]> sigrok.org Git - libsigrok.git/blame - src/hardware/sysclk-lwla/lwla1034.c
Remove some unneeded double-spaces.
[libsigrok.git] / src / hardware / sysclk-lwla / lwla1034.c
CommitLineData
be64f90b
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "lwla.h"
22#include "protocol.h"
23
24/* Number of logic channels.
25 */
26#define NUM_CHANNELS 34
27
28/* Bit mask covering all logic channels.
29 */
30#define ALL_CHANNELS_MASK ((UINT64_C(1) << NUM_CHANNELS) - 1)
31
32/* Unit size for the sigrok logic datafeed.
33 */
34#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
35
36/* Size of the acquisition buffer in device memory units.
37 */
38#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
39
40/* Capture memory read start address.
41 */
78648577 42#define READ_START_ADDR 4
be64f90b
DE
43
44/* Number of device memory units (36 bit) to read at a time. Slices of 8
45 * consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
46 * length should be a multiple of 8 to ensure alignment to slice boundaries.
47 *
48 * Experimentation has shown that reading chunks larger than about 1024 bytes
49 * is unreliable. The threshold seems to relate to the buffer size on the FX2
50 * USB chip: The configured endpoint buffer size is 512, and with double or
51 * triple buffering enabled a multiple of 512 bytes can be kept in fly.
52 *
53 * The vendor software limits reads to 120 words (15 slices, 540 bytes) at
54 * a time. So far, it appears safe to increase this to 224 words (28 slices,
55 * 1008 bytes), thus making the most of two 512 byte buffers.
56 */
78648577 57#define READ_CHUNK_LEN (28 * 8)
be64f90b 58
940805ce
DE
59/* Bit mask for the RLE repeat-count-follows flag.
60 */
be64f90b
DE
61#define RLE_FLAG_LEN_FOLLOWS (UINT64_C(1) << 35)
62
940805ce
DE
63/* Start index and count for bulk long register reads.
64 * The first five long registers do not return useful values when read,
65 * so skip over them to reduce the transfer size of status poll responses.
66 */
67#define READ_LREGS_START LREG_MEM_FILL
68#define READ_LREGS_COUNT (LREG_STATUS + 1 - READ_LREGS_START)
69
be64f90b
DE
70/** LWLA1034 register addresses.
71 */
72enum reg_addr {
73 REG_MEM_CTRL = 0x1074, /* capture buffer control */
74 REG_MEM_FILL = 0x1078, /* capture buffer fill level */
75 REG_MEM_START = 0x107C, /* capture buffer start address */
76
77 REG_CLK_BOOST = 0x1094, /* logic clock boost flag */
78
79 REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
80 REG_LONG_ADDR = 0x10B4, /* long register address */
81 REG_LONG_LOW = 0x10B8, /* long register low word */
82 REG_LONG_HIGH = 0x10BC, /* long register high word */
83};
84
85/** Flag bits for REG_MEM_CTRL.
86 */
87enum mem_ctrl_flag {
88 MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
89 MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
90};
91
92/* LWLA1034 long register addresses.
93 */
94enum long_reg_addr {
95 LREG_CHAN_MASK = 0, /* channel enable mask */
96 LREG_DIV_COUNT = 1, /* clock divider max count */
97 LREG_TRG_VALUE = 2, /* trigger level/slope bits */
98 LREG_TRG_TYPE = 3, /* trigger type bits (level or edge) */
99 LREG_TRG_ENABLE = 4, /* trigger enable mask */
100 LREG_MEM_FILL = 5, /* capture memory fill level or limit */
101
102 LREG_DURATION = 7, /* elapsed time in ms (0.8 ms at 125 MS/s) */
103 LREG_CHAN_STATE = 8, /* current logic levels at the inputs */
104 LREG_STATUS = 9, /* capture status flags */
105
106 LREG_CAP_CTRL = 10, /* capture control bits */
107 LREG_TEST_ID = 100, /* constant test ID */
108};
109
110/** Flag bits for LREG_CAP_CTRL.
