]> sigrok.org Git - libsigrokdecode.git/blame - decoders/i2c.py
convert data coming in from a PD to C structs
[libsigrokdecode.git] / decoders / i2c.py
CommitLineData
0588ed70
UH
1##
2## This file is part of the sigrok project.
3##
7b86f0bc 4## Copyright (C) 2010-2011 Uwe Hermann <uwe@hermann-uwe.de>
0588ed70
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# I2C protocol decoder
23#
24
25#
26# The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master
27# bus using two signals (SCL = serial clock line, SDA = serial data line).
28#
29# There can be many devices on the same bus. Each device can potentially be
30# master or slave (and that can change during runtime). Both slave and master
31# can potentially play the transmitter or receiver role (this can also
32# change at runtime).
33#
34# Possible maximum data rates:
35# - Standard mode: 100 kbit/s
36# - Fast mode: 400 kbit/s
37# - Fast-mode Plus: 1 Mbit/s
38# - High-speed mode: 3.4 Mbit/s
39#
40# START condition (S): SDA = falling, SCL = high
41# Repeated START condition (Sr): same as S
7b86f0bc 42# Data bit sampling: SCL = rising
0588ed70
UH
43# STOP condition (P): SDA = rising, SCL = high
44#
33e72c54 45# All data bytes on SDA are exactly 8 bits long (transmitted MSB-first).
0588ed70
UH
46# Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low,
47# that indicates an ACK, if it's high that indicates a NACK.
48#
49# After the first START condition, a master sends the device address of the
50# slave it wants to talk to. Slave addresses are 7 bits long (MSB-first).
33e72c54 51# After those 7 bits, a data direction bit is sent. If the bit is low that
0588ed70
UH
52# indicates a WRITE operation, if it's high that indicates a READ operation.
53#
54# Later an optional 10bit slave addressing scheme was added.
55#
56# Documentation:
57# http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec)
58# http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec)
59# http://en.wikipedia.org/wiki/I2C
60#
61
62# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
63# TODO: Handle clock stretching.
64# TODO: Handle combined messages / repeated START.
65# TODO: Implement support for 7bit and 10bit slave addresses.
66# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
67# TODO: Implement support for detecting various bus errors.
68
23fb2e12
UH
69#
70# I2C output format:
71#
72# The output consists of a (Python) list of I2C "packets", each of which
73# has an (implicit) index number (its index in the list).
74# Each packet consists of a Python dict with certain key/value pairs.
75#
76# TODO: Make this a list later instead of a dict?
77#
78# 'type': (string)
79# - 'S' (START condition)
80# - 'Sr' (Repeated START)
81# - 'AR' (Address, read)
82# - 'AW' (Address, write)
83# - 'DR' (Data, read)
84# - 'DW' (Data, write)
85# - 'P' (STOP condition)
86# 'range': (tuple of 2 integers, the min/max samplenumber of this range)
87# - (min, max)
88# - min/max can also be identical.
89# 'data': (actual data as integer ???) TODO: This can be very variable...
90# 'ann': (string; additional annotations / comments)
91#
23fb2e12
UH
92# TODO: I2C address of slaves.
93# TODO: Handle multiple different I2C devices on same bus
94# -> we need to decode multiple protocols at the same time.
23fb2e12
UH
95#
96
97#
98# I2C input format:
99#
100# signals:
101# [[id, channel, description], ...] # TODO
102#
103# Example:
104# {'id': 'SCL', 'ch': 5, 'desc': 'Serial clock line'}
105# {'id': 'SDA', 'ch': 7, 'desc': 'Serial data line'}
106# ...
107#
108# {'inbuf': [...],
109# 'signals': [{'SCL': }]}
110#
111
bc5f5a43 112import sigrokdecode
b2c19614 113
15969949
BV
114# values are verbose and short annotation, respectively
115protocol = {
116 'START': ['START', 'S'],
117 'START_REPEAT': ['START REPEAT', 'Sr'],
118 'STOP': ['STOP', 'P'],
119 'ACK': ['ACK', 'A'],
120 'NACK': ['NACK', 'N'],
121 'ADDRESS_READ': ['ADDRESS READ', 'AR'],
122 'ADDRESS_WRITE': ['ADDRESS WRITE','AW'],
123 'DATA_READ': ['DATA READ', 'DR'],
124 'DATA_WRITE': ['DATA WRITE', 'DW'],
125}
126# export protocol keys as symbols for i2c decoders up the stack
127EXPORT = [ protocol.keys() ]
e5080882 128
400f9ae7
UH
129# States
130FIND_START = 0
131FIND_ADDRESS = 1
132FIND_DATA = 2
133
15969949
BV
134# annotation feed formats
135ANN_SHIFTED = 0
136ANN_SHIFTED_SHORT = 1
137ANN_RAW = 2
138
f39d2404 139
bc5f5a43 140class Decoder(sigrokdecode.Decoder):
67e847fd 141 id = 'i2c'
f39d2404
UH
142 name = 'I2C'
143 longname = 'Inter-Integrated Circuit (I2C) bus'
144 desc = 'I2C is a two-wire, multi-master, serial bus.'
