]> sigrok.org Git - libsigrokdecode.git/blame - decoders/dcf77/dcf77.py
srd: Add 'api_version = 1' to all PDs.
[libsigrokdecode.git] / decoders / dcf77 / dcf77.py
CommitLineData
2b0915c1
UH
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# DCF77 protocol decoder
23#
24# More information:
25# http://en.wikipedia.org/wiki/DCF77
26#
27
28#
29# Protocol output format:
30# TODO
31#
32
33import sigrokdecode as srd
34import calendar
35
36# States
37WAIT_FOR_RISING_EDGE = 0
38GET_BIT = 1
39
40# Annotation feed formats
41ANN_ASCII = 0
42
43# Return the specified BCD number (max. 8 bits) as integer.
44def bcd2int(b):
45 return (b & 0x0f) + ((b >> 4) * 10)
46
47class Decoder(srd.Decoder):
a2c2afd9 48 api_version = 1
2b0915c1
UH
49 id = 'dcf77'
50 name = 'DCF77'
3d3da57d 51 longname = 'DCF77 time protocol'
2b0915c1
UH
52 desc = 'TODO.'
53 longdesc = 'TODO.'
2b0915c1
UH
54 license = 'gplv2+'
55 inputs = ['logic']
56 outputs = ['dcf77']
57 probes = [
58 {'id': 'data', 'name': 'DATA', 'desc': 'DATA line'},
59 ]
60 options = {}
61 annotations = [
62 # ANN_ASCII
63 ['ASCII', 'TODO: description'],
64 ]
65
66 def __init__(self, **kwargs):
67 self.state = WAIT_FOR_RISING_EDGE
68 self.oldval = None
69 self.samplenum = 0
70 self.bit_start = 0
71 self.bit_start_old = 0
72 self.bitcount = 0 # Counter for the DCF77 bits (0..58)
73 self.dcf77_bitnumber_is_known = 0
74
75 def start(self, metadata):
76 self.samplerate = metadata['samplerate']
77 # self.out_proto = self.add(srd.OUTPUT_PROTO, 'dcf77')
78 self.out_ann = self.add(srd.OUTPUT_ANN, 'dcf77')
79
80 def report(self):
81 pass
82
83 # TODO: Which range to use? Only the 100ms/200ms or full second?
84 def handle_dcf77_bit(self, bit):
85 c = self.bitcount
86 a = self.out_ann
87 ss = es = 0 # FIXME
88
89 # Create one annotation for each DCF77 bit (containing the 0/1 value).
90 # Use 'Unknown DCF77 bit x: val' if we're not sure yet which of the
91 # 0..58 bits it is (because we haven't seen a 'new minute' marker yet).
92 # Otherwise, use 'DCF77 bit x: val'.
93 s = '' if self.dcf77_bitnumber_is_known else 'Unknown '
94 self.put(ss, es, a, [0, ['%sDCF77 bit %d: %d' % (s, c, bit)]])
95
96 # If we're not sure yet which of the 0..58 DCF77 bits we have, return.
97 # We don't want to decode bogus data.
98 if not self.dcf77_bitnumber_is_known:
99 return
100
101 # Output specific "decoded" annotations for the respective DCF77 bits.
102 if c == 0:
103 # Start of minute: DCF bit 0.
104 if bit == 0:
105 self.put(ss, es, a, [0, ['Start of minute (always 0)']])
106 else:
107 self.put(ss, es, a, [0, ['ERROR: Start of minute != 0']])
108 elif c in range(1, 14 + 1):
109 # Special bits (civil warnings, weather forecast): DCF77 bits 1-14.
110 if c == 1:
111 self.tmp = bit
112 else:
113 self.tmp |= (bit << (c - 1))
114 if c == 14:
115 self.put(ss, es, a, [0, ['Special bits: %s' % bin(self.tmp)]])
116 elif c == 15:
117 s = '' if (bit == 1) else 'not '
118 self.put(ss, es, a, [0, ['Call bit is %sset' % s]])
119 # TODO: Previously this bit indicated use of the backup antenna.
120 elif c == 16:
121 s = '' if (bit == 1) else 'not '
122 self.put(ss, es, a, [0, ['Summer time announcement %sactive' % s]])
123 elif c == 17:
124 s = '' if (bit == 1) else 'not '
125 self.put(ss, es, a, [0, ['CEST is %sin effect' % s]])
126 elif c == 18:
127 s = '' if (bit == 1) else 'not '
128 self.put(ss, es, a, [0, ['CET is %sin effect' % s]])
129 elif c == 19:
130 s = '' if (bit == 1) else 'not '
131 self.put(ss, es, a, [0, ['Leap second announcement %sactive' % s]])
132 elif c == 20:
133 # Start of encoded time: DCF bit 20.
134 if bit == 1:
135 self.put(ss, es, a, [0, ['Start of encoded time (always 1)']])
136 else:
137 self.put(ss, es, a,
138 [0, ['ERROR: Start of encoded time != 1']])
139 elif c in range(21, 27 + 1):
140 # Minutes (0-59): DCF77 bits 21-27 (BCD format).
141 if c == 21:
142 self.tmp = bit
143 else:
144 self.tmp |= (bit << (c - 21))
145 if c == 27:
146 self.put(ss, es, a, [0, ['Minutes: %d' % bcd2int(self.tmp)]])
147 elif c == 28:
148 # Even parity over minute bits (21-28): DCF77 bit 28.
