]> sigrok.org Git - libsigrok.git/blob - src/hardware/lecroy-xstream/protocol.c
lecroy-xstream: Fix COMM_HEADER and COMM_FORMAT
[libsigrok.git] / src / hardware / lecroy-xstream / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2017 Sven Schnelle <svens@stackframe.org>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include <stdlib.h>
23 #include "scpi.h"
24 #include "protocol.h"
25
26 struct lecroy_wavedesc_2_x {
27         uint16_t comm_type;
28         uint16_t comm_order; /* 1 - little endian */
29         uint32_t wave_descriptor_length;
30         uint32_t user_text_len;
31         uint32_t res_desc1;
32         uint32_t trigtime_array_length;
33         uint32_t ris_time1_array_length;
34         uint32_t res_array1;
35         uint32_t wave_array1_length;
36         uint32_t wave_array2_length;
37         uint32_t wave_array3_length;
38         uint32_t wave_array4_length;
39         char instrument_name[16];
40         uint32_t instrument_number;
41         char trace_label[16];
42         uint32_t reserved;
43         uint32_t wave_array_count;
44         uint32_t points_per_screen;
45         uint32_t first_valid_point;
46         uint32_t last_valid_point;
47         uint32_t first_point;
48         uint32_t sparsing_factor;
49         uint32_t segment_index;
50         uint32_t subarray_count;
51         uint32_t sweeps_per_acq;
52         uint16_t points_per_pair;
53         uint16_t pair_offset;
54         float vertical_gain;
55         float vertical_offset;
56         float max_value;
57         float min_value;
58         uint16_t nominal_bits;
59         uint16_t nom_subarray_count;
60         float horiz_interval;
61         double horiz_offset;
62         double pixel_offset;
63         char vertunit[48];
64         char horunit[48];
65         uint32_t reserved1;
66         double trigger_time;
67 } __attribute__((packed));
68
69 struct lecroy_wavedesc {
70         char descriptor_name[16];
71         char template_name[16];
72         union {
73                 struct lecroy_wavedesc_2_x version_2_x;
74         };
75 } __attribute__((packed));
76
77 static const char *coupling_options[] = {
78         "A1M", // AC with 1 MOhm termination
79         "D50", // DC with 50 Ohm termination
80         "D1M", // DC with 1 MOhm termination
81         "GND",
82         "OVL",
83 };
84
85 static const char *scope_trigger_slopes[] = {
86         "POS", "NEG",
87 };
88
89 static const char *trigger_sources[] = {
90         "C1", "C2", "C3", "C4", "LINE", "EXT",
91 };
92
93 static const uint64_t timebases[][2] = {
94         /* picoseconds */
95         { 20, 1000000000000 },
96         { 50, 1000000000000 },
97         { 100, 1000000000000 },
98         { 200, 1000000000000 },
99         { 500, 1000000000000 },
100         /* nanoseconds */
101         { 1, 1000000000 },
102         { 2, 1000000000 },
103         { 5, 1000000000 },
104         { 10, 1000000000 },
105         { 20, 1000000000 },
106         { 50, 1000000000 },
107         { 100, 1000000000 },
108         { 200, 1000000000 },
109         { 500, 1000000000 },
110         /* microseconds */
111         { 1, 1000000 },
112         { 2, 1000000 },
113         { 5, 1000000 },
114         { 10, 1000000 },
115         { 20, 1000000 },
116         { 50, 1000000 },
117         { 100, 1000000 },
118         { 200, 1000000 },
119         { 500, 1000000 },
120         /* milliseconds */
121         { 1, 1000 },
122         { 2, 1000 },
123         { 5, 1000 },
124         { 10, 1000 },
125         { 20, 1000 },
126         { 50, 1000 },
127         { 100, 1000 },
128         { 200, 1000 },
129         { 500, 1000 },
130         /* seconds */
131         { 1, 1 },
132         { 2, 1 },
133         { 5, 1 },
134         { 10, 1 },
135         { 20, 1 },
136         { 50, 1 },
137         { 100, 1 },
138         { 200, 1 },