111 */
112enum cap_ctrl_flag {
113 CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
114 CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
115 CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
116 CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
117 CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
118};
119
120/* Available FPGA configurations.
121 */
122enum fpga_config {
123 FPGA_OFF = 0, /* FPGA shutdown config */
124 FPGA_INT, /* internal clock config */
125 FPGA_EXTPOS, /* external clock, rising edge config */
126 FPGA_EXTNEG, /* external clock, falling edge config */
127};
128
129/* FPGA bitstream resource filenames.
130 */
131static const char bitstream_map[][32] = {
132 [FPGA_OFF] = "sysclk-lwla1034-off.rbf",
133 [FPGA_INT] = "sysclk-lwla1034-int.rbf",
134 [FPGA_EXTPOS] = "sysclk-lwla1034-extpos.rbf",
135 [FPGA_EXTNEG] = "sysclk-lwla1034-extneg.rbf",
136};
137
138/* Read 64-bit long register.
139 */
140static int read_long_reg(const struct sr_usb_dev_inst *usb,
141 uint32_t addr, uint64_t *value)
142{
143 uint32_t low, high, dummy;
144 int ret;
145
146 ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
147 if (ret != SR_OK)
148 return ret;
149
150 ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
151 if (ret != SR_OK)
152 return ret;
153
154 ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
155 if (ret != SR_OK)
156 return ret;
157
158 ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
159 if (ret != SR_OK)
160 return ret;
161
162 *value = ((uint64_t)high << 32) | low;
163
164 return SR_OK;
165}
166
167/* Queue access sequence for a long register write.
168 */
169static void queue_long_regval(struct acquisition_state *acq,
170 uint32_t addr, uint64_t value)
171{
172 lwla_queue_regval(acq, REG_LONG_ADDR, addr);
173 lwla_queue_regval(acq, REG_LONG_LOW, value & 0xFFFFFFFF);
174 lwla_queue_regval(acq, REG_LONG_HIGH, value >> 32);
175 lwla_queue_regval(acq, REG_LONG_STROBE, 0);
176}
177
178/* Helper to fill in the long register bulk write command.
179 */
180static inline void bulk_long_set(struct acquisition_state *acq,
7ed80817 181 unsigned int idx, uint64_t value)
be64f90b
DE
182{
183 acq->xfer_buf_out[4 * idx + 3] = LWLA_WORD_0(value);
184 acq->xfer_buf_out[4 * idx + 4] = LWLA_WORD_1(value);
185 acq->xfer_buf_out[4 * idx + 5] = LWLA_WORD_2(value);
186 acq->xfer_buf_out[4 * idx + 6] = LWLA_WORD_3(value);
187}
188
189/* Helper for dissecting the response to a long register bulk read.
190 */
191static inline uint64_t bulk_long_get(const struct acquisition_state *acq,
7ed80817 192 unsigned int idx)
be64f90b
DE
193{
194 uint64_t low, high;
195
940805ce
DE
196 low = LWLA_TO_UINT32(acq->xfer_buf_in[2 * (idx - READ_LREGS_START)]);
197 high = LWLA_TO_UINT32(acq->xfer_buf_in[2 * (idx - READ_LREGS_START) + 1]);
be64f90b
DE
198
199 return (high << 32) | low;
200}
201
202/* Demangle and decompress incoming sample data from the transfer buffer.
203 * The data chunk is taken from the acquisition state, and is expected to
204 * contain a multiple of 8 packed 36-bit words.