149 self.tmp |= (bit << (c - 21))
150 parity = bin(self.tmp).count('1')
151 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
152 self.put(ss, es, a, [0, ['Minute parity: %s' % s]])
153 elif c in range(29, 34 + 1):
154 # Hours (0-23): DCF77 bits 29-34 (BCD format).
155 if c == 29:
156 self.tmp = bit
157 else:
158 self.tmp |= (bit << (c - 29))
159 if c == 34:
160 self.put(ss, es, a, [0, ['Hours: %d' % bcd2int(self.tmp)]])
161 elif c == 35:
162 # Even parity over hour bits (29-35): DCF77 bit 35.
163 self.tmp |= (bit << (c - 29))
164 parity = bin(self.tmp).count('1')
165 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
166 self.put(ss, es, a, [0, ['Hour parity: %s' % s]])
167 elif c in range(36, 41 + 1):
168 # Day of month (1-31): DCF77 bits 36-41 (BCD format).
169 if c == 36:
170 self.tmp = bit
171 else:
172 self.tmp |= (bit << (c - 36))
173 if c == 41:
174 self.put(ss, es, a, [0, ['Day: %d' % bcd2int(self.tmp)]])
175 elif c in range(42, 44 + 1):
176 # Day of week (1-7): DCF77 bits 42-44 (BCD format).
177 # A value of 1 means Monday, 7 means Sunday.
178 if c == 42:
179 self.tmp = bit
180 else:
181 self.tmp |= (bit << (c - 42))
182 if c == 44:
183 d = bcd2int(self.tmp)
184 dn = calendar.day_name[d - 1] # day_name[0] == Monday
185 self.put(ss, es, a, [0, ['Day of week: %d (%s)' % (d, dn)]])
186 elif c in range(45, 49 + 1):
187 # Month (1-12): DCF77 bits 45-49 (BCD format).
188 if c == 45:
189 self.tmp = bit
190 else:
191 self.tmp |= (bit << (c - 45))
192 if c == 49:
193 m = bcd2int(self.tmp)
194 mn = calendar.month_name[m] # month_name[1] == January
195 self.put(ss, es, a, [0, ['Month: %d (%s)' % (m, mn)]])
196 elif c in range(50, 57 + 1):
197 # Year (0-99): DCF77 bits 50-57 (BCD format).
198 if c == 50:
199 self.tmp = bit
200 else:
201 self.tmp |= (bit << (c - 50))
202 if c == 57:
203 self.put(ss, es, a, [0, ['Year: %d' % bcd2int(self.tmp)]])
204 elif c == 58:
205 # Even parity over date bits (36-58): DCF77 bit 58.
206 self.tmp |= (bit << (c - 50))
207 parity = bin(self.tmp).count('1')
208 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
209 self.put(ss, es, a, [0, ['Date parity: %s' % s]])
210 else:
211 raise Exception('Invalid DCF77 bit: %d' % c)
212
213 def decode(self, ss, es, data):
214 for samplenum, (pon, val) in data: # FIXME
215
216 self.samplenum += 1 # FIXME. Use samplenum. Off-by-one?
217
218 if self.state == WAIT_FOR_RISING_EDGE:
219 # Wait until the next rising edge occurs.
220 if not (self.oldval == 0 and val == 1):
221 self.oldval = val
222 continue
223
224 # Save the sample number where the DCF77 bit begins.
225 self.bit_start = self.samplenum
226
227 # Calculate the length (in ms) between two rising edges.
228 len_edges = self.bit_start - self.bit_start_old
229 len_edges_ms = int((len_edges / self.samplerate) * 1000)
230
231 # The time between two rising edges is usually around 1000ms.
232 # For DCF77 bit 59, there is no rising edge at all, i.e. the
233 # time between DCF77 bit 59 and DCF77 bit 0 (of the next
234 # minute) is around 2000ms. Thus, if we see an edge with a
235 # 2000ms distance to the last one, this edge marks the
236 # beginning of a new minute (and DCF77 bit 0 of that minute).
237 if len_edges_ms in range(1600, 2400 + 1):
238 self.put(ss, es, self.out_ann, [0, ['New minute starts']])
239 self.bitcount = 0
240 self.bit_start_old = self.bit_start
241 self.dcf77_bitnumber_is_known = 1
242 # Don't switch to GET_BIT state this time.
243 continue
244
245 self.bit_start_old = self.bit_start
246 self.state = GET_BIT
247
248 elif self.state == GET_BIT:
249 # Wait until the next falling edge occurs.
250 if not (self.oldval == 1 and val == 0):
251 self.oldval = val
252 continue
253
254 # Calculate the length (in ms) of the current high period.
255 len_high = self.samplenum - self.bit_start
256 len_high_ms = int((len_high / self.samplerate) * 1000)
257
258 # If the high signal was 100ms long, that encodes a 0 bit.
259 # If it was 200ms long, that encodes a 1 bit.
260 if len_high_ms in range(40, 160 + 1):
261 bit = 0
262 elif len_high_ms in range(161, 260 + 1):
263 bit = 1
264 else:
265 bit = -1 # TODO: Error?
266
267 # TODO: There's no bit 59, make sure none is decoded.
268 if bit in (0, 1) and self.bitcount in range(0, 58 + 1):
269 self.handle_dcf77_bit(bit)
270 self.bitcount += 1
271
272 self.state = WAIT_FOR_RISING_EDGE
273
274 else:
275 raise Exception('Invalid state: %s' % self.state)
276
277 self.oldval = val
278