]> sigrok.org Git - libsigrokdecode.git/blame - decoders/rtc8564/pd.py
rtc8564: Define annotation rows.
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
CommitLineData
ed5f826a 1##
50bd5d25 2## This file is part of the libsigrokdecode project.
ed5f826a
UH
3##
4## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
ed5f826a
UH
21import sigrokdecode as srd
22
ed5f826a
UH
23# Return the specified BCD number (max. 8 bits) as integer.
24def bcd2int(b):
25 return (b & 0x0f) + ((b >> 4) * 10)
26
27class Decoder(srd.Decoder):
28 api_version = 1
29 id = 'rtc8564'
30 name = 'RTC-8564'
31 longname = 'Epson RTC-8564 JE/NB'
a465436e 32 desc = 'Realtime clock module protocol.'
ed5f826a
UH
33 license = 'gplv2+'
34 inputs = ['i2c']
35 outputs = ['rtc8564']
36 probes = []
b77614bc 37 optional_probes = [
847e488b
UH
38 {'id': 'clkout', 'name': 'CLKOUT', 'desc': 'Clock output'},
39 {'id': 'clkoe', 'name': 'CLKOE', 'desc': 'Clock output enable'},
40 {'id': 'int', 'name': 'INT#', 'desc': 'Interrupt'},
ed5f826a
UH
41 ]
42 options = {}
43 annotations = [
a4289441
UH
44 ['reg-0x00', 'Register 0x00'],
45 ['reg-0x01', 'Register 0x01'],
46 ['reg-0x02', 'Register 0x02'],
47 ['reg-0x03', 'Register 0x03'],
48 ['reg-0x04', 'Register 0x04'],
49 ['reg-0x05', 'Register 0x05'],
50 ['reg-0x06', 'Register 0x06'],
51 ['reg-0x07', 'Register 0x07'],
52 ['reg-0x08', 'Register 0x08'],
53 ['read', 'Read date/time'],
54 ['write', 'Write date/time'],
3161ab5a 55 ['bits', 'Bits'],
ed5f826a 56 ]
3161ab5a
UH
57 annotation_rows = (
58 ('bits', 'Bits', (11,)),
59 ('regs', 'Registers', tuple(range(0, 8 + 1))),
60 ('date-time', 'Date/time', (9, 10)),
61 )
ed5f826a
UH
62
63 def __init__(self, **kwargs):
2b716038 64 self.state = 'IDLE'
ed5f826a
UH
65 self.hours = -1
66 self.minutes = -1
67 self.seconds = -1
68 self.days = -1
69 self.months = -1
70 self.years = -1
71
8915b346 72 def start(self):
c515eed7 73 # self.out_python = self.register(srd.OUTPUT_PYTHON)
be465111 74 self.out_ann = self.register(srd.OUTPUT_ANN)
ed5f826a 75
ed5f826a
UH
76 def putx(self, data):
77 self.put(self.ss, self.es, self.out_ann, data)
78
79 def handle_reg_0x00(self, b): # Control register 1
80 pass
81
82 def handle_reg_0x01(self, b): # Control register 2
83 ti_tp = 1 if (b & (1 << 4)) else 0
84 af = 1 if (b & (1 << 3)) else 0
85 tf = 1 if (b & (1 << 2)) else 0
86 aie = 1 if (b & (1 << 1)) else 0
87 tie = 1 if (b & (1 << 0)) else 0
88
89 ann = ''
90
91 s = 'repeated' if ti_tp else 'single-shot'
92 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
93 'events\n' % (ti_tp, s)
94 s = '' if af else 'no '
95 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
96 s = '' if tf else 'no '
97 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
98 s = 'enabled' if aie else 'prohibited'
99 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
100 'occurs\n' % (aie, s)
101 s = 'enabled' if tie else 'prohibited'
102 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
103 'event occurs\n' % (tie, s)
104
a4289441 105 self.putx([1, [ann]])
ed5f826a
UH
106
107 def handle_reg_0x02(self, b): # Seconds / Voltage-low flag
108 self.seconds = bcd2int(b & 0x7f)
a4289441 109 self.putx([2, ['Seconds: %d' % self.seconds]])
ed5f826a 110 vl = 1 if (b & (1 << 7)) else 0
3161ab5a 111 self.putx([11, ['Voltage low (VL) bit: %d' % vl]])
ed5f826a
UH
112
113 def handle_reg_0x03(self, b): # Minutes
114 self.minutes = bcd2int(b & 0x7f)
a4289441 115 self.putx([3, ['Minutes: %d' % self.minutes]])
ed5f826a
UH
116
117 def handle_reg_0x04(self, b): # Hours
118 self.hours = bcd2int(b & 0x3f)
a4289441 119 self.putx([4, ['Hours: %d' % self.hours]])
ed5f826a
UH
120
121 def handle_reg_0x05(self, b): # Days
122 self.days = bcd2int(b & 0x3f)
a4289441 123 self.putx([5, ['Days: %d' % self.days]])
ed5f826a
UH
124
125 def handle_reg_0x06(self, b): # Day counter
126 pass
127
128 def handle_reg_0x07(self, b): # Months / century
129 # TODO: Handle century bit.
