]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: separate complex calls from caller's control flow
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14 37/* Maximum device capabilities. May differ between models. */
8b172e78
KG
38#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200)
39#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100)
e9430410
GS
40#define MAX_SAMPLE_DEPTH 10e9
41#define MAX_PWM_FREQ SR_MHZ(20)
42#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */
f2cd2deb 43
852c7d14
GS
44/*
45 * Default device configuration. Must be applicable to any of the
46 * supported devices (no model specific default values yet). Specific
47 * firmware implementation details unfortunately won't let us detect
48 * and keep using previously configured values.
49 */
50#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
51#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
52#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
53
54/* TODO
55 * What is the origin and motivation of that 128Mi literal? What is its
56 * unit? How does it relate to a device's hardware capabilities? How to
57 * map the 1GiB of RAM of an LA2016 (at 16 channels) to the 128Mi value?
58 * It cannot be sample count. Is it memory size in bytes perhaps?
59 */
60#define LA2016_PRE_MEM_LIMIT_BASE (128 * 1024 * 1024)
61
96dc954e 62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 63#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 70
42f6dd55 71/*
96dc954e
GS
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
42f6dd55 87 */
96dc954e
GS
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
92#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
93#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
94#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
95#define REG_PWM1 0x70 /* Write config for user PWM1. */
96#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 97
852c7d14
GS
98/* Bit patterns to write to REG_RUN, setup run mode. */
99#define RUNMODE_HALT 0x00
100#define RUNMODE_RUN 0x03
101
b711fd8e
GS
102/* Bit patterns when reading from REG_RUN, get run state. */
103#define RUNSTATE_IDLE_BIT (1UL << 0)
104#define RUNSTATE_DRAM_BIT (1UL << 1)
105#define RUNSTATE_TRGD_BIT (1UL << 2)
106#define RUNSTATE_POST_BIT (1UL << 3)
107
f2cd2deb 108static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
109 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
110 void *data, uint16_t wLength)
f2cd2deb
FS
111{
112 struct sr_usb_dev_inst *usb;
113 int ret;
114
115 usb = sdi->conn;
116
411ad77c
GS
117 ret = libusb_control_transfer(usb->devhdl,
118 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
119 bRequest, wValue, wIndex, data, wLength,
120 DEFAULT_TIMEOUT_MS);
121 if (ret != wLength) {
91f73872
GS
122 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
123 wLength, bRequest, wValue, wIndex,
124 libusb_error_name(ret));
125 sr_err("Cannot read %d bytes from USB: %s.",
126 wLength, libusb_error_name(ret));
f2cd2deb
FS
127 return SR_ERR;
128 }
129
130 return SR_OK;
131}
132
133static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
134 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
135 void *data, uint16_t wLength)
f2cd2deb
FS
136{
137 struct sr_usb_dev_inst *usb;
138 int ret;
139
140 usb = sdi->conn;
141
411ad77c
GS
142 ret = libusb_control_transfer(usb->devhdl,
143 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
144 bRequest, wValue, wIndex, data, wLength,
145 DEFAULT_TIMEOUT_MS);
146 if (ret != wLength) {
91f73872
GS
147 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
148 wLength, bRequest, wValue, wIndex,
149 libusb_error_name(ret));
150 sr_err("Cannot write %d bytes to USB: %s.",
151 wLength, libusb_error_name(ret));
f2cd2deb
FS
152 return SR_ERR;
153 }
154
155 return SR_OK;
156}
157
d6f89d4b
GS
158/*
159 * Check the necessity for FPGA bitstream upload, because another upload
160 * would take some 600ms which is undesirable after program startup. Try
161 * to access some FPGA registers and check the values' plausibility. The
162 * check should fail on the safe side, request another upload when in
163 * doubt. A positive response (the request to continue operation with the
164 * currently active bitstream) should be conservative. Accessing multiple
165 * registers is considered cheap compared to the cost of bitstream upload.
166 *
167 * It helps though that both the vendor software and the sigrok driver
168 * use the same bundle of MCU firmware and FPGA bitstream for any of the
169 * supported models. We don't expect to successfully communicate to the
170 * device yet disagree on its protocol. Ideally we would access version
171 * identifying registers for improved robustness, but are not aware of
172 * any. A bitstream reload can always be forced by a power cycle.
