]> sigrok.org Git - pulseview.git/blame - pv/data/logicsegment.cpp
Segments: Fix iterator access to underlying value
[pulseview.git] / pv / data / logicsegment.cpp
CommitLineData
28a4c9c5 1/*
b3f22de0 2 * This file is part of the PulseView project.
28a4c9c5
JH
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
efdec55a 17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
28a4c9c5
JH
18 */
19
1ec3e43f
UH
20#include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
21
cef18fc6 22#include <extdef.h>
28a4c9c5 23
eb8269e3 24#include <cassert>
d9e71737 25#include <cmath>
aca9aa83
UH
26#include <cstdlib>
27#include <cstring>
72708385 28#include <cstdint>
4ceab49a 29
7db61e77 30#include "logic.hpp"
f3d66e52 31#include "logicsegment.hpp"
f556bc6a 32
fe3a1c21 33#include <libsigrokcxx/libsigrokcxx.hpp>
e8d00928 34
3b68d03d
JH
35using std::lock_guard;
36using std::recursive_mutex;
819f4c25
JH
37using std::max;
38using std::min;
e8d00928 39using std::shared_ptr;
6f925ba9 40using std::vector;
e8d00928
ML
41
42using sigrok::Logic;
28a4c9c5 43
51e77110 44namespace pv {
1b1ec774 45namespace data {
51e77110 46
f3d66e52
JH
47const int LogicSegment::MipMapScalePower = 4;
48const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
49const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
c063290a 50const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
4ceab49a 51
85a70280
SA
52LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
53 unsigned int unit_size, uint64_t samplerate) :
54 Segment(segment_id, samplerate, unit_size),
9d22929c
SA
55 owner_(owner),
56 last_append_sample_(0)
57{
58 memset(mip_map_, 0, sizeof(mip_map_));
59}
60
f3d66e52 61LogicSegment::~LogicSegment()
4ceab49a 62{
8dbbc7f0
JH
63 lock_guard<recursive_mutex> lock(mutex_);
64 for (MipMapLevel &l : mip_map_)
4ceab49a
JH
65 free(l.data);
66}
67
97cb532f 68inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
8cb71705 69{
9df8453f
MC
70#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
71 return *(uint64_t*)ptr;
72#else
8cb71705 73 uint64_t value = 0;
2ad82c2e 74 switch (unit_size_) {
8cb71705
MC
75 default:
76 value |= ((uint64_t)ptr[7]) << 56;
77 /* FALLTHRU */
78 case 7:
79 value |= ((uint64_t)ptr[6]) << 48;
80 /* FALLTHRU */
81 case 6:
82 value |= ((uint64_t)ptr[5]) << 40;
83 /* FALLTHRU */
84 case 5:
85 value |= ((uint64_t)ptr[4]) << 32;
86 /* FALLTHRU */
87 case 4:
88 value |= ((uint32_t)ptr[3]) << 24;
89 /* FALLTHRU */
90 case 3:
91 value |= ((uint32_t)ptr[2]) << 16;
92 /* FALLTHRU */
93 case 2:
94 value |= ptr[1] << 8;
95 /* FALLTHRU */
96 case 1:
97 value |= ptr[0];
98 /* FALLTHRU */
99 case 0:
100 break;
101 }
102 return value;
9df8453f 103#endif
8cb71705
MC
104}
105
97cb532f 106inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
8cb71705 107{
9df8453f
MC
108#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
109 *(uint64_t*)ptr = value;
110#else
2ad82c2e 111 switch (unit_size_) {
8cb71705
MC
112 default:
113 ptr[7] = value >> 56;
114 /* FALLTHRU */
115 case 7:
116 ptr[6] = value >> 48;
117 /* FALLTHRU */
118 case 6:
119 ptr[5] = value >> 40;
120 /* FALLTHRU */
121 case 5:
122 ptr[4] = value >> 32;
123 /* FALLTHRU */
124 case 4:
125 ptr[3] = value >> 24;
126 /* FALLTHRU */
127 case 3:
128 ptr[2] = value >> 16;
129 /* FALLTHRU */
130 case 2:
131 ptr[1] = value >> 8;
132 /* FALLTHRU */
133 case 1:
134 ptr[0] = value;
135 /* FALLTHRU */
136 case 0:
137 break;
138 }
9df8453f 139#endif
8cb71705
MC
140}
141
7db61e77 142void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
28a4c9c5 143{
8dbbc7f0
JH
144 assert(unit_size_ == logic->unit_size());
145 assert((logic->data_length() % unit_size_) == 0);
f556bc6a 146
9d22929c
SA
147 append_payload(logic->data_pointer(), logic->data_length());
148}
149
150void LogicSegment::append_payload(void *data, uint64_t data_size)
151{
152 assert((data_size % unit_size_) == 0);
153
8dbbc7f0 154 lock_guard<recursive_mutex> lock(mutex_);
7d29656f 155
cc69e8ae
UH
156 const uint64_t prev_sample_count = sample_count_;
