]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: adjust register layout in acquisition configuration
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14 37/* Maximum device capabilities. May differ between models. */
8b172e78
KG
38#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200)
39#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100)
e9430410
GS
40#define MAX_SAMPLE_DEPTH 10e9
41#define MAX_PWM_FREQ SR_MHZ(20)
42#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */
f2cd2deb 43
852c7d14
GS
44/*
45 * Default device configuration. Must be applicable to any of the
46 * supported devices (no model specific default values yet). Specific
47 * firmware implementation details unfortunately won't let us detect
48 * and keep using previously configured values.
49 */
50#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
51#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
52#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
53
54/* TODO
55 * What is the origin and motivation of that 128Mi literal? What is its
56 * unit? How does it relate to a device's hardware capabilities? How to
57 * map the 1GiB of RAM of an LA2016 (at 16 channels) to the 128Mi value?
58 * It cannot be sample count. Is it memory size in bytes perhaps?
59 */
60#define LA2016_PRE_MEM_LIMIT_BASE (128 * 1024 * 1024)
61
96dc954e 62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 63#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 70
42f6dd55 71/*
96dc954e
GS
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
42f6dd55 87 */
96dc954e
GS
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
92#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
93#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
94#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
95#define REG_PWM1 0x70 /* Write config for user PWM1. */
96#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 97
852c7d14
GS
98/* Bit patterns to write to REG_RUN, setup run mode. */
99#define RUNMODE_HALT 0x00
100#define RUNMODE_RUN 0x03
101
f2cd2deb 102static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
103 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
104 void *data, uint16_t wLength)
f2cd2deb
FS
105{
106 struct sr_usb_dev_inst *usb;
107 int ret;
108
109 usb = sdi->conn;
110
852c7d14
GS
111 if ((ret = libusb_control_transfer(usb->devhdl,
112 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
f2cd2deb
FS
113 bRequest, wValue, wIndex, (unsigned char *)data, wLength,
114 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
115 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
116 wLength, bRequest, wValue, wIndex,
117 libusb_error_name(ret));
118 sr_err("Cannot read %d bytes from USB: %s.",
119 wLength, libusb_error_name(ret));
f2cd2deb
FS
120 return SR_ERR;
121 }
122
123 return SR_OK;
124}
125
126static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
127 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
128 void *data, uint16_t wLength)
f2cd2deb
FS
129{
130 struct sr_usb_dev_inst *usb;
131 int ret;
132
133 usb = sdi->conn;
134
852c7d14
GS
135 if ((ret = libusb_control_transfer(usb->devhdl,
136 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
f2cd2deb
FS
137 bRequest, wValue, wIndex, (unsigned char*)data, wLength,
138 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
139 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
140 wLength, bRequest, wValue, wIndex,
141 libusb_error_name(ret));
142 sr_err("Cannot write %d bytes to USB: %s.",
143 wLength, libusb_error_name(ret));
f2cd2deb
FS
144 return SR_ERR;
145 }
146
147 return SR_OK;
148}
149
d6f89d4b
GS
150/*
151 * Check the necessity for FPGA bitstream upload, because another upload
152 * would take some 600ms which is undesirable after program startup. Try
153 * to access some FPGA registers and check the values' plausibility. The
154 * check should fail on the safe side, request another upload when in
155 * doubt. A positive response (the request to continue operation with the
156 * currently active bitstream) should be conservative. Accessing multiple
157 * registers is considered cheap compared to the cost of bitstream upload.
158 *
159 * It helps though that both the vendor software and the sigrok driver
160 * use the same bundle of MCU firmware and FPGA bitstream for any of the
161 * supported models. We don't expect to successfully communicate to the
162 * device yet disagree on its protocol. Ideally we would access version
163 * identifying registers for improved robustness, but are not aware of
164 * any. A bitstream reload can always be forced by a power cycle.
