]> sigrok.org Git - libsigrok.git/blame - src/hardware/sysclk-lwla/lwla1034.c
sysclk-lwla: Skip unused registers in status poll
[libsigrok.git] / src / hardware / sysclk-lwla / lwla1034.c
CommitLineData
be64f90b
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "lwla.h"
22#include "protocol.h"
23
24/* Number of logic channels.
25 */
26#define NUM_CHANNELS 34
27
28/* Bit mask covering all logic channels.
29 */
30#define ALL_CHANNELS_MASK ((UINT64_C(1) << NUM_CHANNELS) - 1)
31
32/* Unit size for the sigrok logic datafeed.
33 */
34#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
35
36/* Size of the acquisition buffer in device memory units.
37 */
38#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
39
40/* Capture memory read start address.
41 */
42#define READ_START_ADDR 4
43
44/* Number of device memory units (36 bit) to read at a time. Slices of 8
45 * consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
46 * length should be a multiple of 8 to ensure alignment to slice boundaries.
47 *
48 * Experimentation has shown that reading chunks larger than about 1024 bytes
49 * is unreliable. The threshold seems to relate to the buffer size on the FX2
50 * USB chip: The configured endpoint buffer size is 512, and with double or
51 * triple buffering enabled a multiple of 512 bytes can be kept in fly.
52 *
53 * The vendor software limits reads to 120 words (15 slices, 540 bytes) at
54 * a time. So far, it appears safe to increase this to 224 words (28 slices,
55 * 1008 bytes), thus making the most of two 512 byte buffers.
56 */
57#define READ_CHUNK_LEN36 (28 * 8)
58
940805ce
DE
59/* Bit mask for the RLE repeat-count-follows flag.
60 */
be64f90b
DE
61#define RLE_FLAG_LEN_FOLLOWS (UINT64_C(1) << 35)
62
940805ce
DE
63/* Start index and count for bulk long register reads.
64 * The first five long registers do not return useful values when read,
65 * so skip over them to reduce the transfer size of status poll responses.
66 */
67#define READ_LREGS_START LREG_MEM_FILL
68#define READ_LREGS_COUNT (LREG_STATUS + 1 - READ_LREGS_START)
69
be64f90b
DE
70/** LWLA1034 register addresses.
71 */
72enum reg_addr {
73 REG_MEM_CTRL = 0x1074, /* capture buffer control */
74 REG_MEM_FILL = 0x1078, /* capture buffer fill level */
75 REG_MEM_START = 0x107C, /* capture buffer start address */
76
77 REG_CLK_BOOST = 0x1094, /* logic clock boost flag */
78
79 REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
80 REG_LONG_ADDR = 0x10B4, /* long register address */
81 REG_LONG_LOW = 0x10B8, /* long register low word */
82 REG_LONG_HIGH = 0x10BC, /* long register high word */
83};
84
85/** Flag bits for REG_MEM_CTRL.
86 */
87enum mem_ctrl_flag {
88 MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
89 MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
90};
91
92/* LWLA1034 long register addresses.
93 */
94enum long_reg_addr {
95 LREG_CHAN_MASK = 0, /* channel enable mask */
96 LREG_DIV_COUNT = 1, /* clock divider max count */
97 LREG_TRG_VALUE = 2, /* trigger level/slope bits */
98 LREG_TRG_TYPE = 3, /* trigger type bits (level or edge) */
99 LREG_TRG_ENABLE = 4, /* trigger enable mask */
100 LREG_MEM_FILL = 5, /* capture memory fill level or limit */
101
102 LREG_DURATION = 7, /* elapsed time in ms (0.8 ms at 125 MS/s) */
103 LREG_CHAN_STATE = 8, /* current logic levels at the inputs */
104 LREG_STATUS = 9, /* capture status flags */
105
106 LREG_CAP_CTRL = 10, /* capture control bits */
107 LREG_TEST_ID = 100, /* constant test ID */
108};
109
110/** Flag bits for LREG_CAP_CTRL.