157 const uint64_t sample_count = data_size / unit_size_;
7db61e77 158
9d22929c 159 append_samples(data, sample_count);
4ceab49a
JH
160
161 // Generate the first mip-map from the data
162 append_payload_to_mipmap();
7db61e77
SA
163
164 if (sample_count > 1)
165 owner_.notify_samples_added(this, prev_sample_count + 1,
166 prev_sample_count + 1 + sample_count);
167 else
168 owner_.notify_samples_added(this, prev_sample_count + 1,
169 prev_sample_count + 1);
4ceab49a
JH
170}
171
b82243f7
SA
172void LogicSegment::get_samples(int64_t start_sample,
173 int64_t end_sample, uint8_t* dest) const
ed990f11 174{
ed990f11 175 assert(start_sample >= 0);
8dbbc7f0 176 assert(start_sample <= (int64_t)sample_count_);
ed990f11 177 assert(end_sample >= 0);
8dbbc7f0 178 assert(end_sample <= (int64_t)sample_count_);
ed990f11 179 assert(start_sample <= end_sample);
b82243f7 180 assert(dest != nullptr);
ed990f11 181
8dbbc7f0 182 lock_guard<recursive_mutex> lock(mutex_);
ed990f11 183
b82243f7 184 get_raw_samples(start_sample, (end_sample - start_sample), dest);
26a883ed
SA
185}
186
f3d66e52 187void LogicSegment::get_subsampled_edges(
6f925ba9 188 vector<EdgePair> &edges,
60b0c2da 189 uint64_t start, uint64_t end,
b4bc9b55 190 float min_length, int sig_index, bool first_change_only)
2858b391 191{
60b0c2da
JH
192 uint64_t index = start;
193 unsigned int level;
7d0d64f9
JH
194 bool last_sample;
195 bool fast_forward;
0b02e057 196
2858b391 197 assert(start <= end);
0b02e057 198 assert(min_length > 0);
2858b391 199 assert(sig_index >= 0);
80d50141 200 assert(sig_index < 64);
2858b391 201
8dbbc7f0 202 lock_guard<recursive_mutex> lock(mutex_);
7d29656f 203
4cc0df94
SA
204 // Make sure we only process as many samples as we have
205 if (end > get_sample_count())
206 end = get_sample_count();
207
60b0c2da
JH
208 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
209 const unsigned int min_level = max((int)floorf(logf(min_length) /
0b02e057 210 LogMipMapScaleFactor) - 1, 0);
7d0d64f9 211 const uint64_t sig_mask = 1ULL << sig_index;
2858b391 212
7d0d64f9 213 // Store the initial state
26a883ed 214 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
b4bc9b55
SA
215 if (!first_change_only)
216 edges.emplace_back(index++, last_sample);
2858b391 217
2ad82c2e 218 while (index + block_length <= end) {
7d0d64f9 219 //----- Continue to search -----//
0b02e057 220 level = min_level;
f06ab143
JH
221
222 // We cannot fast-forward if there is no mip-map data at
53aa9bb4 223 // the minimum level.
4c60462b 224 fast_forward = (mip_map_[level].data != nullptr);
2858b391 225
2ad82c2e 226 if (min_length < MipMapScaleFactor) {
0b02e057
JH
227 // Search individual samples up to the beginning of
228 // the next first level mip map block
53aa9bb4 229 const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
0b02e057 230
333d5bbc 231 for (; index < final_index &&
c28fa62b 232 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
2ad82c2e 233 index++) {
53aa9bb4
SA
234
235 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
7d0d64f9
JH
236
237 // If there was a change we cannot fast forward
333d5bbc 238 if (sample != last_sample) {
7d0d64f9 239 fast_forward = false;
0b02e057 240 break;
7d0d64f9 241 }
0b02e057 242 }
2ad82c2e 243 } else {
0b02e057
JH
244 // If resolution is less than a mip map block,
245 // round up to the beginning of the mip-map block
246 // for this level of detail
53aa9bb4 247 const int min_level_scale_power = (level + 1) * MipMapScalePower;
0b02e057 248 index = pow2_ceil(index, min_level_scale_power);
333d5bbc 249 if (index >= end)
0b02e057
JH
250 break;
251
7d0d64f9 252 // We can fast forward only if there was no change
53aa9bb4 253 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
f06ab143
JH
254 if (last_sample != sample)
255 fast_forward = false;
0b02e057
JH
256 }
257
333d5bbc 258 if (fast_forward) {
7d0d64f9
JH
259
260 // Fast forward: This involves zooming out to higher
261 // levels of the mip map searching for changes, then
262 // zooming in on them to find the point where the edge
263 // begins.