165 */
166static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
167{
168 uint8_t init_rsp;
169 int ret;
170 uint16_t run_state;
171 uint8_t pwm_en;
172 size_t read_len;
173 uint8_t buff[sizeof(run_state)];
174 const uint8_t *rdptr;
175
176 sr_dbg("Checking operation of the FPGA bitstream.");
177
852c7d14 178 init_rsp = ~0;
d6f89d4b
GS
179 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
180 if (ret != SR_OK || init_rsp != 0) {
181 sr_dbg("FPGA init query failed, or unexpected response.");
182 return SR_ERR_IO;
183 }
184
185 read_len = sizeof(run_state);
186 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
187 if (ret != SR_OK) {
188 sr_dbg("FPGA register access failed (run state).");
189 return SR_ERR_IO;
190 }
191 rdptr = buff;
192 run_state = read_u16le_inc(&rdptr);
193 sr_spew("FPGA register: run state 0x%04x.", run_state);
194 if (run_state && (run_state & 0x3) != 0x1) {
195 sr_dbg("Unexpected FPGA register content (run state).");
196 return SR_ERR_DATA;
197 }
198 if (run_state && (run_state & ~0xf) != 0x85e0) {
199 sr_dbg("Unexpected FPGA register content (run state).");
200 return SR_ERR_DATA;
201 }
202
203 read_len = sizeof(pwm_en);
204 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
205 if (ret != SR_OK) {
206 sr_dbg("FPGA register access failed (PWM enable).");
207 return SR_ERR_IO;
208 }
209 rdptr = buff;
210 pwm_en = read_u8_inc(&rdptr);
211 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
212 if ((pwm_en & 0x3) != 0x0) {
213 sr_dbg("Unexpected FPGA register content (PWM enable).");
214 return SR_ERR_DATA;
215 }
216
217 sr_info("Could re-use current FPGA bitstream. No upload required.");
218 return SR_OK;
219}
220
1ed93110
GS
221static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
222 const char *bitstream_fname)
f2cd2deb
FS
223{
224 struct drv_context *drvc;
225 struct sr_usb_dev_inst *usb;
226 struct sr_resource bitstream;
b0d0131e 227 uint32_t bitstream_size;
c3d40037
HK
228 uint8_t buffer[sizeof(uint32_t)];
229 uint8_t *wrptr;
f2cd2deb 230 uint8_t block[4096];
3f48ab02
FS
231 int len, act_len;
232 unsigned int pos;
f2cd2deb 233 int ret;
b0d0131e 234 unsigned int zero_pad_to;
f2cd2deb
FS
235
236 drvc = sdi->driver->context;
237 usb = sdi->conn;
238
9de389b1 239 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 240
9de389b1 241 ret = sr_resource_open(drvc->sr_ctx, &bitstream, SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 242 if (ret != SR_OK) {
91f73872 243 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
244 return ret;
245 }
246
b0d0131e 247 bitstream_size = (uint32_t)bitstream.size;
c3d40037 248 wrptr = buffer;
b0d0131e 249 write_u32le_inc(&wrptr, bitstream_size);
00849545 250 if ((ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer)) != SR_OK) {
91f73872 251 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
252 sr_resource_close(drvc->sr_ctx, &bitstream);
253 return ret;
254 }
b0d0131e
GS
255 zero_pad_to = bitstream_size;
256 zero_pad_to += LA2016_EP2_PADDING - 1;
257 zero_pad_to /= LA2016_EP2_PADDING;
258 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
259
260 pos = 0;
261 while (1) {
3f48ab02
FS
262 if (pos < bitstream.size) {
263 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, &block, sizeof(block));
264 if (len < 0) {
91f73872 265 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
266 sr_resource_close(drvc->sr_ctx, &bitstream);
267 return SR_ERR;
268 }
269 } else {
96dc954e 270 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
271 len = zero_pad_to - pos;
272 if ((unsigned)len > sizeof(block))
273 len = sizeof(block);
274 memset(&block, 0, len);
f2cd2deb
FS
275 }
276 if (len == 0)
277 break;
278
852c7d14 279 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 280 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 281 if (ret != 0) {
91f73872
GS
282 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
283 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
284 ret = SR_ERR;
285 break;
286 }
287 if (act_len != len) {
91f73872
GS
288 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
289 pos, (int)len, act_len);
f2cd2deb
FS
290 ret = SR_ERR;
291 break;
292 }
293 pos += len;
294 }
295 sr_resource_close(drvc->sr_ctx, &bitstream);
296 if (ret != 0)
297 return ret;
91f73872
GS
298 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
299 bitstream.size);
f2cd2deb 300
d6f89d4b
GS
301 return SR_OK;
302}
303
304static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
305{
306 int ret;
307 uint8_t cmd_resp;
308
00849545 309 if ((ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &cmd_resp, sizeof(cmd_resp))) != SR_OK) {
91f73872 310 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
311 return ret;
312 }
3f48ab02 313 if (cmd_resp != 0) {
91f73872
GS
314 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
315 cmd_resp);
3f48ab02
FS
316 return SR_ERR;
317 }
852c7d14 318 g_usleep(30 * 1000);
f2cd2deb 319
00849545 320 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0)) != SR_OK) {
91f73872 321 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
322 return ret;
323 }
852c7d14 324 g_usleep(40 * 1000);
d6f89d4b 325
f2cd2deb
FS
326 return SR_OK;
327}
328
329static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
330{
331 struct dev_context *devc;
f2cd2deb
FS
332 int ret;
333
334 devc = sdi->priv;
f2cd2deb 335
1ed93110 336 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
337 uint8_t buf[2 * sizeof(uint16_t)];
338 uint8_t *wrptr;
339
96dc954e 340 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
341 if (voltage > 4.0) {
342 voltage = 4.0;
1ed93110 343 } else if (voltage < -4.0) {
f2ad79d1
KG
344 voltage = -4.0;
345 }
346
347 /*
96dc954e
GS
348 * Two PWM output channels feed one DAC which generates a bias
349 * voltage, which offsets the input probe's voltage level, and
350 * in combination with the FPGA pins' fixed threshold result in
351 * a programmable input threshold from the user's perspective.