111 */
112enum cap_ctrl_flag {
113 CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
114 CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
115 CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
116 CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
117 CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
118};
119
120/* Available FPGA configurations.
121 */
122enum fpga_config {
123 FPGA_OFF = 0, /* FPGA shutdown config */
124 FPGA_INT, /* internal clock config */
125 FPGA_EXTPOS, /* external clock, rising edge config */
126 FPGA_EXTNEG, /* external clock, falling edge config */
127};
128
129/* FPGA bitstream resource filenames.
130 */
131static const char bitstream_map[][32] = {
132 [FPGA_OFF] = "sysclk-lwla1034-off.rbf",
133 [FPGA_INT] = "sysclk-lwla1034-int.rbf",
134 [FPGA_EXTPOS] = "sysclk-lwla1034-extpos.rbf",
135 [FPGA_EXTNEG] = "sysclk-lwla1034-extneg.rbf",
136};
137
138/* Read 64-bit long register.
139 */
140static int read_long_reg(const struct sr_usb_dev_inst *usb,
141 uint32_t addr, uint64_t *value)
142{
143 uint32_t low, high, dummy;
144 int ret;
145
146 ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
147 if (ret != SR_OK)
148 return ret;
149
150 ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
151 if (ret != SR_OK)
152 return ret;
153
154 ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
155 if (ret != SR_OK)
156 return ret;
157
158 ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
159 if (ret != SR_OK)
160 return ret;
161
162 *value = ((uint64_t)high << 32) | low;
163
164 return SR_OK;
165}
166
167/* Queue access sequence for a long register write.
168 */
169static void queue_long_regval(struct acquisition_state *acq,
170 uint32_t addr, uint64_t value)
171{
172 lwla_queue_regval(acq, REG_LONG_ADDR, addr);
173 lwla_queue_regval(acq, REG_LONG_LOW, value & 0xFFFFFFFF);
174 lwla_queue_regval(acq, REG_LONG_HIGH, value >> 32);
175 lwla_queue_regval(acq, REG_LONG_STROBE, 0);
176}
177
178/* Helper to fill in the long register bulk write command.
179 */
180static inline void bulk_long_set(struct acquisition_state *acq,
7ed80817 181 unsigned int idx, uint64_t value)
be64f90b
DE
182{
183 acq->xfer_buf_out[4 * idx + 3] = LWLA_WORD_0(value);
184 acq->xfer_buf_out[4 * idx + 4] = LWLA_WORD_1(value);
185 acq->xfer_buf_out[4 * idx + 5] = LWLA_WORD_2(value);
186 acq->xfer_buf_out[4 * idx + 6] = LWLA_WORD_3(value);
187}
188
189/* Helper for dissecting the response to a long register bulk read.
190 */
191static inline uint64_t bulk_long_get(const struct acquisition_state *acq,
7ed80817 192 unsigned int idx)
be64f90b
DE
193{
194 uint64_t low, high;
195
940805ce
DE
196 low = LWLA_TO_UINT32(acq->xfer_buf_in[2 * (idx - READ_LREGS_START)]);
197 high = LWLA_TO_UINT32(acq->xfer_buf_in[2 * (idx - READ_LREGS_START) + 1]);
be64f90b
DE
198
199 return (high << 32) | low;
200}
201
202/* Demangle and decompress incoming sample data from the transfer buffer.
203 * The data chunk is taken from the acquisition state, and is expected to
204 * contain a multiple of 8 packed 36-bit words.
