaleFactor) {
341 // Search individual samples up to the beginning of
342 // the next first level mip map block
343 const uint64_t final_index = min(end,
344 pow2_ceil(index, MipMapScalePower));
345
346 for (; index < final_index &&
347 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
348 index++) {
349 const bool sample =
350 (get_unpacked_sample(index) & sig_mask) != 0;
351
352 // If there was a change we cannot fast forward
353 if (sample != last_sample) {
354 fast_forward = false;
355 break;
356 }
357 }
358 } else {
359 // If resolution is less than a mip map block,
360 // round up to the beginning of the mip-map block
361 // for this level of detail
362 const int min_level_scale_power =
363 (level + 1) * MipMapScalePower;
364 index = pow2_ceil(index, min_level_scale_power);
365 if (index >= end)
366 break;
367
368 // We can fast forward only if there was no change
369 const bool sample =
370 (get_unpacked_sample(index) & sig_mask) != 0;
371 if (last_sample != sample)
372 fast_forward = false;
373 }
374
375 if (fast_forward) {
376
377 // Fast forward: This involves zooming out to higher
378 // levels of the mip map searching for changes, then
379 // zooming in on them to find the point where the edge
380 // begins.
381
382 // Slide right and zoom out at the beginnings of mip-map
383 // blocks until we encounter a change
384 while (true) {
385 const int level_scale_power =
386 (level + 1) * MipMapScalePower;
387 const uint64_t offset =
388 index >> level_scale_power;
389
390 // Check if we reached the last block at this
391 // level, or if there was a change in this block
392 if (offset >= mip_map_[level].length ||
393 (get_subsample(level, offset) &
394 sig_mask))
395 break;
396
397 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
398 // If we are now at the beginning of a
399 // higher level mip-map block ascend one
400 // level
401 if (level + 1 >= ScaleStepCount ||
402 !mip_map_[level + 1].data)
403 break;
404
405 level++;
406 } else {
407 // Slide right to the beginning of the
408 // next mip map block
409 index = pow2_ceil(index + 1,
410 level_scale_power);
411 }
412 }
413
414 // Zoom in, and slide right until we encounter a change,
415 // and repeat until we reach min_level
416 while (true) {
417 assert(mip_map_[level].data);
418
419 const int level_scale_power =
420 (level + 1) * MipMapScalePower;
421 const uint64_t offset =
422 index >> level_scale_power;
423
424 // Check if we reached the last block at this
425 // level, or if there was a change in this block
426 if (offset >= mip_map_[level].length ||
427 (get_subsample(level, offset) &
428 sig_mask)) {
429 // Zoom in unless we reached the minimum
430 // zoom
431 if (level == min_level)
432 break;
433
434 level--;
435 } else {
436 // Slide right to the beginning of the
437 // next mip map block
438 index = pow2_ceil(index + 1,
439 level_scale_power);
440 }
441 }
442
443 // If individual samples within the limit of resolution,
444 // do a linear search for the next transition within the
445 // block
446 if (min_length < MipMapScaleFactor) {
447 for (; index < end; index++) {
448 const bool sample = (get_unpacked_sample(index) &
449 sig_mask) != 0;
450 if (sample != last_sample)
451 break;
452 }
453 }
454 }
455
456 //----- Store the edge -----//
457
458 // Take the last sample of the quanization block
459 const int64_t final_index = index + block_length;
460 if (index + block_length > end)
461 break;
462
463 // Store the final state
464 const bool final_sample =
465 (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
466 edges.emplace_back(index, final_sample);
467
468 index = final_index;
469 last_sample = final_sample;
470 }
471
472 // Add the final state
473 const bool end_sample = get_unpacked_sample(end) & sig_mask;
474 if (last_sample != end_sample)
475 edges.emplace_back(end, end_sample);
476 edges.emplace_back(end + 1, end_sample);
477}
478
479uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
480{
481 assert(level >= 0);
482 assert(mip_map_[level].data);
483 return unpack_sample((uint8_t*)mip_map_[level].data +
484 unit_size_ * offset);
485}
486
487uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
488{
489 const uint64_t p = 1 << power;
490 return (x + p - 1) / p * p;
491}
492
493} // namespace data
494} // namespace pv