352 * The PWM outputs can be seen on R79 and R56 respectively, the
353 * frequency is 100kHz and the duty cycle varies. The R79 PWM
354 * uses three discrete settings. The R56 PWM varies with desired
355 * thresholds and depends on the R79 PWM configuration. See the
356 * schematics comments which discuss the formulae.
f2ad79d1
KG
357 */
358 if (voltage >= 2.9) {
96dc954e 359 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 360 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 361 } else if (voltage > -0.4) {
96dc954e 362 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 363 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
364 } else {
365 duty_R79 = 0x02d7; /* 72% duty cycle. */
366 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
367 }
368
96dc954e 369 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
370 if (duty_R56 < 10) {
371 duty_R56 = 10;
1ed93110 372 } else if (duty_R56 > 1100) {
f2ad79d1
KG
373 duty_R56 = 1100;
374 }
375
91f73872
GS
376 sr_dbg("Set threshold voltage %.2fV.", voltage);
377 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
378
379 wrptr = buf;
380 write_u16le_inc(&wrptr, duty_R56);
381 write_u16le_inc(&wrptr, duty_R79);
382
383 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 384 if (ret != SR_OK) {
91f73872 385 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
386 return ret;
387 }
388 devc->threshold_voltage = voltage;
389
390 return SR_OK;
391}
392
393static int enable_pwm(const struct sr_dev_inst *sdi, uint8_t p1, uint8_t p2)
394{
395 struct dev_context *devc;
396 uint8_t cfg;
397 int ret;
398
399 devc = sdi->priv;
400 cfg = 0;
401
402 if (p1) cfg |= 1 << 0;
403 if (p2) cfg |= 1 << 1;
404
91f73872 405 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
42f6dd55 406 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 407 if (ret != SR_OK) {
91f73872 408 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
409 return ret;
410 }
411 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
412 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
413
414 return SR_OK;
415}
416
1ed93110
GS
417static int set_pwm(const struct sr_dev_inst *sdi, uint8_t which,
418 float freq, float duty)
f2cd2deb 419{
42f6dd55 420 int CTRL_PWM[] = { REG_PWM1, REG_PWM2 };
f2cd2deb
FS
421 struct dev_context *devc;
422 pwm_setting_dev_t cfg;
423 pwm_setting_t *setting;
424 int ret;
c3d40037
HK
425 uint8_t buf[2 * sizeof(uint32_t)];
426 uint8_t *wrptr;
f2cd2deb
FS
427
428 devc = sdi->priv;
429
852c7d14 430 if (which < 1 || which > ARRAY_SIZE(CTRL_PWM)) {
91f73872 431 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
432 return SR_ERR;
433 }
434 if (freq > MAX_PWM_FREQ) {
91f73872 435 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
436 return SR_ERR;
437 }
438 if (duty > 100 || duty < 0) {
91f73872 439 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
440 return SR_ERR;
441 }
442
443 cfg.period = (uint32_t)(PWM_CLOCK / freq);
444 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 445 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 446
c3d40037
HK
447 wrptr = buf;
448 write_u32le_inc(&wrptr, cfg.period);
449 write_u32le_inc(&wrptr, cfg.duty);
00849545 450 ret = ctrl_out(sdi, CMD_FPGA_SPI, CTRL_PWM[which - 1], 0, buf, wrptr - buf);
f2cd2deb 451 if (ret != SR_OK) {
91f73872
GS
452 sr_err("Cannot setup PWM%d configuration %d %d.",
453 which, cfg.period, cfg.duty);
f2cd2deb
FS
454 return ret;
455 }
456 setting = &devc->pwm_setting[which - 1];
457 setting->freq = freq;
458 setting->duty = duty;
f2cd2deb
FS
459
460 return SR_OK;
461}
462
463static int set_defaults(const struct sr_dev_inst *sdi)
464{
465 struct dev_context *devc;
466 int ret;
467
468 devc = sdi->priv;
469
852c7d14 470 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
f2cd2deb 471 devc->cur_channels = 0xffff;
852c7d14
GS
472 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
473 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
474
475 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
476 if (ret)
477 return ret;
478
479 ret = enable_pwm(sdi, 0, 0);
480 if (ret)
481 return ret;
482
852c7d14 483 ret = set_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
484 if (ret)
485 return ret;
486
852c7d14 487 ret = set_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
488 if (ret)
489 return ret;
490
491 ret = enable_pwm(sdi, 1, 1);
492 if (ret)
493 return ret;
494
495 return SR_OK;
496}
497
498static int set_trigger_config(const struct sr_dev_inst *sdi)
499{
500 struct dev_context *devc;
501 struct sr_trigger *trigger;
502 trigger_cfg_t cfg;
503 GSList *stages;
504 GSList *channel;
505 struct sr_trigger_stage *stage1;
506 struct sr_trigger_match *match;
507 uint16_t ch_mask;
508 int ret;
c3d40037
HK
509 uint8_t buf[4 * sizeof(uint32_t)];
510 uint8_t *wrptr;
f2cd2deb