139         { 500, 1 },
140         { 1000, 1 },
141 };
142
143 static const uint64_t vdivs[][2] = {
144         /* millivolts */
145         { 1, 1000 },
146         { 2, 1000 },
147         { 5, 1000 },
148         { 10, 1000 },
149         { 20, 1000 },
150         { 50, 1000 },
151         { 100, 1000 },
152         { 200, 1000 },
153         { 500, 1000 },
154         /* volts */
155         { 1, 1 },
156         { 2, 1 },
157         { 5, 1 },
158         { 10, 1 },
159         { 20, 1 },
160         { 50, 1 },
161 };
162
163 static const char *scope_analog_channel_names[] = {
164         "CH1", "CH2", "CH3", "CH4",
165 };
166
167 static const struct scope_config scope_models[] = {
168         {
169                 .name = { "WP7000", "WP7100", "WP7200", "WP7300" },
170
171                 .analog_channels = 4,
172                 .analog_names = &scope_analog_channel_names,
173
174                 .coupling_options = &coupling_options,
175                 .num_coupling_options = ARRAY_SIZE(coupling_options),
176
177                 .trigger_sources = &trigger_sources,
178                 .num_trigger_sources = ARRAY_SIZE(trigger_sources),
179
180                 .trigger_slopes = &scope_trigger_slopes,
181                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
182
183                 .timebases = &timebases,
184                 .num_timebases = ARRAY_SIZE(timebases),
185
186                 .vdivs = &vdivs,
187                 .num_vdivs = ARRAY_SIZE(vdivs),
188
189                 .num_xdivs = 10,
190                 .num_ydivs = 8,
191         },
192 };
193
194 static void scope_state_dump(const struct scope_config *config,
195                              struct scope_state *state)
196 {
197         unsigned int i;
198         char *tmp;
199
200         for (i = 0; i < config->analog_channels; i++) {
201                 tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
202                                         (*config->vdivs)[state->analog_channels[i].vdiv][1]);
203                 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
204                         i + 1, state->analog_channels[i].state ? "On" : "Off",
205                         (*config->coupling_options)[state->analog_channels[i].coupling],
206                         tmp, state->analog_channels[i].vertical_offset);
207         }
208
209         tmp = sr_period_string((*config->timebases)[state->timebase][0],
210                                 (*config->timebases)[state->timebase][1]);
211         sr_info("Current timebase: %s", tmp);
212         g_free(tmp);
213
214         tmp = sr_samplerate_string(state->sample_rate);
215         sr_info("Current samplerate: %s", tmp);
216         g_free(tmp);
217
218         sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
219                 (*config->trigger_sources)[state->trigger_source],
220                 (*config->trigger_slopes)[state->trigger_slope],
221                 state->horiz_triggerpos);
222 }
223
224 static int scope_state_get_array_option(const char *resp,
225         const char *(*array)[], unsigned int n, int *result)
226 {
227         unsigned int i;
228
229         for (i = 0; i < n; i++) {
230                 if (!g_strcmp0(resp, (*array)[i])) {
231                         *result = i;
232                         return SR_OK;
233                 }
234         }
235
236         return SR_ERR;
237 }
238
239 /**
240  * This function takes a value of the form "2.000E-03" and returns the index
241  * of an array where a matching pair was found.
242  *
243  * @param value The string to be parsed.
244  * @param array The array of s/f pairs.
245  * @param array_len The number of pairs in the array.
246  * @param result The index at which a matching pair was found.
247  *
248  * @return SR_ERR on any parsing error, SR_OK otherwise.