205 */
206static void read_response(struct acquisition_state *acq)
207{
208 uint64_t sample, high_nibbles, word;
209 uint32_t *slice;
210 uint8_t *out_p;
7ed80817
DE
211 unsigned int words_left;
212 unsigned int max_samples, run_samples;
213 unsigned int wi, ri, si;
be64f90b
DE
214
215 /* Number of 36-bit words remaining in the transfer buffer. */
216 words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
217 - acq->mem_addr_done;
218
219 for (wi = 0;; wi++) {
220 /* Calculate number of samples to write into packet. */
221 max_samples = MIN(acq->samples_max - acq->samples_done,
222 PACKET_SIZE / UNIT_SIZE - acq->out_index);
223 run_samples = MIN(max_samples, acq->run_len);
224
225 /* Expand run-length samples into session packet. */
226 sample = acq->sample;
227 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
228
229 for (ri = 0; ri < run_samples; ri++) {
230 out_p[0] = sample & 0xFF;
231 out_p[1] = (sample >> 8) & 0xFF;
232 out_p[2] = (sample >> 16) & 0xFF;
233 out_p[3] = (sample >> 24) & 0xFF;
234 out_p[4] = (sample >> 32) & 0xFF;
235 out_p += UNIT_SIZE;
236 }
237 acq->run_len -= run_samples;
238 acq->out_index += run_samples;
239 acq->samples_done += run_samples;
240
241 if (run_samples == max_samples)
242 break; /* packet full or sample limit reached */
243 if (wi >= words_left)
244 break; /* done with current transfer */
245
246 /* Get the current slice of 8 packed 36-bit words. */
247 slice = &acq->xfer_buf_in[(acq->in_index + wi) / 8 * 9];
248 si = (acq->in_index + wi) % 8; /* word index within slice */
249
250 /* Extract the next 36-bit word. */
251 high_nibbles = LWLA_TO_UINT32(slice[8]);
252 word = LWLA_TO_UINT32(slice[si]);
253 word |= (high_nibbles << (4 * si + 4)) & (UINT64_C(0xF) << 32);
254
255 if (acq->rle == RLE_STATE_DATA) {
256 acq->sample = word & ALL_CHANNELS_MASK;
257 acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
258 acq->rle = ((word & RLE_FLAG_LEN_FOLLOWS) != 0)
259 ? RLE_STATE_LEN : RLE_STATE_DATA;
260 } else {
261 acq->run_len += word << 1;
262 acq->rle = RLE_STATE_DATA;
263 }
264 }
265 acq->in_index += wi;
266 acq->mem_addr_done += wi;
267}
268
269/* Select and transfer FPGA bitstream for the current configuration.
270 */
271static int apply_fpga_config(const struct sr_dev_inst *sdi)
272{
273 struct dev_context *devc;
274 struct drv_context *drvc;
275 int config;
276 int ret;
277
278 devc = sdi->priv;
279 drvc = sdi->driver->context;
280
281 if (sdi->status == SR_ST_INACTIVE)
282 config = FPGA_OFF;
283 else if (devc->cfg_clock_source == CLOCK_INTERNAL)
284 config = FPGA_INT;
285 else if (devc->cfg_clock_edge == EDGE_POSITIVE)
286 config = FPGA_EXTPOS;
287 else
288 config = FPGA_EXTNEG;
289
290 if (config == devc->active_fpga_config)
291 return SR_OK; /* no change */
292
293 ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
294 bitstream_map[config]);
295 devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
296
297 return ret;
298}
299
300/* Perform initialization self test.
301 */
302static int device_init_check(const struct sr_dev_inst *sdi)
303{
304 uint64_t value;
305 int ret;
306
307 ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
308 if (ret != SR_OK)
309 return ret;
310
311 /* Ignore the value returned by the first read. */
312 ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
313 if (ret != SR_OK)
314 return ret;
315
316 if (value != UINT64_C(0x1234567887654321)) {
317 sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
318 return SR_ERR;
319 }
320 return SR_OK;
321}
322
323/* Set up the device in preparation for an acquisition session.
