]> sigrok.org Git - pulseview.git/blob - pv/data/logicsnapshot.cpp
a00a22ede0cd33ee5aa3b43042f51b59c37d8376
[pulseview.git] / pv / data / logicsnapshot.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  */
20
21 #include <extdef.h>
22
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <math.h>
27
28 #include "config.h"
29 #include "logicsnapshot.h"
30
31 #include <libsigrok/libsigrok.hpp>
32
33 using std::lock_guard;
34 using std::recursive_mutex;
35 using std::max;
36 using std::min;
37 using std::pair;
38 using std::shared_ptr;
39
40 using sigrok::Logic;
41
42 namespace pv {
43 namespace data {
44
45 const int LogicSnapshot::MipMapScalePower = 4;
46 const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
47 const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
48 const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
49
50 LogicSnapshot::LogicSnapshot(shared_ptr<Logic> logic,
51                              const uint64_t expected_num_samples) :
52         Snapshot(logic->unit_size()),
53         _last_append_sample(0)
54 {
55         set_capacity(expected_num_samples);
56
57         lock_guard<recursive_mutex> lock(_mutex);
58         memset(_mip_map, 0, sizeof(_mip_map));
59         append_payload(logic);
60 }
61
62 LogicSnapshot::~LogicSnapshot()
63 {
64         lock_guard<recursive_mutex> lock(_mutex);
65         for (MipMapLevel &l : _mip_map)
66                 free(l.data);
67 }
68
69 uint64_t LogicSnapshot::unpack_sample(const uint8_t *ptr) const
70 {
71 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
72         return *(uint64_t*)ptr;
73 #else
74         uint64_t value = 0;
75         switch(_unit_size) {
76         default:
77                 value |= ((uint64_t)ptr[7]) << 56;
78                 /* FALLTHRU */
79         case 7:
80                 value |= ((uint64_t)ptr[6]) << 48;
81                 /* FALLTHRU */
82         case 6:
83                 value |= ((uint64_t)ptr[5]) << 40;
84                 /* FALLTHRU */
85         case 5:
86                 value |= ((uint64_t)ptr[4]) << 32;
87                 /* FALLTHRU */
88         case 4:
89                 value |= ((uint32_t)ptr[3]) << 24;
90                 /* FALLTHRU */
91         case 3:
92                 value |= ((uint32_t)ptr[2]) << 16;
93                 /* FALLTHRU */
94         case 2:
95                 value |= ptr[1] << 8;
96                 /* FALLTHRU */
97         case 1:
98                 value |= ptr[0];
99                 /* FALLTHRU */
100         case 0:
101                 break;
102         }
103         return value;
104 #endif
105 }
106
107 void LogicSnapshot::pack_sample(uint8_t *ptr, uint64_t value)
108 {
109 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
110         *(uint64_t*)ptr = value;
111 #else
112         switch(_unit_size) {
113         default:
114                 ptr[7] = value >> 56;
115                 /* FALLTHRU */
116         case 7:
117                 ptr[6] = value >> 48;
118                 /* FALLTHRU */
119         case 6:
120                 ptr[5] = value >> 40;
121                 /* FALLTHRU */
122         case 5:
123                 ptr[4] = value >> 32;
124                 /* FALLTHRU */
125         case 4:
126                 ptr[3] = value >> 24;
127                 /* FALLTHRU */
128         case 3:
129                 ptr[2] = value >> 16;
130                 /* FALLTHRU */
131         case 2:
132                 ptr[1] = value >> 8;
133                 /* FALLTHRU */
134         case 1:
135                 ptr[0] = value;
136                 /* FALLTHRU */
137         case 0:
138                 break;
139         }
140 #endif
141 }
142
143 void LogicSnapshot::append_payload(shared_ptr<Logic> logic)
144 {
145         assert(_unit_size == logic->unit_size());
146         assert((logic->data_length() % _unit_size) == 0);
147
148         lock_guard<recursive_mutex> lock(_mutex);
149
150         append_data(logic->data_pointer(),
151                 logic->data_length() / _unit_size);
152
153         // Generate the first mip-map from the data
154         append_payload_to_mipmap();
155 }
156
157 void LogicSnapshot::get_samples(uint8_t *const data,
158         int64_t start_sample, int64_t end_sample) const
159 {
160         assert(data);
161         assert(start_sample >= 0);
162         assert(start_sample <= (int64_t)_sample_count);
163         assert(end_sample >= 0);
164         assert(end_sample <= (int64_t)_sample_count);
165         assert(start_sample <= end_sample);
166
167         lock_guard<recursive_mutex> lock(_mutex);
168
169         const size_t size = (end_sample - start_sample) * _unit_size;
170         memcpy(data, (const uint8_t*)_data.data() + start_sample * _unit_size, size);
171 }
172
173 void LogicSnapshot::reallocate_mipmap_level(MipMapLevel &m)
174 {
175         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
176                 MipMapDataUnit) * MipMapDataUnit;
177         if (new_data_length > m.data_length)
178         {
179                 m.data_length = new_data_length;
180