FS
511
512 devc = sdi->priv;
513 trigger = sr_session_trigger_get(sdi->session);
514
515 memset(&cfg, 0, sizeof(cfg));
516
517 cfg.channels = devc->cur_channels;
518
519 if (trigger && trigger->stages) {
520 stages = trigger->stages;
521 stage1 = stages->data;
522 if (stages->next) {
523 sr_err("Only one trigger stage supported for now.");
524 return SR_ERR;
525 }
526 channel = stage1->matches;
527 while (channel) {
528 match = channel->data;
529 ch_mask = 1 << match->channel->index;
530
531 switch (match->match) {
532 case SR_TRIGGER_ZERO:
533 cfg.level |= ch_mask;
534 cfg.high_or_falling &= ~ch_mask;
535 break;
536 case SR_TRIGGER_ONE:
537 cfg.level |= ch_mask;
538 cfg.high_or_falling |= ch_mask;
539 break;
540 case SR_TRIGGER_RISING:
541 if ((cfg.enabled & ~cfg.level)) {
91f73872 542 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
543 return SR_ERR;
544 }
545 cfg.level &= ~ch_mask;
546 cfg.high_or_falling &= ~ch_mask;
547 break;
548 case SR_TRIGGER_FALLING:
549 if ((cfg.enabled & ~cfg.level)) {
91f73872 550 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
551 return SR_ERR;
552 }
553 cfg.level &= ~ch_mask;
554 cfg.high_or_falling |= ch_mask;
555 break;
556 default:
91f73872 557 sr_err("Unknown trigger condition.");
f2cd2deb
FS
558 return SR_ERR;
559 }
560 cfg.enabled |= ch_mask;
561 channel = channel->next;
562 }
563 }
91f73872
GS
564 sr_dbg("Set trigger config: "
565 "channels 0x%04x, trigger-enabled 0x%04x, "
566 "level-triggered 0x%04x, high/falling 0x%04x.",
567 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb
FS
568
569 devc->had_triggers_configured = cfg.enabled != 0;
570
c3d40037
HK
571 wrptr = buf;
572 write_u32le_inc(&wrptr, cfg.channels);
573 write_u32le_inc(&wrptr, cfg.enabled);
574 write_u32le_inc(&wrptr, cfg.level);
575 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
576 /* TODO
577 * Comment on this literal 16. Origin, meaning? Cannot be the
578 * register offset, nor the transfer length. Is it a channels
579 * count that is relevant for 16 and 32 channel models? Is it
580 * an obsolete experiment?
581 */
42f6dd55 582 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 583 if (ret != SR_OK) {
91f73872 584 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
585 return ret;
586 }
587
588 return SR_OK;
589}
590
591static int set_sample_config(const struct sr_dev_inst *sdi)
592{
593 struct dev_context *devc;
f2cd2deb 594 double clock_divisor;
adab4d91
GS
595 uint16_t divider_u16;
596 uint64_t pre_trigger_samples;
597 uint64_t pre_trigger_memory;
598 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 599 uint8_t *wrptr;
adab4d91 600 int ret;
f2cd2deb
FS
601
602 devc = sdi->priv;
f2cd2deb 603
8b172e78 604 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
605 sr_err("Too high a sample rate: %" PRIu64 ".",
606 devc->cur_samplerate);
f2cd2deb
FS
607 return SR_ERR;
608 }
609
8b172e78 610 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
611 if (clock_divisor > 65535)
612 return SR_ERR_ARG;
613 divider_u16 = (uint16_t)(clock_divisor + 0.5);
614 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb
FS
615
616 if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
91f73872
GS
617 sr_err("Too high a sample depth: %" PRIu64 ".",
618 devc->limit_samples);
f2cd2deb
FS
619 return SR_ERR;
620 }
f2cd2deb 621
adab4d91
GS
622 /*
623 * The acquisition configuration communicates "pre-trigger"
624 * specs in several formats. sigrok users provide a percentage
625 * (0-100%), which translates to a pre-trigger samples count
626 * (assuming that a total samples count limit was specified).
627 * The device supports hardware compression, which depends on
628 * slowly changing input data to be effective. Fast changing
629 * input data may occupy more space in sample memory than its
630 * uncompressed form would. This is why a third parameter can
631 * limit the amount of sample memory to use for pre-trigger
632 * data. Only the upper 24 bits of that memory size spec get
633 * communicated to the device (written to its FPGA register).
634 */
635 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
636 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
637 pre_trigger_memory *= devc->capture_ratio;
638 pre_trigger_memory /= 100;
f2cd2deb 639
adab4d91
GS
640 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
641 devc->cur_samplerate / 1000, devc->limit_samples);
642 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
643 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 644
b1a17c1a
GS
645 /*
646 * The acquisition configuration occupies a total of 16 bytes:
647 * - A 34bit total samples count limit (up to 10 billions) that
648 * is kept in a 40bit register.
649 * - A 34bit pre-trigger samples count limit (up to 10 billions)
650 * in another 40bit register.