173 */
174static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
175{
176 uint8_t init_rsp;
177 int ret;
178 uint16_t run_state;
179 uint8_t pwm_en;
180 size_t read_len;
181 uint8_t buff[sizeof(run_state)];
182 const uint8_t *rdptr;
183
184 sr_dbg("Checking operation of the FPGA bitstream.");
185
852c7d14 186 init_rsp = ~0;
d6f89d4b
GS
187 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
188 if (ret != SR_OK || init_rsp != 0) {
189 sr_dbg("FPGA init query failed, or unexpected response.");
190 return SR_ERR_IO;
191 }
192
193 read_len = sizeof(run_state);
194 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
195 if (ret != SR_OK) {
196 sr_dbg("FPGA register access failed (run state).");
197 return SR_ERR_IO;
198 }
199 rdptr = buff;
200 run_state = read_u16le_inc(&rdptr);
201 sr_spew("FPGA register: run state 0x%04x.", run_state);
202 if (run_state && (run_state & 0x3) != 0x1) {
203 sr_dbg("Unexpected FPGA register content (run state).");
204 return SR_ERR_DATA;
205 }
206 if (run_state && (run_state & ~0xf) != 0x85e0) {
207 sr_dbg("Unexpected FPGA register content (run state).");
208 return SR_ERR_DATA;
209 }
210
211 read_len = sizeof(pwm_en);
212 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
213 if (ret != SR_OK) {
214 sr_dbg("FPGA register access failed (PWM enable).");
215 return SR_ERR_IO;
216 }
217 rdptr = buff;
218 pwm_en = read_u8_inc(&rdptr);
219 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
220 if ((pwm_en & 0x3) != 0x0) {
221 sr_dbg("Unexpected FPGA register content (PWM enable).");
222 return SR_ERR_DATA;
223 }
224
225 sr_info("Could re-use current FPGA bitstream. No upload required.");
226 return SR_OK;
227}
228
1ed93110
GS
229static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
230 const char *bitstream_fname)
f2cd2deb
FS
231{
232 struct drv_context *drvc;
233 struct sr_usb_dev_inst *usb;
234 struct sr_resource bitstream;
b0d0131e 235 uint32_t bitstream_size;
c3d40037
HK
236 uint8_t buffer[sizeof(uint32_t)];
237 uint8_t *wrptr;
f2cd2deb 238 uint8_t block[4096];
3f48ab02
FS
239 int len, act_len;
240 unsigned int pos;
f2cd2deb 241 int ret;
b0d0131e 242 unsigned int zero_pad_to;
f2cd2deb
FS
243
244 drvc = sdi->driver->context;
245 usb = sdi->conn;
246
9de389b1 247 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 248
411ad77c
GS
249 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
250 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 251 if (ret != SR_OK) {
91f73872 252 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
253 return ret;
254 }
255
b0d0131e 256 bitstream_size = (uint32_t)bitstream.size;
c3d40037 257 wrptr = buffer;
b0d0131e 258 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
259 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
260 if (ret != SR_OK) {
91f73872 261 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
262 sr_resource_close(drvc->sr_ctx, &bitstream);
263 return ret;
264 }
b0d0131e
GS
265 zero_pad_to = bitstream_size;
266 zero_pad_to += LA2016_EP2_PADDING - 1;
267 zero_pad_to /= LA2016_EP2_PADDING;
268 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
269
270 pos = 0;
271 while (1) {
3f48ab02 272 if (pos < bitstream.size) {
411ad77c
GS
273 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
274 block, sizeof(block));
3f48ab02 275 if (len < 0) {
91f73872 276 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
277 sr_resource_close(drvc->sr_ctx, &bitstream);
278 return SR_ERR;
279 }
280 } else {
96dc954e 281 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
282 len = zero_pad_to - pos;
283 if ((unsigned)len > sizeof(block))
284 len = sizeof(block);
285 memset(&block, 0, len);
f2cd2deb
FS
286 }
287 if (len == 0)
288 break;
289
852c7d14 290 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 291 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 292 if (ret != 0) {
91f73872
GS
293 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
294 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
295 ret = SR_ERR;
296 break;
297 }
298 if (act_len != len) {
91f73872
GS
299 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
300 pos, (int)len, act_len);
f2cd2deb
FS
301 ret = SR_ERR;
302 break;
303 }
304 pos += len;
305 }
306 sr_resource_close(drvc->sr_ctx, &bitstream);
307 if (ret != 0)
308 return ret;
91f73872
GS
309 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
310 bitstream.size);
f2cd2deb 311
d6f89d4b
GS
312 return SR_OK;
313}
314
315static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
316{
317 int ret;
411ad77c 318 uint8_t resp;
d6f89d4b 319
411ad77c
GS
320 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
321 if (ret != SR_OK) {
91f73872 322 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
323 return ret;
324 }
411ad77c 325 if (resp != 0) {
91f73872 326 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 327 resp);
3f48ab02
FS
328 return SR_ERR;
329 }
852c7d14 330 g_usleep(30 * 1000);
f2cd2deb 331
411ad77c
GS
332 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
333 if (ret != SR_OK) {
91f73872 334 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
335 return ret;
336 }
852c7d14 337 g_usleep(40 * 1000);
d6f89d4b 338
f2cd2deb
FS
339 return SR_OK;
340}
341
342static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
343{
344 struct dev_context *devc;
f2cd2deb
FS
345 int ret;
346
347 devc = sdi->priv;
f2cd2deb 348
1ed93110 349 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
350 uint8_t buf[2 * sizeof(uint16_t)];
351 uint8_t *wrptr;
352
96dc954e 353 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
354 if (voltage > 4.0) {
355 voltage = 4.0;
1ed93110 356 } else if (voltage < -4.0) {
f2ad79d1
KG
357 voltage = -4.0;
358 }
359
360 /*
96dc954e
GS
361 * Two PWM output channels feed one DAC which generates a bias
362 * voltage, which offsets the input probe's voltage level, and
363 * in combination with the FPGA pins' fixed threshold result in
364 * a programmable input threshold from the user's perspective.