181                 // Padding is added to allow for the uint64_t write word
182                 m.data = realloc(m.data, new_data_length * _unit_size +
183                         sizeof(uint64_t));
184         }
185 }
186
187 void LogicSnapshot::append_payload_to_mipmap()
188 {
189         MipMapLevel &m0 = _mip_map[0];
190         uint64_t prev_length;
191         const uint8_t *src_ptr;
192         uint8_t *dest_ptr;
193         uint64_t accumulator;
194         unsigned int diff_counter;
195
196         // Expand the data buffer to fit the new samples
197         prev_length = m0.length;
198         m0.length = _sample_count / MipMapScaleFactor;
199
200         // Break off if there are no new samples to compute
201         if (m0.length == prev_length)
202                 return;
203
204         reallocate_mipmap_level(m0);
205
206         dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
207
208         // Iterate through the samples to populate the first level mipmap
209         const uint8_t *const end_src_ptr = (uint8_t*)_data.data() +
210                 m0.length * _unit_size * MipMapScaleFactor;
211         for (src_ptr = (uint8_t*)_data.data() +
212                 prev_length * _unit_size * MipMapScaleFactor;
213                 src_ptr < end_src_ptr;)
214         {
215                 // Accumulate transitions which have occurred in this sample
216                 accumulator = 0;
217                 diff_counter = MipMapScaleFactor;
218                 while (diff_counter-- > 0)
219                 {
220                         const uint64_t sample = unpack_sample(src_ptr);
221                         accumulator |= _last_append_sample ^ sample;
222                         _last_append_sample = sample;
223                         src_ptr += _unit_size;
224                 }
225
226                 pack_sample(dest_ptr, accumulator);
227                 dest_ptr += _unit_size;
228         }
229
230         // Compute higher level mipmaps
231         for (unsigned int level = 1; level < ScaleStepCount; level++)
232         {
233                 MipMapLevel &m = _mip_map[level];
234                 const MipMapLevel &ml = _mip_map[level-1];
235
236                 // Expand the data buffer to fit the new samples
237                 prev_length = m.length;
238                 m.length = ml.length / MipMapScaleFactor;
239
240                 // Break off if there are no more samples to computed
241                 if (m.length == prev_length)
242                         break;
243
244                 reallocate_mipmap_level(m);
245
246                 // Subsample the level lower level
247                 src_ptr = (uint8_t*)ml.data +
248                         _unit_size * prev_length * MipMapScaleFactor;
249                 const uint8_t *const end_dest_ptr =
250                         (uint8_t*)m.data + _unit_size * m.length;
251                 for (dest_ptr = (uint8_t*)m.data +
252                         _unit_size * prev_length;
253                         dest_ptr < end_dest_ptr;
254                         dest_ptr += _unit_size)
255                 {
256                         accumulator = 0;
257                         diff_counter = MipMapScaleFactor;
258                         while (diff_counter-- > 0)
259                         {
260                                 accumulator |= unpack_sample(src_ptr);
261                                 src_ptr += _unit_size;
262                         }
263
264                         pack_sample(dest_ptr, accumulator);
265                 }
266         }
267 }
268
269 uint64_t LogicSnapshot::get_sample(uint64_t index) const
270 {
271         assert(index < _sample_count);
272
273         return unpack_sample((uint8_t*)_data.data() + index * _unit_size);
274 }
275
276 void LogicSnapshot::get_subsampled_edges(
277         std::vector<EdgePair> &edges,
278         uint64_t start, uint64_t end,
279         float min_length, int sig_index)
280 {
281         uint64_t index = start;
282         unsigned int level;
283         bool last_sample;
284         bool fast_forward;
285
286         assert(end <= get_sample_count());
287         assert(start <= end);
288         assert(min_length > 0);
289         assert(sig_index >= 0);
290         assert(sig_index < 64);
291
292         lock_guard<recursive_mutex> lock(_mutex);
293
294         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
295         const unsigned int min_level = max((int)floorf(logf(min_length) /
296                 LogMipMapScaleFactor) - 1, 0);
297         const uint64_t sig_mask = 1ULL << sig_index;
298
299         // Store the initial state
300         last_sample = (get_sample(start) & sig_mask) != 0;
301         edges.push_back(pair<int64_t, bool>(index++, last_sample));
302
303         while (index + block_length <= end)
304         {
305                 //----- Continue to search -----//
306                 level = min_level;
307
308                 // We cannot fast-forward if there is no mip-map data at
309                 // at the minimum level.