264
265 // Slide right and zoom out at the beginnings of mip-map
266 // blocks until we encounter a change
1f1d55ce 267 while (true) {
53aa9bb4
SA
268 const int level_scale_power = (level + 1) * MipMapScalePower;
269 const uint64_t offset = index >> level_scale_power;
7d0d64f9
JH
270
271 // Check if we reached the last block at this
272 // level, or if there was a change in this block
8dbbc7f0 273 if (offset >= mip_map_[level].length ||
53aa9bb4 274 (get_subsample(level, offset) & sig_mask))
0b02e057
JH
275 break;
276
c28fa62b 277 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
7d0d64f9
JH
278 // If we are now at the beginning of a
279 // higher level mip-map block ascend one
280 // level
53aa9bb4 281 if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
7d0d64f9
JH
282 break;
283
284 level++;
285 } else {
286 // Slide right to the beginning of the
287 // next mip map block
53aa9bb4 288 index = pow2_ceil(index + 1, level_scale_power);
7d0d64f9 289 }
0b02e057 290 }
7d0d64f9
JH
291
292 // Zoom in, and slide right until we encounter a change,
293 // and repeat until we reach min_level
1f1d55ce 294 while (true) {
8dbbc7f0 295 assert(mip_map_[level].data);
7d0d64f9 296
53aa9bb4
SA
297 const int level_scale_power = (level + 1) * MipMapScalePower;
298 const uint64_t offset = index >> level_scale_power;
7d0d64f9
JH
299
300 // Check if we reached the last block at this
301 // level, or if there was a change in this block
8dbbc7f0 302 if (offset >= mip_map_[level].length ||
53aa9bb4 303 (get_subsample(level, offset) & sig_mask)) {
7d0d64f9
JH
304 // Zoom in unless we reached the minimum
305 // zoom
333d5bbc 306 if (level == min_level)
7d0d64f9
JH
307 break;
308
309 level--;
310 } else {
311 // Slide right to the beginning of the
312 // next mip map block
53aa9bb4 313 index = pow2_ceil(index + 1, level_scale_power);
7d0d64f9 314 }
0b02e057 315 }
0b02e057 316
7d0d64f9
JH
317 // If individual samples within the limit of resolution,
318 // do a linear search for the next transition within the
319 // block
333d5bbc
UH
320 if (min_length < MipMapScaleFactor) {
321 for (; index < end; index++) {
53aa9bb4 322 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
333d5bbc 323 if (sample != last_sample)
7d0d64f9
JH
324 break;
325 }
0b02e057
JH
326 }
327 }
328
7d0d64f9
JH
329 //----- Store the edge -----//
330
331 // Take the last sample of the quanization block
332 const int64_t final_index = index + block_length;
333d5bbc 333 if (index + block_length > end)
7d0d64f9
JH
334 break;
335
336 // Store the final state
53aa9bb4 337 const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
326cf6fe 338 edges.emplace_back(index, final_sample);
7d0d64f9
JH
339
340 index = final_index;
341 last_sample = final_sample;
b4bc9b55
SA
342
343 if (first_change_only)
344 break;
2858b391
JH
345 }
346
347 // Add the final state
b4bc9b55
SA
348 if (!first_change_only) {
349 const bool end_sample = get_unpacked_sample(end) & sig_mask;
350 if (last_sample != end_sample)
351 edges.emplace_back(end, end_sample);
352 edges.emplace_back(end + 1, end_sample);
353 }
354}
355
356void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
357 uint64_t origin_sample, float min_length, int sig_index)
358{
8e9e525e
SA
359 if (origin_sample >= sample_count_)
360 return;
361
b4bc9b55
SA
362 // Put the edges vector on the heap, it can become quite big until we can
363 // use a get_subsampled_edges() implementation that searches backwards
364 vector<EdgePair>* edges = new vector<EdgePair>;
365
e0544801 366 // Get all edges to the left of origin_sample
b4bc9b55
SA
367 get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);
368
369 // If we don't specify "first only", the first and last edge are the states
370 // at samples 0 and origin_sample. If only those exist, there are no edges
371 if (edges->size() == 2) {
372 delete edges;
373 return;
374 }
375
376 // Dismiss the entry for origin_sample so that back() gives us the
377 // real last entry
378 edges->pop_back();
379 dest.push_back(edges->back());
380 edges->clear();
381
