]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/analogsegment.cpp
Don't use std:: in the code directly (where possible).
[pulseview.git] / pv / data / analogsegment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <extdef.h>
21
22#include <cassert>
23#include <cstring>
24#include <cstdlib>
25#include <cmath>
26
27#include <algorithm>
28
29#include "analog.hpp"
30#include "analogsegment.hpp"
31
32using std::lock_guard;
33using std::recursive_mutex;
34using std::make_pair;
35using std::max;
36using std::max_element;
37using std::min;
38using std::min_element;
39using std::pair;
40
41namespace pv {
42namespace data {
43
44const int AnalogSegment::EnvelopeScalePower = 4;
45const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
46const float AnalogSegment::LogEnvelopeScaleFactor =
47 logf(EnvelopeScaleFactor);
48const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024; // bytes
49
50AnalogSegment::AnalogSegment(Analog& owner, uint64_t samplerate) :
51 Segment(samplerate, sizeof(float)),
52 owner_(owner),
53 min_value_(0),
54 max_value_(0)
55{
56 lock_guard<recursive_mutex> lock(mutex_);
57 memset(envelope_levels_, 0, sizeof(envelope_levels_));
58}
59
60AnalogSegment::~AnalogSegment()
61{
62 lock_guard<recursive_mutex> lock(mutex_);
63 for (Envelope &e : envelope_levels_)
64 free(e.samples);
65}
66
67void AnalogSegment::append_interleaved_samples(const float *data,
68 size_t sample_count, size_t stride)
69{
70 assert(unit_size_ == sizeof(float));
71
72 lock_guard<recursive_mutex> lock(mutex_);
73
74 uint64_t prev_sample_count = sample_count_;
75
76 for (uint32_t i=0; i < sample_count; i++) {
77 append_single_sample((void*)data);
78 data += stride;
79 }
80
81 // Generate the first mip-map from the data
82 append_payload_to_envelope_levels();
83
84 if (sample_count > 1)
85 owner_.notify_samples_added(this, prev_sample_count + 1,
86 prev_sample_count + 1 + sample_count);
87 else
88 owner_.notify_samples_added(this, prev_sample_count + 1,
89 prev_sample_count + 1);
90}
91
92const float* AnalogSegment::get_samples(
93 int64_t start_sample, int64_t end_sample) const
94{
95 assert(start_sample >= 0);
96 assert(start_sample < (int64_t)sample_count_);
97 assert(end_sample >= 0);
98 assert(end_sample < (int64_t)sample_count_);
99 assert(start_sample <= end_sample);
100
101 lock_guard<recursive_mutex> lock(mutex_);
102
103 return (float*)get_raw_samples(start_sample, (end_sample - start_sample));
104}
105
106const pair<float, float> AnalogSegment::get_min_max() const
107{
108 return make_pair(min_value_, max_value_);
109}
110
111SegmentAnalogDataIterator* AnalogSegment::begin_sample_iteration(uint64_t start)
112{
113 return (SegmentAnalogDataIterator*)begin_raw_sample_iteration(start);
114}
115
116void AnalogSegment::continue_sample_iteration(SegmentAnalogDataIterator* it, uint64_t increase)
117{
118 Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
119}
120
121void AnalogSegment::end_sample_iteration(SegmentAnalogDataIterator* it)
122{
123 Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
124}
125
126void AnalogSegment::get_envelope_section(EnvelopeSection &s,
127 uint64_t start, uint64_t end, float min_length) const
128{
129 assert(end <= get_sample_count());
130 assert(start <= end);
131 assert(min_length > 0);
132
133 lock_guard<recursive_mutex> lock(mutex_);
134
135 const unsigned int min_level = max((int)floorf(logf(min_length) /
136 LogEnvelopeScaleFactor) - 1, 0);
137 const unsigned int scale_power = (min_level + 1) *
138 EnvelopeScalePower;
139 start >>= scale_power;