249  */
250 static int array_float_get(gchar *value, const uint64_t array[][2],
251                 int array_len, unsigned int *result)
252 {
253         struct sr_rational rval;
254         struct sr_rational aval;
255
256         if (sr_parse_rational(value, &rval) != SR_OK)
257                 return SR_ERR;
258
259         for (int i = 0; i < array_len; i++) {
260                 sr_rational_set(&aval, array[i][0], array[i][1]);
261                 if (sr_rational_eq(&rval, &aval)) {
262                         *result = i;
263                         return SR_OK;
264                 }
265         }
266
267         return SR_ERR;
268 }
269
270 static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
271                                     const struct scope_config *config,
272                                     struct scope_state *state)
273 {
274         unsigned int i, j;
275         char command[MAX_COMMAND_SIZE];
276         char *tmp_str;
277
278         for (i = 0; i < config->analog_channels; i++) {
279                 g_snprintf(command, sizeof(command), "C%d:TRACE?", i + 1);
280
281                 if (sr_scpi_get_bool(scpi, command,
282                                 &state->analog_channels[i].state) != SR_OK)
283                         return SR_ERR;
284
285                 g_snprintf(command, sizeof(command), "C%d:VDIV?", i + 1);
286
287                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
288                         return SR_ERR;
289
290                 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
291                         g_free(tmp_str);
292                         sr_err("Could not determine array index for vertical div scale.");
293                         return SR_ERR;
294                 }
295
296                 g_free(tmp_str);
297                 state->analog_channels[i].vdiv = j;
298
299                 g_snprintf(command, sizeof(command), "C%d:OFFSET?", i + 1);
300
301                 if (sr_scpi_get_float(scpi, command, &state->analog_channels[i].vertical_offset) != SR_OK)
302                         return SR_ERR;
303
304                 g_snprintf(command, sizeof(command), "C%d:COUPLING?", i + 1);
305
306                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
307                         return SR_ERR;
308
309
310                 if (scope_state_get_array_option(tmp_str, config->coupling_options,
311                                  config->num_coupling_options,
312                                  &state->analog_channels[i].coupling) != SR_OK)
313                         return SR_ERR;
314
315                 g_free(tmp_str);
316         }
317
318         return SR_OK;
319 }
320
321 SR_PRIV int lecroy_xstream_update_sample_rate(const struct sr_dev_inst *sdi)
322 {
323         struct dev_context *devc;
324         struct scope_state *state;
325         const struct scope_config *config;
326         float memsize, timediv;
327
328         devc = sdi->priv;
329         state = devc->model_state;
330         config = devc->model_config;
331
332         if (sr_scpi_get_float(sdi->conn, "MEMORY_SIZE?", &memsize) != SR_OK)
333                 return SR_ERR;
334
335         if (sr_scpi_get_float(sdi->conn, "TIME_DIV?", &timediv) != SR_OK)
336                 return SR_ERR;
337
338         state->sample_rate = 1 / ((timediv * config->num_xdivs) / memsize);
339
340         return SR_OK;
341 }
342
343 SR_PRIV int lecroy_xstream_state_get(struct sr_dev_inst *sdi)
344 {
345         struct dev_context *devc;
346         struct scope_state *state;
347         const struct scope_config *config;
348         unsigned int i;
349         char *tmp_str, *tmp_str2, *tmpp, *p, *key;
350         char command[MAX_COMMAND_SIZE];
351         char *trig_source = NULL;
352
353         devc = sdi->priv;
354         config = devc->model_config;
355         state = devc->model_state;
356
357         sr_info("Fetching scope state");
358
359         if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
360                 return SR_ERR;
361
362         if (sr_scpi_get_string(sdi->conn, "TIME_DIV?", &tmp_str) != SR_OK)
363                 return SR_ERR;
364
365         if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
366                 g_free(tmp_str);
367                 sr_err("Could not determine array index for timbase scale.");
368                 return SR_ERR;
369         }
370         g_free(tmp_str);
371         state->timebase = i;
372
373         if (sr_scpi_get_string(sdi->conn, "TRIG_SELECT?", &tmp_str) != SR_OK)
374                 return SR_ERR;
375
376         key = tmpp = NULL;
377         tmp_str2 = tmp_str;
378         i = 0;
379         while ((p = strtok_r(tmp_str2, ",", &tmpp))) {
380                 tmp_str2 = NULL;
381                 if (i == 0) {
382                         /* trigger type */
383                 } else if (i & 1) {
384                         key = p;
385                         /* key */
386                 } else if (!(i & 1)) {
387                         if (!strcmp(key, "SR"))
388                                 trig_source = p;