205 */
206static void read_response(struct acquisition_state *acq)
207{
208 uint64_t sample, high_nibbles, word;
209 uint32_t *slice;
210 uint8_t *out_p;
d64b5f43 211 unsigned int words_left, max_samples, run_samples, wi, ri, si;
be64f90b
DE
212
213 /* Number of 36-bit words remaining in the transfer buffer. */
214 words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
215 - acq->mem_addr_done;
216
217 for (wi = 0;; wi++) {
218 /* Calculate number of samples to write into packet. */
219 max_samples = MIN(acq->samples_max - acq->samples_done,
220 PACKET_SIZE / UNIT_SIZE - acq->out_index);
221 run_samples = MIN(max_samples, acq->run_len);
222
223 /* Expand run-length samples into session packet. */
224 sample = acq->sample;
225 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
226
227 for (ri = 0; ri < run_samples; ri++) {
228 out_p[0] = sample & 0xFF;
229 out_p[1] = (sample >> 8) & 0xFF;
230 out_p[2] = (sample >> 16) & 0xFF;
231 out_p[3] = (sample >> 24) & 0xFF;
232 out_p[4] = (sample >> 32) & 0xFF;
233 out_p += UNIT_SIZE;
234 }
235 acq->run_len -= run_samples;
236 acq->out_index += run_samples;
237 acq->samples_done += run_samples;
238
239 if (run_samples == max_samples)
d64b5f43 240 break; /* Packet full or sample limit reached. */
be64f90b 241 if (wi >= words_left)
d64b5f43 242 break; /* Done with current transfer. */
be64f90b
DE
243
244 /* Get the current slice of 8 packed 36-bit words. */
245 slice = &acq->xfer_buf_in[(acq->in_index + wi) / 8 * 9];
d64b5f43 246 si = (acq->in_index + wi) % 8; /* Word index within slice. */
be64f90b
DE
247
248 /* Extract the next 36-bit word. */
249 high_nibbles = LWLA_TO_UINT32(slice[8]);
250 word = LWLA_TO_UINT32(slice[si]);
251 word |= (high_nibbles << (4 * si + 4)) & (UINT64_C(0xF) << 32);
252
253 if (acq->rle == RLE_STATE_DATA) {
254 acq->sample = word & ALL_CHANNELS_MASK;
255 acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
256 acq->rle = ((word & RLE_FLAG_LEN_FOLLOWS) != 0)
257 ? RLE_STATE_LEN : RLE_STATE_DATA;
258 } else {
259 acq->run_len += word << 1;
260 acq->rle = RLE_STATE_DATA;
261 }
262 }
d64b5f43 263
be64f90b
DE
264 acq->in_index += wi;
265 acq->mem_addr_done += wi;
266}
267
78648577
DE
268/* Check whether we can receive responses of more than 64 bytes.
269 * The FX2 firmware of the LWLA1034 has a bug in the reset logic which
270 * sometimes causes the response endpoint to be limited to transfers of
271 * 64 bytes at a time, instead of the expected 2*512 bytes. The problem
272 * can be worked around by never requesting more than 64 bytes.
273 * This quirk manifests itself only under certain conditions, and some
274 * users seem to see it more frequently than others. Detect it here in
275 * order to avoid paying the penalty unnecessarily.
276 */
277static int detect_short_transfer_quirk(const struct sr_dev_inst *sdi)
278{
279 struct dev_context *devc;
280 struct sr_usb_dev_inst *usb;
d64b5f43 281 int xfer_len, ret;
78648577
DE
282 uint16_t command[3];
283 unsigned char buf[512];
78648577
DE
284 const int lreg_count = 10;
285
286 devc = sdi->priv;
d9251a2c 287 usb = sdi->conn;
78648577
DE
288
289 command[0] = LWLA_WORD(CMD_READ_LREGS);
290 command[1] = LWLA_WORD(0);
291 command[2] = LWLA_WORD(lreg_count);
292
293 ret = lwla_send_command(usb, command, ARRAY_SIZE(command));
294 if (ret != SR_OK)
295 return ret;
296
297 ret = lwla_receive_reply(usb, buf, sizeof(buf), &xfer_len);
298 if (ret != SR_OK)
299 return ret;
300
301 devc->short_transfer_quirk = (xfer_len == 64);
302
303 if (xfer_len == 8 * lreg_count)
304 return SR_OK;
305
306 if (xfer_len == 64) {
307 /* Drain the tailing portion of the split transfer. */
308 ret = lwla_receive_reply(usb, buf, sizeof(buf), &xfer_len);
309 if (ret != SR_OK)
310 return ret;
311
312 if (xfer_len == 8 * lreg_count - 64)
313 return SR_OK;
314 }
315 sr_err("Received response of unexpected length %d.", xfer_len);
316
317 return SR_ERR;
318}
319
be64f90b
DE
320/* Select and transfer FPGA bitstream for the current configuration.