365 * The PWM outputs can be seen on R79 and R56 respectively, the
366 * frequency is 100kHz and the duty cycle varies. The R79 PWM
367 * uses three discrete settings. The R56 PWM varies with desired
368 * thresholds and depends on the R79 PWM configuration. See the
369 * schematics comments which discuss the formulae.
f2ad79d1
KG
370 */
371 if (voltage >= 2.9) {
96dc954e 372 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 373 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 374 } else if (voltage > -0.4) {
96dc954e 375 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 376 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
377 } else {
378 duty_R79 = 0x02d7; /* 72% duty cycle. */
379 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
380 }
381
96dc954e 382 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
383 if (duty_R56 < 10) {
384 duty_R56 = 10;
1ed93110 385 } else if (duty_R56 > 1100) {
f2ad79d1
KG
386 duty_R56 = 1100;
387 }
388
91f73872
GS
389 sr_dbg("Set threshold voltage %.2fV.", voltage);
390 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
391
392 wrptr = buf;
393 write_u16le_inc(&wrptr, duty_R56);
394 write_u16le_inc(&wrptr, duty_R79);
395
396 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 397 if (ret != SR_OK) {
91f73872 398 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
399 return ret;
400 }
401 devc->threshold_voltage = voltage;
402
403 return SR_OK;
404}
405
86d77b75 406static int enable_pwm(const struct sr_dev_inst *sdi, gboolean p1, gboolean p2)
f2cd2deb
FS
407{
408 struct dev_context *devc;
409 uint8_t cfg;
410 int ret;
411
412 devc = sdi->priv;
f2cd2deb 413
86d77b75
GS
414 cfg = 0;
415 if (p1)
416 cfg |= 1U << 0;
417 if (p2)
418 cfg |= 1U << 1;
91f73872 419 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
86d77b75 420
42f6dd55 421 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 422 if (ret != SR_OK) {
91f73872 423 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
424 return ret;
425 }
86d77b75 426
f2cd2deb
FS
427 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
428 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
429
430 return SR_OK;
431}
432
86d77b75 433static int configure_pwm(const struct sr_dev_inst *sdi, uint8_t which,
1ed93110 434 float freq, float duty)
f2cd2deb 435{
86d77b75
GS
436 static uint8_t ctrl_reg_tab[] = { REG_PWM1, REG_PWM2, };
437
f2cd2deb 438 struct dev_context *devc;
86d77b75
GS
439 uint8_t ctrl_reg;
440 struct pwm_setting_dev cfg;
441 struct pwm_setting *setting;
f2cd2deb 442 int ret;
c3d40037
HK
443 uint8_t buf[2 * sizeof(uint32_t)];
444 uint8_t *wrptr;
f2cd2deb
FS
445
446 devc = sdi->priv;
447
86d77b75 448 if (which < 1 || which > ARRAY_SIZE(ctrl_reg_tab)) {
91f73872 449 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
450 return SR_ERR;
451 }
86d77b75 452 if (freq < 0 || freq > MAX_PWM_FREQ) {
91f73872 453 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
454 return SR_ERR;
455 }
86d77b75 456 if (duty < 0 || duty > 100) {
91f73872 457 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
458 return SR_ERR;
459 }
460
86d77b75 461 memset(&cfg, 0, sizeof(cfg));
f2cd2deb
FS
462 cfg.period = (uint32_t)(PWM_CLOCK / freq);
463 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 464 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 465
86d77b75 466 ctrl_reg = ctrl_reg_tab[which - 1];
c3d40037
HK
467 wrptr = buf;
468 write_u32le_inc(&wrptr, cfg.period);
469 write_u32le_inc(&wrptr, cfg.duty);
86d77b75 470 ret = ctrl_out(sdi, CMD_FPGA_SPI, ctrl_reg, 0, buf, wrptr - buf);
f2cd2deb 471 if (ret != SR_OK) {
91f73872
GS
472 sr_err("Cannot setup PWM%d configuration %d %d.",
473 which, cfg.period, cfg.duty);
f2cd2deb
FS
474 return ret;
475 }
86d77b75 476
f2cd2deb
FS
477 setting = &devc->pwm_setting[which - 1];
478 setting->freq = freq;
479 setting->duty = duty;
f2cd2deb
FS
480
481 return SR_OK;
482}
483
484static int set_defaults(const struct sr_dev_inst *sdi)
485{
486 struct dev_context *devc;
487 int ret;
488
489 devc = sdi->priv;
490
852c7d14 491 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
852c7d14
GS
492 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
493 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
494
495 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
496 if (ret)
497 return ret;
498
86d77b75 499 ret = enable_pwm(sdi, FALSE, FALSE);
f2cd2deb
FS
500 if (ret)
501 return ret;
502
86d77b75 503 ret = configure_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
504 if (ret)
505 return ret;
506
86d77b75 507 ret = configure_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
508 if (ret)
509 return ret;
510
86d77b75 511 ret = enable_pwm(sdi, TRUE, TRUE);
f2cd2deb
FS
512 if (ret)
513 return ret;
514
515 return SR_OK;
516}
517
518static int set_trigger_config(const struct sr_dev_inst *sdi)
519{
520 struct dev_context *devc;
521 struct sr_trigger *trigger;
66f5f697 522 struct trigger_cfg cfg;
f2cd2deb
FS
523 GSList *stages;
524 GSList *channel;
525 struct sr_trigger_stage *stage1;
526 struct sr_trigger_match *match;
527 uint16_t ch_mask;
528 int ret;
c3d40037
HK
529 uint8_t buf[4 * sizeof(uint32_t)];