389                 }
390                 i++;
391         }
392
393         if (!trig_source || scope_state_get_array_option(trig_source, config->trigger_sources, config->num_trigger_sources, &state->trigger_source) != SR_OK)
394                 return SR_ERR;
395
396         g_snprintf(command, sizeof(command), "%s:TRIG_SLOPE?", trig_source);
397         if (sr_scpi_get_string(sdi->conn, command, &tmp_str) != SR_OK)
398                 return SR_ERR;
399
400         if (scope_state_get_array_option(tmp_str,
401                 config->trigger_slopes, config->num_trigger_slopes, &state->trigger_slope) != SR_OK)
402                 return SR_ERR;
403
404         if (sr_scpi_get_float(sdi->conn, "TRIG_DELAY?", &state->horiz_triggerpos) != SR_OK)
405                 return SR_ERR;
406
407         if (lecroy_xstream_update_sample_rate(sdi) != SR_OK)
408                 return SR_ERR;
409
410         sr_info("Fetching finished.");
411
412         scope_state_dump(config, state);
413
414         return SR_OK;
415 }
416
417 static struct scope_state *scope_state_new(const struct scope_config *config)
418 {
419         struct scope_state *state;
420
421         state = g_malloc0(sizeof(struct scope_state));
422         state->analog_channels = g_malloc0_n(config->analog_channels,
423                         sizeof(struct analog_channel_state));
424         return state;
425 }
426
427 SR_PRIV void lecroy_xstream_state_free(struct scope_state *state)
428 {
429         g_free(state->analog_channels);
430         g_free(state);
431 }
432
433 SR_PRIV int lecroy_xstream_init_device(struct sr_dev_inst *sdi)
434 {
435         char command[MAX_COMMAND_SIZE];
436         int model_index;
437         unsigned int i, j;
438         struct sr_channel *ch;
439         struct dev_context *devc;
440         gboolean channel_enabled;
441
442         devc = sdi->priv;
443         model_index = -1;
444
445         /* Find the exact model. */
446         for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
447                 for (j = 0; scope_models[i].name[j]; j++) {
448                         if (!strcmp(sdi->model, scope_models[i].name[j])) {
449                                 model_index = i;
450                                 break;
451                         }
452                 }
453                 if (model_index != -1)
454                         break;
455         }
456
457         if (model_index == -1) {
458                 sr_dbg("Unsupported LeCroy device.");
459                 return SR_ERR_NA;
460         }
461
462         /* Set the desired response and format modes. */
463         sr_scpi_send(sdi->conn, "COMM_HEADER OFF");
464         sr_scpi_send(sdi->conn, "COMM_FORMAT OFF,WORD,BIN");
465
466         devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
467                                 scope_models[model_index].analog_channels);
468
469         /* Add analog channels. */
470         for (i = 0; i < scope_models[model_index].analog_channels; i++) {
471                 g_snprintf(command, sizeof(command), "C%d:TRACE?", i + 1);
472
473                 if (sr_scpi_get_bool(sdi->conn, command, &channel_enabled) != SR_OK)
474                         return SR_ERR;
475
476                 g_snprintf(command, sizeof(command), "C%d:VDIV?", i + 1);
477
478                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, channel_enabled,
479                            (*scope_models[model_index].analog_names)[i]);
480
481                 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
482
483                 devc->analog_groups[i]->name = g_strdup(
484                         (char *)(*scope_models[model_index].analog_names)[i]);
485                 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
486
487                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
488                                                    devc->analog_groups[i]);
489         }
490
491         devc->model_config = &scope_models[model_index];
492         devc->frame_limit = 0;
493
494         if (!(devc->model_state = scope_state_new(devc->model_config)))
495                 return SR_ERR_MALLOC;
496
497         return SR_OK;
498 }
499
500 static int lecroy_waveform_2_x_to_analog(GByteArray *data,
501                                          struct lecroy_wavedesc *desc,
502                                          struct sr_datafeed_analog *analog)
503 {
504         struct sr_analog_encoding *encoding = analog->encoding;
505         struct sr_analog_meaning *meaning = analog->meaning;
506         struct sr_analog_spec *spec = analog->spec;
507         float *data_float;
508         int16_t *waveform_data;
509         unsigned int i, num_samples;
510
511         data_float = g_malloc(desc->version_2_x.wave_array_count * sizeof(float));
512         num_samples = desc->version_2_x.wave_array_count;
513
514         waveform_data = (int16_t *)(data->data +
515                                     + desc->version_2_x.wave_descriptor_length
516                                     + desc->version_2_x.user_text_len);
517
518         for (i = 0; i < num_samples; i++)