321 */
322static int apply_fpga_config(const struct sr_dev_inst *sdi)
323{
324 struct dev_context *devc;
325 struct drv_context *drvc;
d64b5f43 326 int config, ret;
be64f90b
DE
327
328 devc = sdi->priv;
329 drvc = sdi->driver->context;
330
331 if (sdi->status == SR_ST_INACTIVE)
332 config = FPGA_OFF;
333 else if (devc->cfg_clock_source == CLOCK_INTERNAL)
334 config = FPGA_INT;
335 else if (devc->cfg_clock_edge == EDGE_POSITIVE)
336 config = FPGA_EXTPOS;
337 else
338 config = FPGA_EXTNEG;
339
340 if (config == devc->active_fpga_config)
d64b5f43 341 return SR_OK; /* No change. */
be64f90b
DE
342
343 ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
344 bitstream_map[config]);
345 devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
346
347 return ret;
348}
349
350/* Perform initialization self test.
351 */
352static int device_init_check(const struct sr_dev_inst *sdi)
353{
354 uint64_t value;
355 int ret;
356
e35a4592 357 read_long_reg(sdi->conn, LREG_TEST_ID, &value);
be64f90b
DE
358
359 /* Ignore the value returned by the first read. */
360 ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
361 if (ret != SR_OK)
362 return ret;
363
364 if (value != UINT64_C(0x1234567887654321)) {
365 sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
366 return SR_ERR;
367 }
78648577
DE
368
369 return detect_short_transfer_quirk(sdi);
be64f90b
DE
370}
371
372/* Set up the device in preparation for an acquisition session.
373 */
374static int setup_acquisition(const struct sr_dev_inst *sdi)
375{
1d80e1c6
DE
376 static const struct regval capture_init[] = {
377 {REG_MEM_CTRL, MEM_CTRL_CLR_IDX},
378 {REG_MEM_CTRL, MEM_CTRL_WRITE},
379 {REG_LONG_ADDR, LREG_CAP_CTRL},
380 {REG_LONG_LOW, CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO |
381 CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER},
382 {REG_LONG_HIGH, 0},
383 {REG_LONG_STROBE, 0},
384 };
d64b5f43 385 uint64_t divider_count, trigger_mask;
be64f90b
DE
386 struct dev_context *devc;
387 struct sr_usb_dev_inst *usb;
388 struct acquisition_state *acq;
389 int ret;
390
391 devc = sdi->priv;
d9251a2c
UH
392 usb = sdi->conn;
393 acq = devc->acquisition;
be64f90b 394
1d80e1c6
DE
395 ret = lwla_write_regs(usb, capture_init, ARRAY_SIZE(capture_init));
396 if (ret != SR_OK)
397 return ret;
be64f90b 398
1d80e1c6 399 ret = lwla_write_reg(usb, REG_CLK_BOOST, acq->clock_boost);
be64f90b
DE
400 if (ret != SR_OK)
401 return ret;
402
403 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_LREGS);
404 acq->xfer_buf_out[1] = LWLA_WORD(0);
405 acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
406
407 bulk_long_set(acq, LREG_CHAN_MASK, devc->channel_mask);
408
409 if (devc->samplerate > 0 && devc->samplerate <= SR_MHZ(100)
410 && !acq->clock_boost)
411 divider_count = SR_MHZ(100) / devc->samplerate - 1;
412 else
413 divider_count = 0;
414
415 bulk_long_set(acq, LREG_DIV_COUNT, divider_count);
416 bulk_long_set(acq, LREG_TRG_VALUE, devc->trigger_values);
d9251a2c 417 bulk_long_set(acq, LREG_TRG_TYPE, devc->trigger_edge_mask);
be64f90b
DE
418
419 trigger_mask = devc->trigger_mask;
420
421 /* Set bits to select external TRG input edge. */