530 uint8_t *wrptr;
f2cd2deb
FS
531
532 devc = sdi->priv;
533 trigger = sr_session_trigger_get(sdi->session);
534
535 memset(&cfg, 0, sizeof(cfg));
536
537 cfg.channels = devc->cur_channels;
538
539 if (trigger && trigger->stages) {
540 stages = trigger->stages;
541 stage1 = stages->data;
542 if (stages->next) {
543 sr_err("Only one trigger stage supported for now.");
544 return SR_ERR;
545 }
546 channel = stage1->matches;
547 while (channel) {
548 match = channel->data;
cf057ac4 549 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
550
551 switch (match->match) {
552 case SR_TRIGGER_ZERO:
553 cfg.level |= ch_mask;
554 cfg.high_or_falling &= ~ch_mask;
555 break;
556 case SR_TRIGGER_ONE:
557 cfg.level |= ch_mask;
558 cfg.high_or_falling |= ch_mask;
559 break;
560 case SR_TRIGGER_RISING:
561 if ((cfg.enabled & ~cfg.level)) {
91f73872 562 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
563 return SR_ERR;
564 }
565 cfg.level &= ~ch_mask;
566 cfg.high_or_falling &= ~ch_mask;
567 break;
568 case SR_TRIGGER_FALLING:
569 if ((cfg.enabled & ~cfg.level)) {
91f73872 570 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
571 return SR_ERR;
572 }
573 cfg.level &= ~ch_mask;
574 cfg.high_or_falling |= ch_mask;
575 break;
576 default:
91f73872 577 sr_err("Unknown trigger condition.");
f2cd2deb
FS
578 return SR_ERR;
579 }
580 cfg.enabled |= ch_mask;
581 channel = channel->next;
582 }
583 }
91f73872
GS
584 sr_dbg("Set trigger config: "
585 "channels 0x%04x, trigger-enabled 0x%04x, "
586 "level-triggered 0x%04x, high/falling 0x%04x.",
587 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 588
cf057ac4 589 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 590
c3d40037
HK
591 wrptr = buf;
592 write_u32le_inc(&wrptr, cfg.channels);
593 write_u32le_inc(&wrptr, cfg.enabled);
594 write_u32le_inc(&wrptr, cfg.level);
595 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
596 /* TODO
597 * Comment on this literal 16. Origin, meaning? Cannot be the
598 * register offset, nor the transfer length. Is it a channels
599 * count that is relevant for 16 and 32 channel models? Is it
600 * an obsolete experiment?
601 */
42f6dd55 602 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 603 if (ret != SR_OK) {
91f73872 604 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
605 return ret;
606 }
607
608 return SR_OK;
609}
610
611static int set_sample_config(const struct sr_dev_inst *sdi)
612{
613 struct dev_context *devc;
f2cd2deb 614 double clock_divisor;
adab4d91
GS
615 uint16_t divider_u16;
616 uint64_t pre_trigger_samples;
617 uint64_t pre_trigger_memory;
618 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 619 uint8_t *wrptr;
adab4d91 620 int ret;
f2cd2deb
FS
621
622 devc = sdi->priv;
f2cd2deb 623
8b172e78 624 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
625 sr_err("Too high a sample rate: %" PRIu64 ".",
626 devc->cur_samplerate);
f2cd2deb
FS
627 return SR_ERR;
628 }
629
8b172e78 630 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
631 if (clock_divisor > 65535)
632 return SR_ERR_ARG;
633 divider_u16 = (uint16_t)(clock_divisor + 0.5);
634 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb
FS
635
636 if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
91f73872
GS
637 sr_err("Too high a sample depth: %" PRIu64 ".",
638 devc->limit_samples);
f2cd2deb
FS
639 return SR_ERR;
640 }
f2cd2deb 641
adab4d91
GS
642 /*
643 * The acquisition configuration communicates "pre-trigger"
644 * specs in several formats. sigrok users provide a percentage
645 * (0-100%), which translates to a pre-trigger samples count
646 * (assuming that a total samples count limit was specified).
647 * The device supports hardware compression, which depends on
648 * slowly changing input data to be effective. Fast changing
649 * input data may occupy more space in sample memory than its
650 * uncompressed form would. This is why a third parameter can
651 * limit the amount of sample memory to use for pre-trigger
652 * data. Only the upper 24 bits of that memory size spec get
653 * communicated to the device (written to its FPGA register).
654 */
655 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
656 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
657 pre_trigger_memory *= devc->capture_ratio;
658 pre_trigger_memory /= 100;
f2cd2deb 659
adab4d91
GS
660 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
661 devc->cur_samplerate / 1000, devc->limit_samples);
662 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
663 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 664
b1a17c1a
GS
665 /*
666 * The acquisition configuration occupies a total of 16 bytes:
667 * - A 34bit total samples count limit (up to 10 billions) that
668 * is kept in a 40bit register.
669 * - A 34bit pre-trigger samples count limit (up to 10 billions)
670 * in another 40bit register.
671 * - A 32bit pre-trigger memory space limit (in bytes) of which
672 * the upper 24bits are kept in an FPGA register.
673 * - A 16bit clock divider which gets applied to the maximum
674 * samplerate of the device.
675 * - An 8bit register of unknown meaning. Currently always 0.
