]> sigrok.org Git - libsigrokdecode.git/blame - decoders/dcf77/dcf77.py
srd: Each PD now has its own subdirectory.
[libsigrokdecode.git] / decoders / dcf77 / dcf77.py
CommitLineData
2b0915c1
UH
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# DCF77 protocol decoder
23#
24# More information:
25# http://en.wikipedia.org/wiki/DCF77
26#
27
28#
29# Protocol output format:
30# TODO
31#
32
33import sigrokdecode as srd
34import calendar
35
36# States
37WAIT_FOR_RISING_EDGE = 0
38GET_BIT = 1
39
40# Annotation feed formats
41ANN_ASCII = 0
42
43# Return the specified BCD number (max. 8 bits) as integer.
44def bcd2int(b):
45 return (b & 0x0f) + ((b >> 4) * 10)
46
47class Decoder(srd.Decoder):
48 id = 'dcf77'
49 name = 'DCF77'
3d3da57d 50 longname = 'DCF77 time protocol'
2b0915c1
UH
51 desc = 'TODO.'
52 longdesc = 'TODO.'
2b0915c1
UH
53 license = 'gplv2+'
54 inputs = ['logic']
55 outputs = ['dcf77']
56 probes = [
57 {'id': 'data', 'name': 'DATA', 'desc': 'DATA line'},
58 ]
59 options = {}
60 annotations = [
61 # ANN_ASCII
62 ['ASCII', 'TODO: description'],
63 ]
64
65 def __init__(self, **kwargs):
66 self.state = WAIT_FOR_RISING_EDGE
67 self.oldval = None
68 self.samplenum = 0
69 self.bit_start = 0
70 self.bit_start_old = 0
71 self.bitcount = 0 # Counter for the DCF77 bits (0..58)
72 self.dcf77_bitnumber_is_known = 0
73
74 def start(self, metadata):
75 self.samplerate = metadata['samplerate']
76 # self.out_proto = self.add(srd.OUTPUT_PROTO, 'dcf77')
77 self.out_ann = self.add(srd.OUTPUT_ANN, 'dcf77')
78
79 def report(self):
80 pass
81
82 # TODO: Which range to use? Only the 100ms/200ms or full second?
83 def handle_dcf77_bit(self, bit):
84 c = self.bitcount
85 a = self.out_ann
86 ss = es = 0 # FIXME
87
88 # Create one annotation for each DCF77 bit (containing the 0/1 value).
89 # Use 'Unknown DCF77 bit x: val' if we're not sure yet which of the
90 # 0..58 bits it is (because we haven't seen a 'new minute' marker yet).
91 # Otherwise, use 'DCF77 bit x: val'.
92 s = '' if self.dcf77_bitnumber_is_known else 'Unknown '
93 self.put(ss, es, a, [0, ['%sDCF77 bit %d: %d' % (s, c, bit)]])
94
95 # If we're not sure yet which of the 0..58 DCF77 bits we have, return.
96 # We don't want to decode bogus data.
97 if not self.dcf77_bitnumber_is_known:
98 return
99
100 # Output specific "decoded" annotations for the respective DCF77 bits.
101 if c == 0:
102 # Start of minute: DCF bit 0.
103 if bit == 0:
104 self.put(ss, es, a, [0, ['Start of minute (always 0)']])
105 else:
106 self.put(ss, es, a, [0, ['ERROR: Start of minute != 0']])
107 elif c in range(1, 14 + 1):
108 # Special bits (civil warnings, weather forecast): DCF77 bits 1-14.
109 if c == 1:
110 self.tmp = bit
111 else:
112 self.tmp |= (bit << (c - 1))
113 if c == 14:
114 self.put(ss, es, a, [0, ['Special bits: %s' % bin(self.tmp)]])
115 elif c == 15:
116 s = '' if (bit == 1) else 'not '
117 self.put(ss, es, a, [0, ['Call bit is %sset' % s]])
118 # TODO: Previously this bit indicated use of the backup antenna.
119 elif c == 16:
120 s = '' if (bit == 1) else 'not '
121 self.put(ss, es, a, [0, ['Summer time announcement %sactive' % s]])
122 elif c == 17:
123 s = '' if (bit == 1) else 'not '
124 self.put(ss, es, a, [0, ['CEST is %sin effect' % s]])
125 elif c == 18:
126 s = '' if (bit == 1) else 'not '
127 self.put(ss, es, a, [0, ['CET is %sin effect' % s]])
128 elif c == 19:
129 s = '' if (bit == 1) else 'not '
130 self.put(ss, es, a, [0, ['Leap second announcement %sactive' % s]])
131 elif c == 20:
132 # Start of encoded time: DCF bit 20.
133 if bit == 1:
134 self.put(ss, es, a, [0, ['Start of encoded time (always 1)']])
135 else:
136 self.put(ss, es, a,
137 [0, ['ERROR: Start of encoded time != 1']])
138 elif c in range(21, 27 + 1):
139 # Minutes (0-59): DCF77 bits 21-27 (BCD format).
140 if c == 21:
141 self.tmp = bit
142 else:
143 self.tmp |= (bit << (c - 21))
144 if c == 27:
145 self.put(ss, es, a, [0, ['Minutes: %d' % bcd2int(self.tmp)]])
146 elif c == 28:
147 # Even parity over minute bits (21-28): DCF77 bit 28.