651 * - A 32bit pre-trigger memory space limit (in bytes) of which
652 * the upper 24bits are kept in an FPGA register.
653 * - A 16bit clock divider which gets applied to the maximum
654 * samplerate of the device.
655 * - An 8bit register of unknown meaning. Currently always 0.
656 */
c3d40037 657 wrptr = buf;
b1a17c1a
GS
658 write_u40le_inc(&wrptr, devc->limit_samples);
659 write_u40le_inc(&wrptr, pre_trigger_samples);
660 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 661 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 662 write_u8_inc(&wrptr, 0);
42f6dd55 663 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 664 if (ret != SR_OK) {
91f73872 665 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
666 return ret;
667 }
668
669 return SR_OK;
670}
671
96dc954e
GS
672/*
673 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
674 * of interest:
675 * bit 0: value 1 = idle
676 * bit 1: value 1 = writing to SDRAM
677 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
678 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
679 * The meaning of other bit fields is unknown.
7601dca7 680 *
96dc954e
GS
681 * Typical values in order of appearance during execution:
682 * 0x85e2: pre-sampling, samples before the trigger position,
683 * when capture ratio > 0%
684 * 0x85ea: pre-sampling complete, now waiting for the trigger
685 * (whilst sampling continuously)
686 * 0x85ee: trigger seen, capturing post-trigger samples, running
687 * 0x85ed: idle
f2cd2deb
FS
688 */
689static uint16_t run_state(const struct sr_dev_inst *sdi)
690{
21d68fd9
GS
691 static uint16_t previous_state;
692
f2cd2deb 693 int ret;
21d68fd9
GS
694 uint16_t state;
695 uint8_t buff[sizeof(state)];
696 const uint8_t *rdptr;
697 const char *label;
f2cd2deb 698
21d68fd9 699 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state))) != SR_OK) {
91f73872 700 sr_err("Cannot read run state.");
f2cd2deb
FS
701 return ret;
702 }
21d68fd9
GS
703 rdptr = buff;
704 state = read_u16le_inc(&rdptr);
7601dca7 705
96dc954e
GS
706 /*
707 * Avoid flooding the log, only dump values as they change.
708 * The routine is called about every 50ms.
7601dca7 709 */
84fe94bd 710 if (state != previous_state) {
7601dca7 711 previous_state = state;
21d68fd9
GS
712 if ((state & 0x3) == 0x1) {
713 label = "idle";
714 } else if ((state & 0xf) == 0x2) {
715 label = "pre-trigger sampling";
716 } else if ((state & 0xf) == 0xa) {
717 label = "sampling, waiting for trigger";
718 } else if ((state & 0xf) == 0xe) {
719 label = "post-trigger sampling";
720 } else {
721 label = NULL;
722 }
723 if (label && *label) {
724 sr_dbg("Run state: 0x%04x (%s).", state, label);
1ed93110 725 } else {
91f73872 726 sr_dbg("Run state: 0x%04x.", state);
7601dca7
KG
727 }
728 }
f2cd2deb
FS
729
730 return state;
731}
732
c34f4a89
GS
733static int la2016_has_triggered(const struct sr_dev_inst *sdi)
734{
735 uint16_t state;
736
737 state = run_state(sdi);
738 if ((state & 0x3) == 0x1)
739 return 1;
740
741 return 0;
742}
743
744static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
745{
746 int ret;
747
c34f4a89
GS
748 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode))) != SR_OK) {
749 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
750 return ret;
751 }
752
753 return SR_OK;
754}
755
756static int get_capture_info(const struct sr_dev_inst *sdi)
757{
758 struct dev_context *devc;
759 int ret;
c3d40037
HK
760 uint8_t buf[3 * sizeof(uint32_t)];
761 const uint8_t *rdptr;
f2cd2deb
FS
762
763 devc = sdi->priv;
764
42f6dd55 765 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf))) != SR_OK) {
91f73872 766 sr_err("Cannot read capture info.");
f2cd2deb
FS
767 return ret;
768 }
c3d40037
HK
769
770 rdptr = buf;
771 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
772 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
773 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 774
91f73872 775 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x%d.",
1ed93110
GS
776 devc->info.n_rep_packets, devc->info.n_rep_packets,
777 devc->info.n_rep_packets_before_trigger,
778 devc->info.n_rep_packets_before_trigger,
779 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 780
852c7d14
GS
781 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
782 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
783 (unsigned long)devc->info.n_rep_packets,
784 NUM_PACKETS_IN_CHUNK);
91f73872 785 }
f2cd2deb
FS
786
787 return SR_OK;
788}
789
1ed93110
GS
790SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
791 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
792{
793 char fw_file[1024];
794 snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
40a0b2f4 795 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
796}
797
798SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
799{
800 struct dev_context *devc;
801 int ret;
802 uint8_t cmd;
803
804 devc = sdi->priv;
805
806 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
807 if (ret != SR_OK)
808 return ret;
809
810 cmd = 0;
42f6dd55 811 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd))) != SR_OK) {
91f73872 812 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
813 return ret;
814 }
815