422 if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
423 switch (devc->cfg_trigger_slope) {
424 case EDGE_POSITIVE:
425 trigger_mask |= UINT64_C(1) << 35;
426 break;
427 case EDGE_NEGATIVE:
428 trigger_mask |= UINT64_C(1) << 34;
429 break;
430 }
431
432 bulk_long_set(acq, LREG_TRG_ENABLE, trigger_mask);
433
434 /* Set the capture memory full threshold. This is slightly less
435 * than the actual maximum, most likely in order to compensate for
436 * pipeline latency.
437 */
438 bulk_long_set(acq, LREG_MEM_FILL, MEMORY_DEPTH - 16);
439
440 /* Fill remaining words with zeroes. */
441 bulk_long_set(acq, 6, 0);
442 bulk_long_set(acq, LREG_DURATION, 0);
443 bulk_long_set(acq, LREG_CHAN_STATE, 0);
444 bulk_long_set(acq, LREG_STATUS, 0);
445
446 return lwla_send_command(sdi->conn, acq->xfer_buf_out,
447 3 + (LREG_STATUS + 1) * 4);
448}
449
450static int prepare_request(const struct sr_dev_inst *sdi)
451{
452 struct dev_context *devc;
453 struct acquisition_state *acq;
78648577 454 unsigned int chunk_len, remaining, count;
be64f90b
DE
455
456 devc = sdi->priv;
457 acq = devc->acquisition;
458
459 acq->xfer_out->length = 0;
460 acq->reg_seq_pos = 0;
461 acq->reg_seq_len = 0;
462
463 switch (devc->state) {
464 case STATE_START_CAPTURE:
465 queue_long_regval(acq, LREG_CAP_CTRL, CAP_CTRL_TRG_EN);
466 break;
467 case STATE_STOP_CAPTURE:
468 queue_long_regval(acq, LREG_CAP_CTRL, 0);
469 lwla_queue_regval(acq, REG_CLK_BOOST, 0);
470 break;
471 case STATE_READ_PREPARE:
472 lwla_queue_regval(acq, REG_CLK_BOOST, 1);
473 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
474 lwla_queue_regval(acq, REG_MEM_START, READ_START_ADDR);
475 break;
476 case STATE_READ_FINISH:
477 lwla_queue_regval(acq, REG_CLK_BOOST, 0);
478 break;
479 case STATE_STATUS_REQUEST:
480 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_LREGS);
940805ce
DE
481 acq->xfer_buf_out[1] = LWLA_WORD(READ_LREGS_START);
482 acq->xfer_buf_out[2] = LWLA_WORD(READ_LREGS_COUNT);
be64f90b
DE
483 acq->xfer_out->length = 3 * sizeof(acq->xfer_buf_out[0]);
484 break;
485 case STATE_LENGTH_REQUEST:
486 lwla_queue_regval(acq, REG_MEM_FILL, 0);
487 break;
488 case STATE_READ_REQUEST:
78648577
DE
489 /* Limit reads to 8 device words (36 bytes) at a time if the
490 * device firmware has the short transfer quirk. */
491 chunk_len = (devc->short_transfer_quirk) ? 8 : READ_CHUNK_LEN;
be64f90b 492 /* Always read a multiple of 8 device words. */
78648577
DE
493 remaining = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
494 count = MIN(chunk_len, remaining);
be64f90b
DE
495
496 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM36);
497 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
498 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
499 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
500 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
501 acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
502
503 acq->mem_addr_next += count;
504 break;
505 default:
506 sr_err("BUG: unhandled request state %d.", devc->state);
507 return SR_ERR_BUG;
508 }
509
510 return SR_OK;
511}
512
513static int handle_response(const struct sr_dev_inst *sdi)
514{
515 struct dev_context *devc;