145 longdesc = '...'
146 author = 'Uwe Hermann'
147 email = 'uwe@hermann-uwe.de'
148 license = 'gplv2+'
149 inputs = ['logic']
150 outputs = ['i2c']
bc5f5a43
BV
151 probes = [
152 {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
153 {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
154 ]
f39d2404
UH
155 options = {
156 'address-space': ['Address space (in bits)', 7],
ad2dc0de 157 }
15969949
BV
158 annotation = [
159 # ANN_SHIFTED
160 ["7-bit shifted hex",
161 "Read/Write bit shifted out from the 8-bit i2c slave address"],
162 # ANN_SHIFTED_SHORT
163 ["7-bit shifted hex (short)",
164 "Read/Write bit shifted out from the 8-bit i2c slave address"],
165 # ANN_RAW
166 ["Raw hex", "Unaltered raw data"]
167 ]
0588ed70 168
3643fc3f 169 def __init__(self, **kwargs):
e5080882
BV
170 self.output_protocol = None
171 self.output_annotation = None
bc5f5a43 172 self.samplecnt = 0
f39d2404
UH
173 self.bitcount = 0
174 self.databyte = 0
175 self.wr = -1
176 self.startsample = -1
5dd9af5b 177 self.is_repeat_start = 0
400f9ae7 178 self.state = FIND_START
f39d2404
UH
179 self.oldscl = None
180 self.oldsda = None
181
3643fc3f 182 def start(self, metadata):
15969949
BV
183 self.output_protocol = self.output_new(1)
184 self.output_annotation = self.output_new(0)
3643fc3f 185
f39d2404
UH
186 def report(self):
187 pass
188
7b86f0bc 189 def is_start_condition(self, scl, sda):
c4262fd6 190 """START condition (S): SDA = falling, SCL = high"""
7b86f0bc
UH
191 if (self.oldsda == 1 and sda == 0) and scl == 1:
192 return True
193 return False
194
195 def is_data_bit(self, scl, sda):
c4262fd6 196 """Data sampling of receiver: SCL = rising"""
7b86f0bc
UH
197 if self.oldscl == 0 and scl == 1:
198 return True
199 return False
200
201 def is_stop_condition(self, scl, sda):
c4262fd6 202 """STOP condition (P): SDA = rising, SCL = high"""
7b86f0bc
UH
203 if (self.oldsda == 0 and sda == 1) and scl == 1:
204 return True
205 return False
206
e5080882
BV
207 def found_start(self, scl, sda):
208 if self.is_repeat_start == 1:
15969949 209 cmd = 'START_REPEAT'
e5080882 210 else:
15969949
BV
211 cmd = 'START'
212 self.put(self.output_protocol, [ cmd ])
213 self.put(self.output_annotation, [ ANN_SHIFTED, [protocol[cmd][0]] ])
214 self.put(self.output_annotation, [ ANN_SHIFTED_SHORT, [protocol[cmd][1]] ])
e5080882 215
400f9ae7 216 self.state = FIND_ADDRESS
7b86f0bc 217 self.bitcount = self.databyte = 0
5dd9af5b 218 self.is_repeat_start = 1
7b86f0bc 219 self.wr = -1
7b86f0bc 220
e5080882 221 def found_address_or_data(self, scl, sda):
c4262fd6 222 """Gather 8 bits of data plus the ACK/NACK bit."""
7b86f0bc
UH
223
224 if self.startsample == -1:
bc5f5a43
BV
225 # TODO: should be samplenum, as received from the feed
226 self.startsample = self.samplecnt
7b86f0bc
UH
227 self.bitcount += 1
228
229 # Address and data are transmitted MSB-first.
230 self.databyte <<= 1
231 self.databyte |= sda
232
233 # Return if we haven't collected all 8 + 1 bits, yet.
234 if self.bitcount != 9:
235 return []
236
15969949
BV
237 # send raw output annotation before we start shifting out
238 # read/write and ack/nack bits
239 self.put(self.output_annotation, [ANN_RAW, ["0x%.2x" % self.databyte]])
240
7b86f0bc
UH
241 # We received 8 address/data bits and the ACK/NACK bit.
242 self.databyte >>= 1 # Shift out unwanted ACK/NACK bit here.