816 ret = set_trigger_config(sdi);
817 if (ret != SR_OK)
818 return ret;
819
820 ret = set_sample_config(sdi);
821 if (ret != SR_OK)
822 return ret;
823
824 return SR_OK;
825}
826
827SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
828{
3ebc1cb2
GS
829 int ret;
830
852c7d14 831 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
832 if (ret != SR_OK)
833 return ret;
834
835 return SR_OK;
f2cd2deb
FS
836}
837
3ebc1cb2 838static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 839{
3ebc1cb2
GS
840 int ret;
841
852c7d14 842 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
843 if (ret != SR_OK)
844 return ret;
845
846 return SR_OK;
f2cd2deb
FS
847}
848
849SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
850{
3ebc1cb2
GS
851 int ret;
852 struct dev_context *devc;
853
854 ret = la2016_stop_acquisition(sdi);
855 if (ret != SR_OK)
856 return ret;
857
858 devc = sdi ? sdi->priv : NULL;
859 if (devc && devc->transfer)
860 libusb_cancel_transfer(devc->transfer);
861
862 return SR_OK;
f2cd2deb
FS
863}
864
1ed93110
GS
865static int la2016_start_retrieval(const struct sr_dev_inst *sdi,
866 libusb_transfer_cb_fn cb)
f2cd2deb
FS
867{
868 struct dev_context *devc;
869 struct sr_usb_dev_inst *usb;
870 int ret;
c3d40037
HK
871 uint8_t wrbuf[2 * sizeof(uint32_t)];
872 uint8_t *wrptr;
f2cd2deb
FS
873 uint32_t to_read;
874 uint8_t *buffer;
875
876 devc = sdi->priv;
877 usb = sdi->conn;
878
879 if ((ret = get_capture_info(sdi)) != SR_OK)
880 return ret;
881
c3d40037
HK
882 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
883 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
884 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
885 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
886
91f73872 887 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 888 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 889
00849545 890 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 891 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
892 return ret;
893 }
91f73872
GS
894 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
895 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
896 wrptr = wrbuf;
897 write_u32le_inc(&wrptr, devc->read_pos);
898 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
42f6dd55 899 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf)) != SR_OK) {
91f73872 900 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
901 return ret;
902 }
00849545 903 if ((ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 904 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
905 return ret;
906 }
907
96dc954e
GS
908 /*
909 * Pick a buffer size for all USB transfers. The buffer size
910 * must be a multiple of the endpoint packet size. And cannot
911 * exceed a maximum value.
912 */
f2cd2deb 913 to_read = devc->n_bytes_to_read;
96dc954e
GS
914 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
915 to_read = LA2016_USB_BUFSZ;
916 else /* One transfer. */
e847645b 917 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
918 buffer = g_try_malloc(to_read);
919 if (!buffer) {
91f73872
GS
920 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
921 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
922 return SR_ERR_MALLOC;
923 }
924
925 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
926 libusb_fill_bulk_transfer(devc->transfer,
927 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
928 buffer, to_read,
f2cd2deb
FS
929 cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
930
931 if ((ret = libusb_submit_transfer(devc->transfer)) != 0) {
91f73872 932 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
933 libusb_free_transfer(devc->transfer);
934 devc->transfer = NULL;
935 g_free(buffer);
936 return SR_ERR;
937 }
938
939 return SR_OK;
940}
941
dfac9592
GS
942static void send_chunk(struct sr_dev_inst *sdi,
943 const uint8_t *packets, unsigned int num_tfers)
944{
945 struct dev_context *devc;
946 struct sr_datafeed_logic logic;
947 struct sr_datafeed_packet sr_packet;
948 unsigned int max_samples, n_samples, total_samples, free_n_samples;
949 unsigned int i, j, k;
950 int do_signal_trigger;
fe953391 951 uint8_t *wp;
dfac9592
GS
952 const uint8_t *rp;
953 uint16_t state;
954 uint8_t repetitions;
fe953391 955 uint8_t sample_buff[sizeof(state)];
dfac9592
GS
956
957 devc = sdi->priv;
958
fe953391 959 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
960 logic.data = devc->convbuffer;
961
962 sr_packet.type = SR_DF_LOGIC;
963 sr_packet.payload = &logic;
964
fe953391 965 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 966 n_samples = 0;
fe953391 967 wp = devc->convbuffer;
dfac9592
GS
968 total_samples = 0;
969 do_signal_trigger = 0;
970
971 if (devc->had_triggers_configured && devc->reading_behind_trigger == 0 && devc->info.n_rep_packets_before_trigger == 0) {
972 std_session_send_df_trigger(sdi);
973 devc->reading_behind_trigger = 1;
974 }
975
976 rp = packets;
977 for (i = 0; i < num_tfers; i++) {
978 for (k = 0; k < NUM_PACKETS_IN_CHUNK; k++) {
979 free_n_samples = max_samples - n_samples;
980 if (free_n_samples < 256 || do_signal_trigger) {
981 logic.length = n_samples * 2;
982 sr_session_send(sdi, &sr_packet);
983 n_samples = 0;