130 self.months = bcd2int(b & 0x1f)
a4289441 131 self.putx([7, ['Months: %d' % self.months]])
ed5f826a
UH
132
133 def handle_reg_0x08(self, b): # Years
134 self.years = bcd2int(b & 0xff)
a4289441 135 self.putx([8, ['Years: %d' % self.years]])
ed5f826a
UH
136
137 def handle_reg_0x09(self, b): # Alarm, minute
138 pass
139
140 def handle_reg_0x0a(self, b): # Alarm, hour
141 pass
142
143 def handle_reg_0x0b(self, b): # Alarm, day
144 pass
145
146 def handle_reg_0x0c(self, b): # Alarm, weekday
147 pass
148
149 def handle_reg_0x0d(self, b): # CLKOUT output
150 pass
151
152 def handle_reg_0x0e(self, b): # Timer setting
153 pass
154
155 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
156 pass
157
158 def decode(self, ss, es, data):
1b75abfd 159 cmd, databyte = data
ed5f826a 160
00197484 161 # Store the start/end samples of this I²C packet.
ed5f826a
UH
162 self.ss, self.es = ss, es
163
164 # State machine.
2b716038 165 if self.state == 'IDLE':
00197484 166 # Wait for an I²C START condition.
ed5f826a
UH
167 if cmd != 'START':
168 return
2b716038 169 self.state = 'GET SLAVE ADDR'
ed5f826a 170 self.block_start_sample = ss
2b716038 171 elif self.state == 'GET SLAVE ADDR':
ed5f826a
UH
172 # Wait for an address write operation.
173 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
174 if cmd != 'ADDRESS WRITE':
175 return
2b716038
UH
176 self.state = 'GET REG ADDR'
177 elif self.state == 'GET REG ADDR':
ed5f826a
UH
178 # Wait for a data write (master selects the slave register).
179 if cmd != 'DATA WRITE':
180 return
181 self.reg = databyte
2b716038
UH
182 self.state = 'WRITE RTC REGS'
183 elif self.state == 'WRITE RTC REGS':
ed5f826a
UH
184 # If we see a Repeated Start here, it's probably an RTC read.
185 if cmd == 'START REPEAT':
2b716038 186 self.state = 'READ RTC REGS'
ed5f826a
UH
187 return
188 # Otherwise: Get data bytes until a STOP condition occurs.
189 if cmd == 'DATA WRITE':
190 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
191 handle_reg(databyte)
192 self.reg += 1
193 # TODO: Check for NACK!
194 elif cmd == 'STOP':
195 # TODO: Handle read/write of only parts of these items.
196 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
197 self.years, self.hours, self.minutes, self.seconds)
198 self.put(self.block_start_sample, es, self.out_ann,
a4289441 199 [9, ['Write date/time: %s' % d]])
2b716038 200 self.state = 'IDLE'
ed5f826a
UH
201 else:
202 pass # TODO
2b716038 203 elif self.state == 'READ RTC REGS':
ed5f826a
UH
204 # Wait for an address read operation.
205 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
206 if cmd == 'ADDRESS READ':
2b716038 207 self.state = 'READ RTC REGS2'
ed5f826a
UH
208 return
209 else:
e4f82268 210 pass # TODO
2b716038 211 elif self.state == 'READ RTC REGS2':
ed5f826a
UH
212 if cmd == 'DATA READ':
213 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
214 handle_reg(databyte)
215 self.reg += 1
216 # TODO: Check for NACK!
217 elif cmd == 'STOP':
218 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
219 self.years, self.hours, self.minutes, self.seconds)
220 self.put(self.block_start_sample, es, self.out_ann,
a4289441 221 [10, ['Read date/time: %s' % d]])
2b716038 222 self.state = 'IDLE'
ed5f826a
UH
223 else:
224 pass # TODO?
225 else:
0eeeb544 226 raise Exception('Invalid state: %s' % self.state)
ed5f826a 227