148 self.tmp |= (bit << (c - 21))
149 parity = bin(self.tmp).count('1')
150 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
151 self.put(ss, es, a, [0, ['Minute parity: %s' % s]])
152 elif c in range(29, 34 + 1):
153 # Hours (0-23): DCF77 bits 29-34 (BCD format).
154 if c == 29:
155 self.tmp = bit
156 else:
157 self.tmp |= (bit << (c - 29))
158 if c == 34:
159 self.put(ss, es, a, [0, ['Hours: %d' % bcd2int(self.tmp)]])
160 elif c == 35:
161 # Even parity over hour bits (29-35): DCF77 bit 35.
162 self.tmp |= (bit << (c - 29))
163 parity = bin(self.tmp).count('1')
164 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
165 self.put(ss, es, a, [0, ['Hour parity: %s' % s]])
166 elif c in range(36, 41 + 1):
167 # Day of month (1-31): DCF77 bits 36-41 (BCD format).
168 if c == 36:
169 self.tmp = bit
170 else:
171 self.tmp |= (bit << (c - 36))
172 if c == 41:
173 self.put(ss, es, a, [0, ['Day: %d' % bcd2int(self.tmp)]])
174 elif c in range(42, 44 + 1):
175 # Day of week (1-7): DCF77 bits 42-44 (BCD format).
176 # A value of 1 means Monday, 7 means Sunday.
177 if c == 42:
178 self.tmp = bit
179 else:
180 self.tmp |= (bit << (c - 42))
181 if c == 44:
182 d = bcd2int(self.tmp)
183 dn = calendar.day_name[d - 1] # day_name[0] == Monday
184 self.put(ss, es, a, [0, ['Day of week: %d (%s)' % (d, dn)]])
185 elif c in range(45, 49 + 1):
186 # Month (1-12): DCF77 bits 45-49 (BCD format).
187 if c == 45:
188 self.tmp = bit
189 else:
190 self.tmp |= (bit << (c - 45))
191 if c == 49:
192 m = bcd2int(self.tmp)
193 mn = calendar.month_name[m] # month_name[1] == January
194 self.put(ss, es, a, [0, ['Month: %d (%s)' % (m, mn)]])
195 elif c in range(50, 57 + 1):
196 # Year (0-99): DCF77 bits 50-57 (BCD format).
197 if c == 50:
198 self.tmp = bit
199 else:
200 self.tmp |= (bit << (c - 50))
201 if c == 57:
202 self.put(ss, es, a, [0, ['Year: %d' % bcd2int(self.tmp)]])
203 elif c == 58:
204 # Even parity over date bits (36-58): DCF77 bit 58.
205 self.tmp |= (bit << (c - 50))
206 parity = bin(self.tmp).count('1')
207 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
208 self.put(ss, es, a, [0, ['Date parity: %s' % s]])
209 else:
210 raise Exception('Invalid DCF77 bit: %d' % c)
211
212 def decode(self, ss, es, data):
213 for samplenum, (pon, val) in data: # FIXME
214
215 self.samplenum += 1 # FIXME. Use samplenum. Off-by-one?
216
217 if self.state == WAIT_FOR_RISING_EDGE:
218 # Wait until the next rising edge occurs.
219 if not (self.oldval == 0 and val == 1):
220 self.oldval = val
221 continue
222
223 # Save the sample number where the DCF77 bit begins.
224 self.bit_start = self.samplenum
225
226 # Calculate the length (in ms) between two rising edges.
227 len_edges = self.bit_start - self.bit_start_old
228 len_edges_ms = int((len_edges / self.samplerate) * 1000)
229
230 # The time between two rising edges is usually around 1000ms.
231 # For DCF77 bit 59, there is no rising edge at all, i.e. the
232 # time between DCF77 bit 59 and DCF77 bit 0 (of the next
233 # minute) is around 2000ms. Thus, if we see an edge with a
234 # 2000ms distance to the last one, this edge marks the
235 # beginning of a new minute (and DCF77 bit 0 of that minute).
236 if len_edges_ms in range(1600, 2400 + 1):
237 self.put(ss, es, self.out_ann, [0, ['New minute starts']])
238 self.bitcount = 0
239 self.bit_start_old = self.bit_start
240 self.dcf77_bitnumber_is_known = 1
241 # Don't switch to GET_BIT state this time.
242 continue
243
244 self.bit_start_old = self.bit_start
245 self.state = GET_BIT
246
247 elif self.state == GET_BIT:
248 # Wait until the next falling edge occurs.
249 if not (self.oldval == 1 and val == 0):
250 self.oldval = val
251 continue
252
253 # Calculate the length (in ms) of the current high period.
254 len_high = self.samplenum - self.bit_start
255 len_high_ms = int((len_high / self.samplerate) * 1000)
256
257 # If the high signal was 100ms long, that encodes a 0 bit.
258 # If it was 200ms long, that encodes a 1 bit.
259 if len_high_ms in range(40, 160 + 1):
260 bit = 0
261 elif len_high_ms in range(161, 260 + 1):
262 bit = 1
263 else:
264 bit = -1 # TODO: Error?
265
266 # TODO: There's no bit 59, make sure none is decoded.
267 if bit in (0, 1) and self.bitcount in range(0, 58 + 1):
268 self.handle_dcf77_bit(bit)
269 self.bitcount += 1
270
271 self.state = WAIT_FOR_RISING_EDGE
272
273 else:
274 raise Exception('Invalid state: %s' % self.state)
275
276 self.oldval = val
277