310                 fast_forward = (_mip_map[level].data != NULL);
311
312                 if (min_length < MipMapScaleFactor)
313                 {
314                         // Search individual samples up to the beginning of
315                         // the next first level mip map block
316                         const uint64_t final_index = min(end,
317                                 pow2_ceil(index, MipMapScalePower));
318
319                         for (; index < final_index &&
320                                 (index & ~(~0 << MipMapScalePower)) != 0;
321                                 index++)
322                         {
323                                 const bool sample =
324                                         (get_sample(index) & sig_mask) != 0;
325
326                                 // If there was a change we cannot fast forward
327                                 if (sample != last_sample) {
328                                         fast_forward = false;
329                                         break;
330                                 }
331                         }
332                 }
333                 else
334                 {
335                         // If resolution is less than a mip map block,
336                         // round up to the beginning of the mip-map block
337                         // for this level of detail
338                         const int min_level_scale_power =
339                                 (level + 1) * MipMapScalePower;
340                         index = pow2_ceil(index, min_level_scale_power);
341                         if (index >= end)
342                                 break;
343
344                         // We can fast forward only if there was no change
345                         const bool sample =
346                                 (get_sample(index) & sig_mask) != 0;
347                         if (last_sample != sample)
348                                 fast_forward = false;
349                 }
350
351                 if (fast_forward) {
352
353                         // Fast forward: This involves zooming out to higher
354                         // levels of the mip map searching for changes, then
355                         // zooming in on them to find the point where the edge
356                         // begins.
357
358                         // Slide right and zoom out at the beginnings of mip-map
359                         // blocks until we encounter a change
360                         while (1) {
361                                 const int level_scale_power =
362                                         (level + 1) * MipMapScalePower;
363                                 const uint64_t offset =
364                                         index >> level_scale_power;
365
366                                 // Check if we reached the last block at this
367                                 // level, or if there was a change in this block
368                                 if (offset >= _mip_map[level].length ||
369                                         (get_subsample(level, offset) &
370                                                 sig_mask))
371                                         break;
372
373                                 if ((offset & ~(~0 << MipMapScalePower)) == 0) {
374                                         // If we are now at the beginning of a
375                                         // higher level mip-map block ascend one
376                                         // level
377                                         if (level + 1 >= ScaleStepCount ||
378                                                 !_mip_map[level + 1].data)
379                                                 break;
380
381                                         level++;
382                                 } else {
383                                         // Slide right to the beginning of the
384                                         // next mip map block
385                                         index = pow2_ceil(index + 1,
386                                                 level_scale_power);
387                                 }
388                         }
389
390                         // Zoom in, and slide right until we encounter a change,
391                         // and repeat until we reach min_level
392                         while (1) {
393                                 assert(_mip_map[level].data);
394
395                                 const int level_scale_power =
396                                         (level + 1) * MipMapScalePower;
397                                 const uint64_t offset =
398                                         index >> level_scale_power;
399
400                                 // Check if we reached the last block at this
401                                 // level, or if there was a change in this block
402                                 if (offset >= _mip_map[level].length ||
403                                         (get_subsample(level, offset) &
404                                                 sig_mask)) {
405                                         // Zoom in unless we reached the minimum
406                                         // zoom
407                                         if (level == min_level)
408                                                 break;
409
410                                         level--;
411                                 } else {
412                                         // Slide right to the beginning of the
413                                         // next mip map block
414                                         index = pow2_ceil(index + 1,
415                                                 level_scale_power);
416                                 }
417                         }
418
419                         // If individual samples within the limit of resolution,
420                         // do a linear search for the next transition within the
421                         // block
422                         if (min_length < MipMapScaleFactor) {
423                                 for (; index < end; index++) {
424                                         const bool sample = (get_sample(index) &
425                                                 sig_mask) != 0;
426                                         if (sample != last_sample)
427                                                 break;
428                                 }
429                         }
430                 }
431
432                 //----- Store the edge -----//
433
434                 // Take the last sample of the quanization block
435                 const int64_t final_index = index + block_length;
436                 if (index + block_length > end)
437                         break;
438
439                 // Store the final state
440                 const bool final_sample =
441                         (get_sample(final_index - 1) & sig_mask) != 0;
442                 edges.push_back(pair<int64_t, bool>(index, final_sample));
443
444                 index = final_index;
445                 last_sample = final_sample;
446         }
447
448         // Add the final state
449         const bool end_sample = get_sample(end) & sig_mask;
450         if (last_sample != end_sample)
451                 edges.push_back(pair<int64_t, bool>(end, end_sample));
452         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
453 }
454
455 uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
456 {
457         assert(level >= 0);
458         assert(_mip_map[level].data);
459         return unpack_sample((uint8_t*)_mip_map[level].data +
460                 _unit_size * offset);
461 }
462
463 uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
464 {
465         const uint64_t p = 1 << power;
466         return (x + p - 1) / p * p;
467 }
468
469 } // namespace data
470 } // namespace pv