fe953391 984 wp = devc->convbuffer;
dfac9592
GS
985 if (do_signal_trigger) {
986 std_session_send_df_trigger(sdi);
987 do_signal_trigger = 0;
988 }
989 }
990
991 state = read_u16le_inc(&rp);
992 repetitions = read_u8_inc(&rp);
fe953391
GS
993 write_u16le((void *)&sample_buff, state);
994 for (j = 0; j < repetitions; j++) {
995 memcpy(wp, sample_buff, logic.unitsize);
996 wp += logic.unitsize;
997 }
dfac9592
GS
998
999 n_samples += repetitions;
1000 total_samples += repetitions;
1001 devc->total_samples += repetitions;
1002 if (!devc->reading_behind_trigger) {
1003 devc->n_reps_until_trigger--;
1004 if (devc->n_reps_until_trigger == 0) {
1005 devc->reading_behind_trigger = 1;
1006 do_signal_trigger = 1;
91f73872 1007 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1008 devc->total_samples,
1009 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1010 }
1011 }
1012 }
1013 (void)read_u8_inc(&rp); /* Skip sequence number. */
1014 }
1015 if (n_samples) {
fe953391 1016 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1017 sr_session_send(sdi, &sr_packet);
1018 if (do_signal_trigger) {
1019 std_session_send_df_trigger(sdi);
1020 }
1021 }
91f73872 1022 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1023}
1024
1025static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1026{
1027 struct sr_dev_inst *sdi;
1028 struct dev_context *devc;
1029 struct sr_usb_dev_inst *usb;
1030 int ret;
1031
1032 sdi = transfer->user_data;
1033 devc = sdi->priv;
1034 usb = sdi->conn;
1035
1036 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1037 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1038
1039 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1040 sr_err("USB bulk transfer timeout.");
dfac9592
GS
1041 devc->transfer_finished = 1;
1042 }
1043 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1044
1045 devc->n_bytes_to_read -= transfer->actual_length;
1046 if (devc->n_bytes_to_read) {
1047 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1048 /*
1049 * Determine read size for the next USB transfer. Make
1050 * the buffer size a multiple of the endpoint packet
1051 * size. Don't exceed a maximum value.
1052 */
dfac9592
GS
1053 if (to_read >= LA2016_USB_BUFSZ)
1054 to_read = LA2016_USB_BUFSZ;
96dc954e 1055 else
dfac9592 1056 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1057 libusb_fill_bulk_transfer(transfer,
1058 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1059 transfer->buffer, to_read,
dfac9592
GS
1060 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1061
1062 if ((ret = libusb_submit_transfer(transfer)) == 0)
1063 return;
91f73872
GS
1064 sr_err("Cannot submit another USB transfer: %s.",
1065 libusb_error_name(ret));
dfac9592
GS
1066 }
1067
1068 g_free(transfer->buffer);
1069 libusb_free_transfer(transfer);
1070 devc->transfer_finished = 1;
1071}
1072
1073SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1074{
1075 const struct sr_dev_inst *sdi;
1076 struct dev_context *devc;
1077 struct drv_context *drvc;
1078 struct timeval tv;
1079
1080 (void)fd;
1081 (void)revents;
1082
1083 sdi = cb_data;
1084 devc = sdi->priv;
1085 drvc = sdi->driver->context;
1086
1087 if (devc->have_trigger == 0) {
1088 if (la2016_has_triggered(sdi) == 0) {
96dc954e 1089 /* Not yet ready for sample data download. */
dfac9592
GS
1090 return TRUE;
1091 }
1092 devc->have_trigger = 1;
1093 devc->transfer_finished = 0;
1094 devc->reading_behind_trigger = 0;
1095 devc->total_samples = 0;
96dc954e 1096 /* We can start downloading sample data. */
dfac9592 1097 if (la2016_start_retrieval(sdi, receive_transfer) != SR_OK) {
91f73872 1098 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1099 return FALSE;
1100 }
91f73872 1101 sr_dbg("Acquisition data download started.");
dfac9592
GS
1102 std_session_send_df_frame_begin(sdi);
1103
1104 return TRUE;
1105 }
1106
1107 tv.tv_sec = tv.tv_usec = 0;
1108 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1109
1110 if (devc->transfer_finished) {
91f73872 1111 sr_dbg("Download finished, post processing.");
dfac9592
GS
1112 std_session_send_df_frame_end(sdi);
1113
1114 usb_source_remove(sdi->session, drvc->sr_ctx);
1115 std_session_send_df_end(sdi);
1116
1117 la2016_stop_acquisition(sdi);
1118
1119 g_free(devc->convbuffer);
1120 devc->convbuffer = NULL;
1121
1122 devc->transfer = NULL;
1123
91f73872 1124 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1125 }
1126
1127 return TRUE;
1128}
1129
f2cd2deb
FS
1130SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1131{
8b172e78 1132 struct dev_context *devc;
f2cd2deb 1133 uint16_t state;
9de389b1 1134 uint8_t buf[8];
43d2e52f
GS
1135 const uint8_t *rdptr;
1136 uint8_t date_yy, date_mm;
1137 uint8_t dinv_yy, dinv_mm;
9de389b1 1138 uint8_t magic;
d6f89d4b 1139 const char *bitstream_fn;
9de389b1 1140 int ret;
f2cd2deb 1141
8b172e78
KG
1142 devc = sdi->priv;
1143
96dc954e 1144 /*
43d2e52f
GS
1145 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1146 * year and month in BCD format, followed by inverted values for
1147 * consistency checks. For example bytes 20 04 df fb translate
1148 * to 2020-04. This information can help identify the vintage of
1149 * devices when unknown magic numbers are seen.