e0544801 382 // Get first edge to the right of origin_sample
b4bc9b55
SA
383 get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);
384
385 // "first only" is specified, so nothing needs to be dismissed
386 if (edges->size() == 0) {
387 delete edges;
388 return;
389 }
390
391 dest.push_back(edges->front());
392
393 delete edges;
394}
395
396void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
397{
398 lock_guard<recursive_mutex> lock(mutex_);
399
400 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
401 MipMapDataUnit) * MipMapDataUnit;
402
403 if (new_data_length > m.data_length) {
404 m.data_length = new_data_length;
405
406 // Padding is added to allow for the uint64_t write word
407 m.data = realloc(m.data, new_data_length * unit_size_ +
408 sizeof(uint64_t));
409 }
410}
411
412void LogicSegment::append_payload_to_mipmap()
413{
414 MipMapLevel &m0 = mip_map_[0];
415 uint64_t prev_length;
416 uint8_t *dest_ptr;
65c92359 417 SegmentDataIterator* it;
b4bc9b55
SA
418 uint64_t accumulator;
419 unsigned int diff_counter;
420
421 // Expand the data buffer to fit the new samples
422 prev_length = m0.length;
423 m0.length = sample_count_ / MipMapScaleFactor;
424
425 // Break off if there are no new samples to compute
426 if (m0.length == prev_length)
427 return;
428
429 reallocate_mipmap_level(m0);
430
431 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
432
433 // Iterate through the samples to populate the first level mipmap
434 const uint64_t start_sample = prev_length * MipMapScaleFactor;
435 const uint64_t end_sample = m0.length * MipMapScaleFactor;
436
65c92359 437 it = begin_sample_iteration(start_sample);
b4bc9b55
SA
438 for (uint64_t i = start_sample; i < end_sample;) {
439 // Accumulate transitions which have occurred in this sample
440 accumulator = 0;
441 diff_counter = MipMapScaleFactor;
442 while (diff_counter-- > 0) {
65c92359 443 const uint64_t sample = unpack_sample(get_iterator_value(it));
b4bc9b55
SA
444 accumulator |= last_append_sample_ ^ sample;
445 last_append_sample_ = sample;
65c92359 446 continue_sample_iteration(it, 1);
b4bc9b55
SA
447 i++;
448 }
449
450 pack_sample(dest_ptr, accumulator);
451 dest_ptr += unit_size_;
452 }
65c92359 453 end_sample_iteration(it);
b4bc9b55
SA
454
455 // Compute higher level mipmaps
456 for (unsigned int level = 1; level < ScaleStepCount; level++) {
457 MipMapLevel &m = mip_map_[level];
458 const MipMapLevel &ml = mip_map_[level - 1];
459
460 // Expand the data buffer to fit the new samples
461 prev_length = m.length;
462 m.length = ml.length / MipMapScaleFactor;
463
464 // Break off if there are no more samples to be computed
465 if (m.length == prev_length)
466 break;
467
468 reallocate_mipmap_level(m);
469
470 // Subsample the lower level
471 const uint8_t* src_ptr = (uint8_t*)ml.data +
472 unit_size_ * prev_length * MipMapScaleFactor;
473 const uint8_t *const end_dest_ptr =
474 (uint8_t*)m.data + unit_size_ * m.length;
475
476 for (dest_ptr = (uint8_t*)m.data +
477 unit_size_ * prev_length;
478 dest_ptr < end_dest_ptr;
479 dest_ptr += unit_size_) {
480 accumulator = 0;
481 diff_counter = MipMapScaleFactor;
482 while (diff_counter-- > 0) {
483 accumulator |= unpack_sample(src_ptr);
484 src_ptr += unit_size_;
485 }
486
487 pack_sample(dest_ptr, accumulator);
488 }
489 }
490}
491
492uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
493{
494 assert(index < sample_count_);
495
496 assert(unit_size_ <= 8); // 8 * 8 = 64 channels
497 uint8_t data[8];
498
499 get_raw_samples(index, 1, data);
500
501 return unpack_sample(data);
2858b391 502}
0b02e057 503
f3d66e52 504uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
b2bcbe51
JH
505{
506 assert(level >= 0);
8dbbc7f0
JH
507 assert(mip_map_[level].data);
508 return unpack_sample((uint8_t*)mip_map_[level].data +
509 unit_size_ * offset);
b2bcbe51
JH
510}
511
f3d66e52 512uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
0b02e057 513{
72708385 514 const uint64_t p = UINT64_C(1) << power;
60b0c2da 515 return (x + p - 1) / p * p;
0b02e057 516}
51e77110 517
1b1ec774 518} // namespace data
51e77110 519} // namespace pv