676 */
c3d40037 677 wrptr = buf;
b1a17c1a
GS
678 write_u40le_inc(&wrptr, devc->limit_samples);
679 write_u40le_inc(&wrptr, pre_trigger_samples);
680 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 681 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 682 write_u8_inc(&wrptr, 0);
42f6dd55 683 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 684 if (ret != SR_OK) {
91f73872 685 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
686 return ret;
687 }
688
689 return SR_OK;
690}
691
96dc954e
GS
692/*
693 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
694 * of interest:
695 * bit 0: value 1 = idle
696 * bit 1: value 1 = writing to SDRAM
697 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
698 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
699 * The meaning of other bit fields is unknown.
7601dca7 700 *
96dc954e 701 * Typical values in order of appearance during execution:
b711fd8e
GS
702 * 0x85e1: idle, no acquisition pending
703 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
704 * "In idle state." Takes precedence over all others.
96dc954e
GS
705 * 0x85e2: pre-sampling, samples before the trigger position,
706 * when capture ratio > 0%
b711fd8e
GS
707 * IDLE clear, TRGD clear, POST clear; DRAM don't care
708 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
709 * 0x85ea: pre-sampling complete, now waiting for the trigger
710 * (whilst sampling continuously)
b711fd8e
GS
711 * IDLE clear, TRGD clear, POST set; DRAM don't care
712 * "Post set thus after pre, not triggered yet"
96dc954e 713 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
714 * IDLE clear, TRGD set, POST set; DRAM don't care
715 * "Triggered and in post, not idle yet."
96dc954e 716 * 0x85ed: idle
b711fd8e
GS
717 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
718 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 719 */
b711fd8e
GS
720static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
721static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
722static const uint16_t runstate_mask_step =
723 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
724static const uint16_t runstate_patt_pre_trig = 0;
725static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
726static const uint16_t runstate_patt_post_trig =
727 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
728
f2cd2deb
FS
729static uint16_t run_state(const struct sr_dev_inst *sdi)
730{
21d68fd9
GS
731 static uint16_t previous_state;
732
f2cd2deb 733 int ret;
21d68fd9
GS
734 uint16_t state;
735 uint8_t buff[sizeof(state)];
736 const uint8_t *rdptr;
737 const char *label;
f2cd2deb 738
411ad77c
GS
739 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
740 if (ret != SR_OK) {
91f73872 741 sr_err("Cannot read run state.");
f2cd2deb
FS
742 return ret;
743 }
21d68fd9
GS
744 rdptr = buff;
745 state = read_u16le_inc(&rdptr);
7601dca7 746
96dc954e
GS
747 /*
748 * Avoid flooding the log, only dump values as they change.
749 * The routine is called about every 50ms.
7601dca7 750 */
b711fd8e
GS
751 if (state == previous_state)
752 return state;
753
754 previous_state = state;
755 label = NULL;
756 if ((state & runstate_mask_idle) == runstate_patt_idle)
757 label = "idle";
758 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
759 label = "pre-trigger sampling";
760 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
761 label = "sampling, waiting for trigger";
762 if ((state & runstate_mask_step) == runstate_patt_post_trig)
763 label = "post-trigger sampling";
764 if (label && *label)
765 sr_dbg("Run state: 0x%04x (%s).", state, label);
766 else
767 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
768
769 return state;
770}
771
cf057ac4 772static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
773{
774 uint16_t state;
775
776 state = run_state(sdi);
b711fd8e 777 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
778 return 1;
779
780 return 0;
781}
782
783static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
784{
785 int ret;
786
411ad77c
GS
787 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
788 if (ret != SR_OK) {
c34f4a89 789 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
790 return ret;
791 }
792
793 return SR_OK;
794}
795
796static int get_capture_info(const struct sr_dev_inst *sdi)
797{
798 struct dev_context *devc;
799 int ret;
c3d40037
HK
800 uint8_t buf[3 * sizeof(uint32_t)];
801 const uint8_t *rdptr;
f2cd2deb
FS
802
803 devc = sdi->priv;
804
411ad77c
GS
805 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
806 if (ret != SR_OK) {
91f73872 807 sr_err("Cannot read capture info.");
f2cd2deb
FS
808 return ret;
809 }
c3d40037
HK
810
811 rdptr = buf;
812 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
813 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
814 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 815
cf057ac4 816 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
817 devc->info.n_rep_packets, devc->info.n_rep_packets,
818 devc->info.n_rep_packets_before_trigger,
819 devc->info.n_rep_packets_before_trigger,
820 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 821
852c7d14
GS
822 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
823 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
824 (unsigned long)devc->info.n_rep_packets,
825 NUM_PACKETS_IN_CHUNK);
91f73872 826 }
f2cd2deb
FS
827
828 return SR_OK;
829}
830
1ed93110
GS
831SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
832 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
833{
834 char fw_file[1024];
835 snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
40a0b2f4 836 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
837}
838
839SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
840{
841 struct dev_context *devc;
842 int ret;
843 uint8_t cmd;
844
845 devc = sdi->priv;
846
847 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