243
400f9ae7 244 if self.state == FIND_ADDRESS:
7b86f0bc
UH
245 d = self.databyte & 0xfe
246 # The READ/WRITE bit is only in address bytes, not data bytes.
e9de9c90 247 self.wr = 1 if (self.databyte & 1) else 0
400f9ae7 248 elif self.state == FIND_DATA:
7b86f0bc
UH
249 d = self.databyte
250 else:
251 # TODO: Error?
252 pass
253
15969949
BV
254 # last bit that came in was the ACK/NACK bit (1 = NACK)
255 if sda == 1:
256 ack_bit = 'NACK'
257 else:
258 ack_bit = 'ACK'
259
7b86f0bc 260 # TODO: Simplify.
400f9ae7 261 if self.state == FIND_ADDRESS and self.wr == 1:
15969949 262 cmd = 'ADDRESS_WRITE'
400f9ae7 263 elif self.state == FIND_ADDRESS and self.wr == 0:
15969949 264 cmd = 'ADDRESS_READ'
400f9ae7 265 elif self.state == FIND_DATA and self.wr == 1:
15969949 266 cmd = 'DATA_WRITE'
400f9ae7 267 elif self.state == FIND_DATA and self.wr == 0:
15969949
BV
268 cmd = 'DATA_READ'
269 self.put(self.output_protocol, [ [cmd, d], [ack_bit] ] )
270 self.put(self.output_annotation, [ANN_SHIFTED, [
271 "%s" % protocol[cmd][0],
272 "0x%02x" % d,
273 "%s" % protocol[ack_bit][0]]
274 ] )
275 self.put(self.output_annotation, [ANN_SHIFTED_SHORT, [
276 "%s" % protocol[cmd][1],
277 "0x%02x" % d,
278 "%s" % protocol[ack_bit][1]]
279 ] )
7b86f0bc 280
7b86f0bc
UH
281 self.bitcount = self.databyte = 0
282 self.startsample = -1
283
400f9ae7
UH
284 if self.state == FIND_ADDRESS:
285 self.state = FIND_DATA
286 elif self.state == FIND_DATA:
7b86f0bc
UH
287 # There could be multiple data bytes in a row.
288 # So, either find a STOP condition or another data byte next.
289 pass
290
e5080882 291 def found_stop(self, scl, sda):
15969949
BV
292 self.put(self.output_protocol, [ 'STOP' ])
293 self.put(self.output_annotation, [ ANN_SHIFTED, [protocol['STOP'][0]] ])
294 self.put(self.output_annotation, [ ANN_SHIFTED_SHORT, [protocol['STOP'][1]] ])
7b86f0bc 295
400f9ae7 296 self.state = FIND_START
5dd9af5b 297 self.is_repeat_start = 0
7b86f0bc
UH
298 self.wr = -1
299
1aef2f93 300 def put(self, output_id, data):
bc5f5a43 301 # inject sample range into the call up to sigrok
15969949 302 # TODO: 0-0 sample range for now
bc5f5a43 303 super(Decoder, self).put(0, 0, output_id, data)
1aef2f93
BV
304
305 def decode(self, timeoffset, duration, data):
bc5f5a43
BV
306 for samplenum, (scl, sda) in data:
307 self.samplecnt += 1
f39d2404
UH
308
309 # First sample: Save SCL/SDA value.
310 if self.oldscl == None:
bc5f5a43
BV
311 self.oldscl = scl
312 self.oldsda = sda
ad2dc0de 313 continue
0588ed70 314
f39d2404
UH
315 # TODO: Wait until the bus is idle (SDA = SCL = 1) first?
316
7b86f0bc 317 # State machine.
400f9ae7 318 if self.state == FIND_START:
7b86f0bc 319 if self.is_start_condition(scl, sda):
e5080882 320 self.found_start(scl, sda)
400f9ae7 321 elif self.state == FIND_ADDRESS:
7b86f0bc 322 if self.is_data_bit(scl, sda):
e5080882 323 self.found_address_or_data(scl, sda)
400f9ae7 324 elif self.state == FIND_DATA:
7b86f0bc 325 if self.is_data_bit(scl, sda):
e5080882 326 self.found_address_or_data(scl, sda)
7b86f0bc 327 elif self.is_start_condition(scl, sda):
e5080882 328 self.found_start(scl, sda)
7b86f0bc 329 elif self.is_stop_condition(scl, sda):
e5080882 330 self.found_stop(scl, sda)
7b86f0bc
UH
331 else:
332 # TODO: Error?
333 pass
f39d2404
UH
334
335 # Save current SDA/SCL values for the next round.
336 self.oldscl = scl
337 self.oldsda = sda
338