516 struct acquisition_state *acq;
517 int expect_len;
518
519 devc = sdi->priv;
d9251a2c 520 acq = devc->acquisition;
be64f90b
DE
521
522 switch (devc->state) {
523 case STATE_STATUS_REQUEST:
940805ce 524 if (acq->xfer_in->actual_length != READ_LREGS_COUNT * 8) {
be64f90b 525 sr_err("Received size %d doesn't match expected size %d.",
940805ce 526 acq->xfer_in->actual_length, READ_LREGS_COUNT * 8);
be64f90b
DE
527 return SR_ERR;
528 }
529 acq->mem_addr_fill = bulk_long_get(acq, LREG_MEM_FILL) & 0xFFFFFFFF;
d9251a2c 530 acq->duration_now = bulk_long_get(acq, LREG_DURATION);
be64f90b
DE
531 /* Shift left by one so the bit positions match the LWLA1016. */
532 acq->status = (bulk_long_get(acq, LREG_STATUS) & 0x3F) << 1;
533 /*
534 * It seems that the 125 MS/s mode is implemented simply by
535 * running the FPGA logic at a 25% higher clock rate. As a
536 * result, the millisecond counter for the capture duration
537 * is also off by 25%, and thus needs to be corrected here.
538 */
539 if (acq->clock_boost)
540 acq->duration_now = acq->duration_now * 4 / 5;
541 break;
542 case STATE_LENGTH_REQUEST:
543 acq->mem_addr_next = READ_START_ADDR;
544 acq->mem_addr_stop = acq->reg_sequence[0].val;
545 break;
546 case STATE_READ_REQUEST:
547 /* Expect a multiple of 8 36-bit words packed into 9 32-bit
548 * words. */
549 expect_len = (acq->mem_addr_next - acq->mem_addr_done
550 + acq->in_index + 7) / 8 * 9 * sizeof(acq->xfer_buf_in[0]);
551
552 if (acq->xfer_in->actual_length != expect_len) {
553 sr_err("Received size %d does not match expected size %d.",
554 acq->xfer_in->actual_length, expect_len);
555 devc->transfer_error = TRUE;
556 return SR_ERR;
557 }
558 read_response(acq);
559 break;
560 default:
561 sr_err("BUG: unhandled response state %d.", devc->state);
562 return SR_ERR_BUG;
563 }
564
565 return SR_OK;
566}
567
568/** Model descriptor for the LWLA1034.
569 */
570SR_PRIV const struct model_info lwla1034_info = {
571 .name = "LWLA1034",
572 .num_channels = NUM_CHANNELS,
573
574 .num_devopts = 8,
575 .devopts = {
576 SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
577 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
578 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
579 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
580 SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
581 SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
582 SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
583 SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
584 },
585 .num_samplerates = 20,
586 .samplerates = {
587 SR_MHZ(125), SR_MHZ(100),
588 SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
589 SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
590 SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
591 SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
592 SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
593 SR_HZ(500), SR_HZ(200), SR_HZ(100),
594 },
595
596 .apply_fpga_config = &apply_fpga_config,
597 .device_init_check = &device_init_check,
598 .setup_acquisition = &setup_acquisition,
599
600 .prepare_request = &prepare_request,
601 .handle_response = &handle_response,
602};