140 end >>= scale_power;
141
142 s.start = start << scale_power;
143 s.scale = 1 << scale_power;
144 s.length = end - start;
145 s.samples = new EnvelopeSample[s.length];
146 memcpy(s.samples, envelope_levels_[min_level].samples + start,
147 s.length * sizeof(EnvelopeSample));
148}
149
150void AnalogSegment::reallocate_envelope(Envelope &e)
151{
152 const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
153 EnvelopeDataUnit) * EnvelopeDataUnit;
154 if (new_data_length > e.data_length) {
155 e.data_length = new_data_length;
156 e.samples = (EnvelopeSample*)realloc(e.samples,
157 new_data_length * sizeof(EnvelopeSample));
158 }
159}
160
161void AnalogSegment::append_payload_to_envelope_levels()
162{
163 Envelope &e0 = envelope_levels_[0];
164 uint64_t prev_length;
165 EnvelopeSample *dest_ptr;
166 SegmentRawDataIterator* it;
167
168 // Expand the data buffer to fit the new samples
169 prev_length = e0.length;
170 e0.length = sample_count_ / EnvelopeScaleFactor;
171
172 // Calculate min/max values in case we have too few samples for an envelope
173 if (sample_count_ < EnvelopeScaleFactor) {
174 it = begin_raw_sample_iteration(0);
175 for (uint64_t i = 0; i < sample_count_; i++) {
176 const float sample = *((float*)it->value);
177 if (sample < min_value_) min_value_ = sample;
178 if (sample > max_value_) max_value_ = sample;
179 continue_raw_sample_iteration(it, 1);
180 }
181 end_raw_sample_iteration(it);
182 }
183
184 // Break off if there are no new samples to compute
185 if (e0.length == prev_length)
186 return;
187
188 reallocate_envelope(e0);
189
190 dest_ptr = e0.samples + prev_length;
191
192 // Iterate through the samples to populate the first level mipmap
193 uint64_t start_sample = prev_length * EnvelopeScaleFactor;
194 uint64_t end_sample = e0.length * EnvelopeScaleFactor;
195
196 it = begin_raw_sample_iteration(start_sample);
197 for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
198 const float* samples = (float*)it->value;
199
200 const EnvelopeSample sub_sample = {
201 *min_element(samples, samples + EnvelopeScaleFactor),
202 *max_element(samples, samples + EnvelopeScaleFactor),
203 };
204
205 if (sub_sample.min < min_value_) min_value_ = sub_sample.min;
206 if (sub_sample.max > max_value_) max_value_ = sub_sample.max;
207
208 continue_raw_sample_iteration(it, EnvelopeScaleFactor);
209 *dest_ptr++ = sub_sample;
210 }
211 end_raw_sample_iteration(it);
212
213 // Compute higher level mipmaps
214 for (unsigned int level = 1; level < ScaleStepCount; level++) {
215 Envelope &e = envelope_levels_[level];
216 const Envelope &el = envelope_levels_[level-1];
217
218 // Expand the data buffer to fit the new samples
219 prev_length = e.length;
220 e.length = el.length / EnvelopeScaleFactor;
221
222 // Break off if there are no more samples to be computed
223 if (e.length == prev_length)
224 break;
225
226 reallocate_envelope(e);
227
228 // Subsample the lower level
229 const EnvelopeSample *src_ptr =
230 el.samples + prev_length * EnvelopeScaleFactor;
231 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
232
233 for (dest_ptr = e.samples + prev_length;
234 dest_ptr < end_dest_ptr; dest_ptr++) {
235 const EnvelopeSample *const end_src_ptr =
236 src_ptr + EnvelopeScaleFactor;
237
238 EnvelopeSample sub_sample = *src_ptr++;
239 while (src_ptr < end_src_ptr) {
240 sub_sample.min = min(sub_sample.min, src_ptr->min);;
241 sub_sample.max = max(sub_sample.max, src_ptr->max);
242 src_ptr++;
243 }
244
245 *dest_ptr = sub_sample;
246 }
247 }
248}
249
250} // namespace data
251} // namespace pv