9de389b1 1150 */
43d2e52f
GS
1151 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1152 if (ret != SR_OK) {
1153 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1154 } else {
43d2e52f
GS
1155 rdptr = &buf[0];
1156 date_yy = read_u8_inc(&rdptr);
1157 date_mm = read_u8_inc(&rdptr);
1158 dinv_yy = read_u8_inc(&rdptr);
1159 dinv_mm = read_u8_inc(&rdptr);
1160 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1161 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1162 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1163 }
f2cd2deb 1164
9de389b1 1165 /*
96dc954e
GS
1166 * Several Kingst logic analyzer devices share the same USB VID
1167 * and PID. The product ID determines which MCU firmware to load.
1168 * The MCU firmware provides access to EEPROM content which then
1169 * allows to identify the device model. Which in turn determines
1170 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1171 * to get inspected.
9de389b1 1172 *
96dc954e
GS
1173 * EEPROM content for model identification is kept redundantly
1174 * in memory. The values are stored in verbatim and in inverted
1175 * form, multiple copies are kept at different offsets. Example
1176 * data:
9de389b1 1177 *
96dc954e
GS
1178 * magic 0x08
1179 * | ~magic 0xf7
1180 * | |
1181 * 08f7000008f710ef
1182 * | |
1183 * | ~magic backup
1184 * magic backup
9de389b1 1185 *
96dc954e
GS
1186 * Exclusively inspecting the magic byte appears to be sufficient,
1187 * other fields seem to be 'don't care'.
9de389b1 1188 *
96dc954e
GS
1189 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1190 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1191 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1192 * (latest v1.3.0 PCB, perhaps others)
1193 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1194 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1195 *
96dc954e
GS
1196 * When EEPROM content does not match the hardware configuration
1197 * (the board layout), the software may load but yield incorrect
1198 * results (like swapped channels). The FPGA bitstream itself
1199 * will authenticate with IC U10 and fail when its capabilities
1200 * do not match the hardware model. An LA1016 won't become a
1201 * LA2016 by faking its EEPROM content.
9de389b1 1202 */
9de389b1 1203 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1204 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1205 return ret;
1206 }
43d2e52f 1207 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1208 /* Primary copy of magic passes complement check. */
43d2e52f 1209 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1210 magic = buf[0];
43d2e52f 1211 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1212 /* Backup copy of magic passes complement check. */
91f73872 1213 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1214 magic = buf[4];
43d2e52f
GS
1215 } else {
1216 sr_err("Cannot find consistent device type identification.");
1217 magic = 0;
f2cd2deb 1218 }
91f73872 1219 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1220
96dc954e 1221 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1222 switch (magic) {
1223 case 2:
d6f89d4b 1224 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1225 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1226 break;
1227 case 3:
d6f89d4b 1228 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1229 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1230 break;
1231 case 8:
d6f89d4b 1232 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1233 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1234 break;
1235 case 9:
d6f89d4b 1236 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1237 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1238 break;
1239 default:
d6f89d4b
GS
1240 bitstream_fn = NULL;
1241 break;
1242 }
1243 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1244 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1245 return SR_ERR;
1246 }
f2cd2deb 1247
d6f89d4b
GS
1248 if (check_fpga_bitstream(sdi) != SR_OK) {
1249 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1250 if (ret != SR_OK) {
1251 sr_err("Cannot upload FPGA bitstream.");
1252 return ret;
1253 }
1254 }
1255 ret = enable_fpga_bitstream(sdi);
9de389b1 1256 if (ret != SR_OK) {
d6f89d4b 1257 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1258 return ret;
1259 }
1260
f2cd2deb 1261 state = run_state(sdi);
9de389b1 1262 if (state != 0x85e9) {
91f73872 1263 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1264 }
f2cd2deb 1265
00849545 1266 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1267 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1268 return ret;
1269 }
9de389b1 1270
91f73872 1271 sr_dbg("Device should be initialized.");
f2cd2deb 1272
c34f4a89
GS
1273 ret = set_defaults(sdi);
1274 if (ret != SR_OK)
1275 return ret;
1276
1277 return SR_OK;
f2cd2deb
FS
1278}
1279
1280SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1281{
1282 int ret;
1283
00849545 1284 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1285 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1286 return ret;
1287 }
1288
1289 return SR_OK;
1290}