324 */
325static int setup_acquisition(const struct sr_dev_inst *sdi)
326{
327 uint64_t divider_count;
328 uint64_t trigger_mask;
329 struct dev_context *devc;
330 struct sr_usb_dev_inst *usb;
331 struct acquisition_state *acq;
332 int ret;
333
334 devc = sdi->priv;
335 usb = sdi->conn;
336 acq = devc->acquisition;
337
338 acq->reg_seq_pos = 0;
339 acq->reg_seq_len = 0;
340
341 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
342 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
343
344 queue_long_regval(acq, LREG_CAP_CTRL,
345 CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO |
346 CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER);
347
348 lwla_queue_regval(acq, REG_CLK_BOOST, acq->clock_boost);
349
350 ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
351 acq->reg_seq_len = 0;
352
353 if (ret != SR_OK)
354 return ret;
355
356 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_LREGS);
357 acq->xfer_buf_out[1] = LWLA_WORD(0);
358 acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
359
360 bulk_long_set(acq, LREG_CHAN_MASK, devc->channel_mask);
361
362 if (devc->samplerate > 0 && devc->samplerate <= SR_MHZ(100)
363 && !acq->clock_boost)
364 divider_count = SR_MHZ(100) / devc->samplerate - 1;
365 else
366 divider_count = 0;
367
368 bulk_long_set(acq, LREG_DIV_COUNT, divider_count);
369 bulk_long_set(acq, LREG_TRG_VALUE, devc->trigger_values);
370 bulk_long_set(acq, LREG_TRG_TYPE, devc->trigger_edge_mask);
371
372 trigger_mask = devc->trigger_mask;
373
374 /* Set bits to select external TRG input edge. */
375 if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
376 switch (devc->cfg_trigger_slope) {
377 case EDGE_POSITIVE:
378 trigger_mask |= UINT64_C(1) << 35;
379 break;
380 case EDGE_NEGATIVE:
381 trigger_mask |= UINT64_C(1) << 34;
382 break;
383 }
384
385 bulk_long_set(acq, LREG_TRG_ENABLE, trigger_mask);
386
387 /* Set the capture memory full threshold. This is slightly less
388 * than the actual maximum, most likely in order to compensate for
389 * pipeline latency.
390 */
391 bulk_long_set(acq, LREG_MEM_FILL, MEMORY_DEPTH - 16);
392
393 /* Fill remaining words with zeroes. */
394 bulk_long_set(acq, 6, 0);
395 bulk_long_set(acq, LREG_DURATION, 0);
396 bulk_long_set(acq, LREG_CHAN_STATE, 0);
397 bulk_long_set(acq, LREG_STATUS, 0);
398
399 return lwla_send_command(sdi->conn, acq->xfer_buf_out,
400 3 + (LREG_STATUS + 1) * 4);
401}
402
403static int prepare_request(const struct sr_dev_inst *sdi)
404{
405 struct dev_context *devc;
406 struct acquisition_state *acq;
7ed80817 407 unsigned int count;
be64f90b
DE
408
409 devc = sdi->priv;
410 acq = devc->acquisition;
411
412 acq->xfer_out->length = 0;
413 acq->reg_seq_pos = 0;
414 acq->reg_seq_len = 0;
415
416 switch (devc->state) {
417 case STATE_START_CAPTURE:
418 queue_long_regval(acq, LREG_CAP_CTRL, CAP_CTRL_TRG_EN);
419 break;
420 case STATE_STOP_CAPTURE:
421 queue_long_regval(acq, LREG_CAP_CTRL, 0);
422 lwla_queue_regval(acq, REG_CLK_BOOST, 0);
423 break;
424 case STATE_READ_PREPARE:
425 lwla_queue_regval(acq, REG_CLK_BOOST, 1);
426 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
427 lwla_queue_regval(acq, REG_MEM_START, READ_START_ADDR);
428 break;
429 case STATE_READ_FINISH:
430 lwla_queue_regval(acq, REG_CLK_BOOST, 0);
431 break;
432 case STATE_STATUS_REQUEST:
433 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_LREGS);
940805ce
DE
434 acq->xfer_buf_out[1] = LWLA_WORD(READ_LREGS_START);
435 acq->xfer_buf_out[2] = LWLA_WORD(READ_LREGS_COUNT);
be64f90b
DE
436 acq->xfer_out->length = 3 * sizeof(acq->xfer_buf_out[0]);
437 break;
438 case STATE_LENGTH_REQUEST:
439 lwla_queue_regval(acq, REG_MEM_FILL, 0);
440 break;
441 case STATE_READ_REQUEST:
442 /* Always read a multiple of 8 device words. */
443 count = MIN(READ_CHUNK_LEN36, acq->mem_addr_stop