519                 data_float[i] = (float)waveform_data[i]
520                         * desc->version_2_x.vertical_gain
521                         + desc->version_2_x.vertical_offset;
522
523         analog->data = data_float;
524         analog->num_samples = num_samples;
525
526         encoding->unitsize = sizeof(float);
527         encoding->is_signed = TRUE;
528         encoding->is_float = TRUE;
529         encoding->is_bigendian = FALSE;
530         encoding->scale.p = 1;
531         encoding->scale.q = 1;
532         encoding->offset.p = 0;
533         encoding->offset.q = 1;
534
535         encoding->digits = 6;
536         encoding->is_digits_decimal = FALSE;
537
538         if (strcmp(desc->version_2_x.vertunit, "A")) {
539                 meaning->mq = SR_MQ_CURRENT;
540                 meaning->unit = SR_UNIT_AMPERE;
541         } else {
542                 /* Default to voltage. */
543                 meaning->mq = SR_MQ_VOLTAGE;
544                 meaning->unit = SR_UNIT_VOLT;
545         }
546
547         meaning->mqflags = 0;
548         spec->spec_digits = 3;
549
550         return SR_OK;
551 }
552
553 static int lecroy_waveform_to_analog(GByteArray *data,
554                                      struct sr_datafeed_analog *analog)
555 {
556         struct lecroy_wavedesc *desc;
557
558         if (data->len < sizeof(struct lecroy_wavedesc))
559                 return SR_ERR;
560
561         desc = (struct lecroy_wavedesc *)data->data;
562
563         if (!strncmp(desc->template_name, "LECROY_2_2", 16) ||
564             !strncmp(desc->template_name, "LECROY_2_3", 16)) {
565                 return lecroy_waveform_2_x_to_analog(data, desc, analog);
566         }
567
568         sr_err("Waveformat template '%.16s' not supported.",
569                desc->template_name);
570
571         return SR_ERR;
572 }
573
574 SR_PRIV int lecroy_xstream_receive_data(int fd, int revents, void *cb_data)
575 {
576         struct sr_channel *ch;
577         struct sr_dev_inst *sdi;
578         struct dev_context *devc;
579         struct sr_datafeed_packet packet;
580         GByteArray *data;
581         struct sr_datafeed_analog analog;
582         struct sr_analog_encoding encoding;
583         struct sr_analog_meaning meaning;
584         struct sr_analog_spec spec;
585         char buf[8];
586
587         (void)fd;
588         (void)revents;
589
590         data = NULL;
591
592         if (!(sdi = cb_data))
593                 return TRUE;
594
595         if (!(devc = sdi->priv))
596                 return TRUE;
597
598         ch = devc->current_channel->data;
599
600         /*
601          * Send "frame begin" packet upon reception of data for the
602          * first enabled channel.
603          */
604         if (devc->current_channel == devc->enabled_channels) {
605                 packet.type = SR_DF_FRAME_BEGIN;
606                 sr_session_send(sdi, &packet);
607         }
608
609         if (ch->type != SR_CHANNEL_ANALOG)
610                 return SR_ERR;
611
612         /* Pass on the received data of the channel(s). */
613         if (sr_scpi_read_data(sdi->conn, buf, 4) != 4) {
614                 sr_err("Reading header failed.");
615                 return TRUE;
616         }
617
618         if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
619                 if (data)
620                         g_byte_array_free(data, TRUE);
621                 return TRUE;
622         }
623
624         analog.encoding = &encoding;
625         analog.meaning = &meaning;
626         analog.spec = &spec;
627
628         if (lecroy_waveform_to_analog(data, &analog) != SR_OK)
629                 return SR_ERR;
630
631         meaning.channels = g_slist_append(NULL, ch);
632         packet.payload = &analog;
633         packet.type = SR_DF_ANALOG;
634         sr_session_send(sdi, &packet);
635
636         g_byte_array_free(data, TRUE);
637         data = NULL;
638
639         g_slist_free(meaning.channels);
640         g_free(analog.data);
641
642         /*
643          * Advance to the next enabled channel. When data for all enabled
644          * channels was received, then flush potentially queued logic data,
645          * and send the "frame end" packet.
646          */
647         if (devc->current_channel->next) {
648                 devc->current_channel = devc->current_channel->next;
649                 lecroy_xstream_request_data(sdi);
650                 return TRUE;
651         }
652
653         packet.type = SR_DF_FRAME_END;
654         sr_session_send(sdi, &packet);
655
656         /*
657          * End of frame was reached. Stop acquisition after the specified
658          * number of frames, or continue reception by starting over at
659          * the first enabled channel.
660          */
661         if (++devc->num_frames == devc->frame_limit) {
662                 sr_dev_acquisition_stop(sdi);
663         } else {
664                 devc->current_channel = devc->enabled_channels;
665                 lecroy_xstream_request_data(sdi);
666         }
667
668         return TRUE;
669 }