848 if (ret != SR_OK)
849 return ret;
850
851 cmd = 0;
411ad77c
GS
852 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
853 if (ret != SR_OK) {
91f73872 854 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
855 return ret;
856 }
857
858 ret = set_trigger_config(sdi);
859 if (ret != SR_OK)
860 return ret;
861
862 ret = set_sample_config(sdi);
863 if (ret != SR_OK)
864 return ret;
865
866 return SR_OK;
867}
868
869SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
870{
3ebc1cb2
GS
871 int ret;
872
852c7d14 873 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
874 if (ret != SR_OK)
875 return ret;
876
877 return SR_OK;
f2cd2deb
FS
878}
879
3ebc1cb2 880static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 881{
3ebc1cb2
GS
882 int ret;
883
852c7d14 884 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
885 if (ret != SR_OK)
886 return ret;
887
888 return SR_OK;
f2cd2deb
FS
889}
890
891SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
892{
3ebc1cb2
GS
893 int ret;
894 struct dev_context *devc;
895
896 ret = la2016_stop_acquisition(sdi);
897 if (ret != SR_OK)
898 return ret;
899
900 devc = sdi ? sdi->priv : NULL;
901 if (devc && devc->transfer)
902 libusb_cancel_transfer(devc->transfer);
903
904 return SR_OK;
f2cd2deb
FS
905}
906
cf057ac4 907static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 908 libusb_transfer_cb_fn cb)
f2cd2deb
FS
909{
910 struct dev_context *devc;
911 struct sr_usb_dev_inst *usb;
912 int ret;
c3d40037
HK
913 uint8_t wrbuf[2 * sizeof(uint32_t)];
914 uint8_t *wrptr;
f2cd2deb
FS
915 uint32_t to_read;
916 uint8_t *buffer;
917
918 devc = sdi->priv;
919 usb = sdi->conn;
920
411ad77c
GS
921 ret = get_capture_info(sdi);
922 if (ret != SR_OK)
f2cd2deb
FS
923 return ret;
924
c3d40037
HK
925 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
926 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
927 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
928 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
929
91f73872 930 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 931 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 932
411ad77c
GS
933 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
934 if (ret != SR_OK) {
91f73872 935 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
936 return ret;
937 }
91f73872
GS
938 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
939 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
940 wrptr = wrbuf;
941 write_u32le_inc(&wrptr, devc->read_pos);
942 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
943 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
944 if (ret != SR_OK) {
91f73872 945 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
946 return ret;
947 }
411ad77c
GS
948 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
949 if (ret != SR_OK) {
91f73872 950 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
951 return ret;
952 }
953
96dc954e
GS
954 /*
955 * Pick a buffer size for all USB transfers. The buffer size
956 * must be a multiple of the endpoint packet size. And cannot
957 * exceed a maximum value.
958 */
f2cd2deb 959 to_read = devc->n_bytes_to_read;
96dc954e
GS
960 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
961 to_read = LA2016_USB_BUFSZ;
962 else /* One transfer. */
e847645b 963 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
964 buffer = g_try_malloc(to_read);
965 if (!buffer) {
91f73872
GS
966 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
967 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
968 return SR_ERR_MALLOC;
969 }
970
971 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
972 libusb_fill_bulk_transfer(devc->transfer,
973 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 974 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 975
411ad77c
GS
976 ret = libusb_submit_transfer(devc->transfer);
977 if (ret != 0) {
91f73872 978 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
979 libusb_free_transfer(devc->transfer);
980 devc->transfer = NULL;
981 g_free(buffer);
982 return SR_ERR;
983 }
984
985 return SR_OK;
986}
987
480efba2
GS
988/*
989 * A chunk (received via USB) contains a number of transfers (USB length
990 * divided by 16) which contain a number of packets (5 per transfer) which
991 * contain a number of samples (8bit repeat count per 16bit sample data).
992 */
dfac9592 993static void send_chunk(struct sr_dev_inst *sdi,
480efba2 994 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
995{
996 struct dev_context *devc;
997 struct sr_datafeed_logic logic;
998 struct sr_datafeed_packet sr_packet;
999 unsigned int max_samples, n_samples, total_samples, free_n_samples;
480efba2 1000 size_t num_pkts;
cf057ac4 1001 gboolean do_signal_trigger;
fe953391 1002 uint8_t *wp;
dfac9592 1003 const uint8_t *rp;
480efba2
GS
1004 uint16_t sample_value;
1005 size_t repetitions;
1006 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1007
1008 devc = sdi->priv;
1009
fe953391 1010 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
1011 logic.data = devc->convbuffer;
1012
1013 sr_packet.type = SR_DF_LOGIC;
1014 sr_packet.payload = &logic;
1015
fe953391 1016 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 1017 n_samples = 0;
fe953391 1018 wp = devc->convbuffer;
dfac9592 1019 total_samples = 0;
cf057ac4 1020 do_signal_trigger = FALSE;
dfac9592 1021
cf057ac4 1022 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
dfac9592 1023 std_session_send_df_trigger(sdi);
cf057ac4 1024 devc->trigger_marked = TRUE;
dfac9592
GS
1025 }
1026
1027 rp = packets;
480efba2
GS
1028 while (num_xfers--) {
1029 num_pkts = NUM_PACKETS_IN_CHUNK;
1030 while (num_pkts--) {
1031 /*
1032 * Flush the conversion buffer when a trigger
1033 * location needs to get communicated, or when
1034 * an to-get-expected sample repetition count
1035 * would no longer fit into the buffer.