444 - acq->mem_addr_next + 7) / 8 * 8;
445
446 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM36);
447 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
448 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
449 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
450 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
451 acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
452
453 acq->mem_addr_next += count;
454 break;
455 default:
456 sr_err("BUG: unhandled request state %d.", devc->state);
457 return SR_ERR_BUG;
458 }
459
460 return SR_OK;
461}
462
463static int handle_response(const struct sr_dev_inst *sdi)
464{
465 struct dev_context *devc;
466 struct acquisition_state *acq;
467 int expect_len;
468
469 devc = sdi->priv;
470 acq = devc->acquisition;
471
472 switch (devc->state) {
473 case STATE_STATUS_REQUEST:
940805ce 474 if (acq->xfer_in->actual_length != READ_LREGS_COUNT * 8) {
be64f90b 475 sr_err("Received size %d doesn't match expected size %d.",
940805ce 476 acq->xfer_in->actual_length, READ_LREGS_COUNT * 8);
be64f90b
DE
477 return SR_ERR;
478 }
479 acq->mem_addr_fill = bulk_long_get(acq, LREG_MEM_FILL) & 0xFFFFFFFF;
480 acq->duration_now = bulk_long_get(acq, LREG_DURATION);
481 /* Shift left by one so the bit positions match the LWLA1016. */
482 acq->status = (bulk_long_get(acq, LREG_STATUS) & 0x3F) << 1;
483 /*
484 * It seems that the 125 MS/s mode is implemented simply by
485 * running the FPGA logic at a 25% higher clock rate. As a
486 * result, the millisecond counter for the capture duration
487 * is also off by 25%, and thus needs to be corrected here.
488 */
489 if (acq->clock_boost)
490 acq->duration_now = acq->duration_now * 4 / 5;
491 break;
492 case STATE_LENGTH_REQUEST:
493 acq->mem_addr_next = READ_START_ADDR;
494 acq->mem_addr_stop = acq->reg_sequence[0].val;
495 break;
496 case STATE_READ_REQUEST:
497 /* Expect a multiple of 8 36-bit words packed into 9 32-bit
498 * words. */
499 expect_len = (acq->mem_addr_next - acq->mem_addr_done
500 + acq->in_index + 7) / 8 * 9 * sizeof(acq->xfer_buf_in[0]);
501
502 if (acq->xfer_in->actual_length != expect_len) {
503 sr_err("Received size %d does not match expected size %d.",
504 acq->xfer_in->actual_length, expect_len);
505 devc->transfer_error = TRUE;
506 return SR_ERR;
507 }
508 read_response(acq);
509 break;
510 default:
511 sr_err("BUG: unhandled response state %d.", devc->state);
512 return SR_ERR_BUG;
513 }
514
515 return SR_OK;
516}
517
518/** Model descriptor for the LWLA1034.
519 */
520SR_PRIV const struct model_info lwla1034_info = {
521 .name = "LWLA1034",
522 .num_channels = NUM_CHANNELS,
523
524 .num_devopts = 8,
525 .devopts = {
526 SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
527 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
528 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
529 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
530 SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
531 SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
532 SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
533 SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
534 },
535 .num_samplerates = 20,
536 .samplerates = {
537 SR_MHZ(125), SR_MHZ(100),
538 SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
539 SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
540 SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
541 SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
542 SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
543 SR_HZ(500), SR_HZ(200), SR_HZ(100),
544 },
545
546 .apply_fpga_config = &apply_fpga_config,
547 .device_init_check = &device_init_check,
548 .setup_acquisition = &setup_acquisition,
549
550 .prepare_request = &prepare_request,
551 .handle_response = &handle_response,
552};