]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/rtc8564/pd.py
rtc8564: Define annotation rows.
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22
23# Return the specified BCD number (max. 8 bits) as integer.
24def bcd2int(b):
25 return (b & 0x0f) + ((b >> 4) * 10)
26
27class Decoder(srd.Decoder):
28 api_version = 1
29 id = 'rtc8564'
30 name = 'RTC-8564'
31 longname = 'Epson RTC-8564 JE/NB'
32 desc = 'Realtime clock module protocol.'
33 license = 'gplv2+'
34 inputs = ['i2c']
35 outputs = ['rtc8564']
36 probes = []
37 optional_probes = [
38 {'id': 'clkout', 'name': 'CLKOUT', 'desc': 'Clock output'},
39 {'id': 'clkoe', 'name': 'CLKOE', 'desc': 'Clock output enable'},
40 {'id': 'int', 'name': 'INT#', 'desc': 'Interrupt'},
41 ]
42 options = {}
43 annotations = [
44 ['reg-0x00', 'Register 0x00'],
45 ['reg-0x01', 'Register 0x01'],
46 ['reg-0x02', 'Register 0x02'],
47 ['reg-0x03', 'Register 0x03'],
48 ['reg-0x04', 'Register 0x04'],
49 ['reg-0x05', 'Register 0x05'],
50 ['reg-0x06', 'Register 0x06'],
51 ['reg-0x07', 'Register 0x07'],
52 ['reg-0x08', 'Register 0x08'],
53 ['read', 'Read date/time'],
54 ['write', 'Write date/time'],
55 ['bits', 'Bits'],
56 ]
57 annotation_rows = (
58 ('bits', 'Bits', (11,)),
59 ('regs', 'Registers', tuple(range(0, 8 + 1))),
60 ('date-time', 'Date/time', (9, 10)),
61 )
62
63 def __init__(self, **kwargs):
64 self.state = 'IDLE'
65 self.hours = -1
66 self.minutes = -1
67 self.seconds = -1
68 self.days = -1
69 self.months = -1
70 self.years = -1
71
72 def start(self):
73 # self.out_python = self.register(srd.OUTPUT_PYTHON)
74 self.out_ann = self.register(srd.OUTPUT_ANN)
75
76 def putx(self, data):
77 self.put(self.ss, self.es, self.out_ann, data)
78
79 def handle_reg_0x00(self, b): # Control register 1
80 pass
81
82 def handle_reg_0x01(self, b): # Control register 2
83 ti_tp = 1 if (b & (1 << 4)) else 0
84 af = 1 if (b & (1 << 3)) else 0
85 tf = 1 if (b & (1 << 2)) else 0
86 aie = 1 if (b & (1 << 1)) else 0
87 tie = 1 if (b & (1 << 0)) else 0
88
89 ann = ''
90
91 s = 'repeated' if ti_tp else 'single-shot'
92 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
93 'events\n' % (ti_tp, s)
94 s = '' if af else 'no '
95 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
96 s = '' if tf else 'no '
97 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
98 s = 'enabled' if aie else 'prohibited'
99 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
100 'occurs\n' % (aie, s)
101 s = 'enabled' if tie else 'prohibited'
102 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
103 'event occurs\n' % (tie, s)
104
105 self.putx([1, [ann]])
106
107 def handle_reg_0x02(self, b): # Seconds / Voltage-low flag
108 self.seconds = bcd2int(b & 0x7f)
109 self.putx([2, ['Seconds: %d' % self.seconds]])
110 vl = 1 if (b & (1 << 7)) else 0
111 self.putx([11, ['Voltage low (VL) bit: %d' % vl]])
112
113 def handle_reg_0x03(self, b): # Minutes
114 self.minutes = bcd2int(b & 0x7f)
115 self.putx([3, ['Minutes: %d' % self.minutes]])
116
117 def handle_reg_0x04(self, b): # Hours
118 self.hours = bcd2int(b & 0x3f)
119 self.putx([4, ['Hours: %d' % self.hours]])
120
121 def handle_reg_0x05(self, b): # Days
122 self.days = bcd2int(b & 0x3f)
123 self.putx([5, ['Days: %d' % self.days]])
124
125 def handle_reg_0x06(self, b): # Day counter
126 pass
127
128 def handle_reg_0x07(self, b): # Months / century
129 # TODO: Handle century bit.
130 self.months = bcd2int(b & 0x1f)
131 self.putx([7, ['Months: %d' % self.months]])
132
133 def handle_reg_0x08(self, b): # Years
134 self.years = bcd2int(b & 0xff)
135 self.putx([8, ['Years: %d' % self.years]])
136
137 def handle_reg_0x09(self, b): # Alarm, minute
138 pass
139
140 def handle_reg_0x0a(self, b): # Alarm, hour
141 pass
142
143 def handle_reg_0x0b(self, b): # Alarm, day
144 pass
145
146 def handle_reg_0x0c(self, b): # Alarm, weekday
147 pass
148
149 def handle_reg_0x0d(self, b): # CLKOUT output
150 pass
151
152 def handle_reg_0x0e(self, b): # Timer setting
153 pass
154
155 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
156 pass
157
158 def decode(self, ss, es, data):
159 cmd, databyte = data
160
161 # Store the start/end samples of this I²C packet.
162 self.ss, self.es = ss, es
163
164 # State machine.
165 if self.state == 'IDLE':
166 # Wait for an I²C START condition.
167 if cmd != 'START':
168 return
169 self.state = 'GET SLAVE ADDR'
170 self.block_start_sample = ss
171 elif self.state == 'GET SLAVE ADDR':
172 # Wait for an address write operation.
173 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
174 if cmd != 'ADDRESS WRITE':
175 return
176 self.state = 'GET REG ADDR'
177 elif self.state == 'GET REG ADDR':
178 # Wait for a data write (master selects the slave register).
179 if cmd != 'DATA WRITE':
180 return
181 self.reg = databyte
182 self.state = 'WRITE RTC REGS'
183 elif self.state == 'WRITE RTC REGS':
184 # If we see a Repeated Start here, it's probably an RTC read.
185 if cmd == 'START REPEAT':
186 self.state = 'READ RTC REGS'
187 return
188 # Otherwise: Get data bytes until a STOP condition occurs.
189 if cmd == 'DATA WRITE':
190 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
191 handle_reg(databyte)
192 self.reg += 1
193 # TODO: Check for NACK!
194 elif cmd == 'STOP':
195 # TODO: Handle read/write of only parts of these items.
196 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
197 self.years, self.hours, self.minutes, self.seconds)
198 self.put(self.block_start_sample, es, self.out_ann,
199 [9, ['Write date/time: %s' % d]])
200 self.state = 'IDLE'
201 else:
202 pass # TODO
203 elif self.state == 'READ RTC REGS':
204 # Wait for an address read operation.
205 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
206 if cmd == 'ADDRESS READ':
207 self.state = 'READ RTC REGS2'
208 return
209 else:
210 pass # TODO
211 elif self.state == 'READ RTC REGS2':
212 if cmd == 'DATA READ':
213 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
214 handle_reg(databyte)
215 self.reg += 1
216 # TODO: Check for NACK!
217 elif cmd == 'STOP':
218 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
219 self.years, self.hours, self.minutes, self.seconds)
220 self.put(self.block_start_sample, es, self.out_ann,
221 [10, ['Read date/time: %s' % d]])
222 self.state = 'IDLE'
223 else:
224 pass # TODO?
225 else:
226 raise Exception('Invalid state: %s' % self.state)
227