1036 */
dfac9592
GS
1037 free_n_samples = max_samples - n_samples;
1038 if (free_n_samples < 256 || do_signal_trigger) {
480efba2 1039 logic.length = n_samples * sizeof(sample_buff);;
dfac9592
GS
1040 sr_session_send(sdi, &sr_packet);
1041 n_samples = 0;
fe953391 1042 wp = devc->convbuffer;
dfac9592
GS
1043 if (do_signal_trigger) {
1044 std_session_send_df_trigger(sdi);
cf057ac4 1045 do_signal_trigger = FALSE;
dfac9592
GS
1046 }
1047 }
1048
480efba2 1049 sample_value = read_u16le_inc(&rp);
dfac9592 1050 repetitions = read_u8_inc(&rp);
dfac9592
GS
1051
1052 n_samples += repetitions;
1053 total_samples += repetitions;
1054 devc->total_samples += repetitions;
480efba2
GS
1055
1056 write_u16le(sample_buff, sample_value);
1057 while (repetitions--) {
1058 memcpy(wp, sample_buff, logic.unitsize);
1059 wp += logic.unitsize;
1060 }
1061
cf057ac4
GS
1062 if (devc->trigger_involved && !devc->trigger_marked) {
1063 if (!--devc->n_reps_until_trigger) {
1064 devc->trigger_marked = TRUE;
1065 do_signal_trigger = TRUE;
91f73872 1066 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1067 devc->total_samples,
1068 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1069 }
1070 }
1071 }
1072 (void)read_u8_inc(&rp); /* Skip sequence number. */
1073 }
1074 if (n_samples) {
fe953391 1075 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1076 sr_session_send(sdi, &sr_packet);
1077 if (do_signal_trigger) {
1078 std_session_send_df_trigger(sdi);
1079 }
1080 }
91f73872 1081 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1082}
1083
1084static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1085{
1086 struct sr_dev_inst *sdi;
1087 struct dev_context *devc;
1088 struct sr_usb_dev_inst *usb;
1089 int ret;
1090
1091 sdi = transfer->user_data;
1092 devc = sdi->priv;
1093 usb = sdi->conn;
1094
1095 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1096 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1097
1098 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1099 sr_err("USB bulk transfer timeout.");
cf057ac4 1100 devc->download_finished = TRUE;
dfac9592
GS
1101 }
1102 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1103
1104 devc->n_bytes_to_read -= transfer->actual_length;
1105 if (devc->n_bytes_to_read) {
1106 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1107 /*
1108 * Determine read size for the next USB transfer. Make
1109 * the buffer size a multiple of the endpoint packet
1110 * size. Don't exceed a maximum value.
1111 */
dfac9592
GS
1112 if (to_read >= LA2016_USB_BUFSZ)
1113 to_read = LA2016_USB_BUFSZ;
96dc954e 1114 else
dfac9592 1115 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1116 libusb_fill_bulk_transfer(transfer,
1117 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1118 transfer->buffer, to_read,
dfac9592
GS
1119 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1120
411ad77c
GS
1121 ret = libusb_submit_transfer(transfer);
1122 if (ret == 0)
dfac9592 1123 return;
91f73872
GS
1124 sr_err("Cannot submit another USB transfer: %s.",
1125 libusb_error_name(ret));
dfac9592
GS
1126 }
1127
1128 g_free(transfer->buffer);
1129 libusb_free_transfer(transfer);
cf057ac4 1130 devc->download_finished = TRUE;
dfac9592
GS
1131}
1132
1133SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1134{
1135 const struct sr_dev_inst *sdi;
1136 struct dev_context *devc;
1137 struct drv_context *drvc;
1138 struct timeval tv;
1139
1140 (void)fd;
1141 (void)revents;
1142
1143 sdi = cb_data;
1144 devc = sdi->priv;
1145 drvc = sdi->driver->context;
1146
cf057ac4
GS
1147 if (!devc->completion_seen) {
1148 if (!la2016_is_idle(sdi)) {
96dc954e 1149 /* Not yet ready for sample data download. */
dfac9592
GS
1150 return TRUE;
1151 }
cf057ac4
GS
1152 devc->completion_seen = TRUE;
1153 devc->download_finished = FALSE;
1154 devc->trigger_marked = FALSE;
dfac9592 1155 devc->total_samples = 0;
96dc954e 1156 /* We can start downloading sample data. */
cf057ac4 1157 if (la2016_start_download(sdi, receive_transfer) != SR_OK) {
91f73872 1158 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1159 return FALSE;
1160 }
91f73872 1161 sr_dbg("Acquisition data download started.");
dfac9592
GS
1162 std_session_send_df_frame_begin(sdi);
1163
1164 return TRUE;
1165 }
1166
1167 tv.tv_sec = tv.tv_usec = 0;
1168 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1169
cf057ac4 1170 if (devc->download_finished) {
91f73872 1171 sr_dbg("Download finished, post processing.");
dfac9592
GS
1172 std_session_send_df_frame_end(sdi);
1173
1174 usb_source_remove(sdi->session, drvc->sr_ctx);
1175 std_session_send_df_end(sdi);
1176
1177 la2016_stop_acquisition(sdi);
1178
1179 g_free(devc->convbuffer);
1180 devc->convbuffer = NULL;
1181
1182 devc->transfer = NULL;
1183
91f73872 1184 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1185 }
1186
1187 return TRUE;
1188}
1189
f2cd2deb
FS
1190SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1191{
8b172e78 1192 struct dev_context *devc;
f2cd2deb 1193 uint16_t state;
9de389b1 1194 uint8_t buf[8];
43d2e52f
GS
1195 const uint8_t *rdptr;
1196 uint8_t date_yy, date_mm;
1197 uint8_t dinv_yy, dinv_mm;
9de389b1 1198 uint8_t magic;
d6f89d4b 1199 const char *bitstream_fn;
9de389b1 1200 int ret;
f2cd2deb 1201
8b172e78
KG
1202 devc = sdi->priv;
1203
96dc954e 1204 /*
43d2e52f
GS
1205 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1206 * year and month in BCD format, followed by inverted values for
1207 * consistency checks. For example bytes 20 04 df fb translate
1208 * to 2020-04. This information can help identify the vintage of
1209 * devices when unknown magic numbers are seen.
9de389b1 1210 */
43d2e52f
GS
1211 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1212 if (ret != SR_OK) {
1213 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1214 } else {
43d2e52f
GS
1215 rdptr = &buf[0];
1216 date_yy = read_u8_inc(&rdptr);
1217 date_mm = read_u8_inc(&rdptr);
1218 dinv_yy = read_u8_inc(&rdptr);
1219 dinv_mm = read_u8_inc(&rdptr);
1220 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1221 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1222 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1223 }
f2cd2deb 1224
9de389b1 1225 /*
96dc954e
GS
1226 * Several Kingst logic analyzer devices share the same USB VID
1227 * and PID. The product ID determines which MCU firmware to load.
1228 * The MCU firmware provides access to EEPROM content which then
1229 * allows to identify the device model. Which in turn determines
1230 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1231 * to get inspected.
9de389b1 1232 *
96dc954e
GS
1233 * EEPROM content for model identification is kept redundantly
1234 * in memory. The values are stored in verbatim and in inverted
1235 * form, multiple copies are kept at different offsets. Example
1236 * data:
9de389b1 1237 *
96dc954e
GS
1238 * magic 0x08
1239 * | ~magic 0xf7
1240 * | |
1241 * 08f7000008f710ef
1242 * | |
1243 * | ~magic backup
1244 * magic backup
9de389b1 1245 *
96dc954e
GS
1246 * Exclusively inspecting the magic byte appears to be sufficient,
1247 * other fields seem to be 'don't care'.
9de389b1 1248 *
96dc954e
GS
1249 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1250 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1251 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1252 * (latest v1.3.0 PCB, perhaps others)
1253 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1254 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1255 *
96dc954e
GS
1256 * When EEPROM content does not match the hardware configuration
1257 * (the board layout), the software may load but yield incorrect
1258 * results (like swapped channels). The FPGA bitstream itself
1259 * will authenticate with IC U10 and fail when its capabilities
1260 * do not match the hardware model. An LA1016 won't become a
1261 * LA2016 by faking its EEPROM content.
9de389b1 1262 */
9de389b1 1263 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1264 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1265 return ret;
1266 }
43d2e52f 1267 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1268 /* Primary copy of magic passes complement check. */
43d2e52f 1269 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1270 magic = buf[0];
43d2e52f 1271 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1272 /* Backup copy of magic passes complement check. */
91f73872 1273 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1274 magic = buf[4];
43d2e52f
GS
1275 } else {
1276 sr_err("Cannot find consistent device type identification.");
1277 magic = 0;
f2cd2deb 1278 }
91f73872 1279 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1280
96dc954e 1281 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1282 switch (magic) {
1283 case 2:
d6f89d4b 1284 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1285 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1286 break;
1287 case 3:
d6f89d4b 1288 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1289 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1290 break;
1291 case 8:
d6f89d4b 1292 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1293 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1294 break;
1295 case 9:
d6f89d4b 1296 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1297 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1298 break;
1299 default:
d6f89d4b
GS
1300 bitstream_fn = NULL;
1301 break;
1302 }
1303 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1304 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1305 return SR_ERR;
1306 }
f2cd2deb 1307
d6f89d4b
GS
1308 if (check_fpga_bitstream(sdi) != SR_OK) {
1309 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1310 if (ret != SR_OK) {
1311 sr_err("Cannot upload FPGA bitstream.");
1312 return ret;
1313 }
1314 }
1315 ret = enable_fpga_bitstream(sdi);
9de389b1 1316 if (ret != SR_OK) {
d6f89d4b 1317 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1318 return ret;
1319 }
1320
f2cd2deb 1321 state = run_state(sdi);
9de389b1 1322 if (state != 0x85e9) {
91f73872 1323 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1324 }
f2cd2deb 1325
00849545 1326 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1327 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1328 return ret;
1329 }
9de389b1 1330
91f73872 1331 sr_dbg("Device should be initialized.");
f2cd2deb 1332
c34f4a89
GS
1333 ret = set_defaults(sdi);
1334 if (ret != SR_OK)
1335 return ret;
1336
1337 return SR_OK;
f2cd2deb
FS
1338}
1339
1340SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1341{
1342 int ret;
1343
00849545 1344 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1345 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1346 return ret;
1347 }
1348
1349 return SR_OK;
1350}