]> sigrok.org Git - pulseview.git/blob - pv/data/logicsnapshot.cpp
754a456cc8f2e6c078cfd5a46e8b1c756571f79a
[pulseview.git] / pv / data / logicsnapshot.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
19  */
20
21 #include <extdef.h>
22
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <math.h>
27
28 #include <boost/foreach.hpp>
29
30 #include "logicsnapshot.h"
31
32 using boost::lock_guard;
33 using boost::recursive_mutex;
34 using std::max;
35 using std::min;
36 using std::pair;
37
38 namespace pv {
39 namespace data {
40
41 const int LogicSnapshot::MipMapScalePower = 4;
42 const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
43 const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
44 const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
45
46 LogicSnapshot::LogicSnapshot(const sr_datafeed_logic &logic,
47                              const uint64_t expected_num_samples) :
48         Snapshot(logic.unitsize),
49         _last_append_sample(0)
50 {
51         set_capacity(expected_num_samples);
52
53         lock_guard<recursive_mutex> lock(_mutex);
54         memset(_mip_map, 0, sizeof(_mip_map));
55         append_payload(logic);
56 }
57
58 LogicSnapshot::~LogicSnapshot()
59 {
60         lock_guard<recursive_mutex> lock(_mutex);
61         BOOST_FOREACH(MipMapLevel &l, _mip_map)
62                 free(l.data);
63 }
64
65 void LogicSnapshot::append_payload(
66         const sr_datafeed_logic &logic)
67 {
68         assert(_unit_size == logic.unitsize);
69         assert((logic.length % _unit_size) == 0);
70
71         lock_guard<recursive_mutex> lock(_mutex);
72
73         append_data(logic.data, logic.length / _unit_size);
74
75         // Generate the first mip-map from the data
76         append_payload_to_mipmap();
77 }
78
79 void LogicSnapshot::get_samples(uint8_t *const data,
80         int64_t start_sample, int64_t end_sample) const
81 {
82         assert(data);
83         assert(start_sample >= 0);
84         assert(start_sample <= (int64_t)_sample_count);
85         assert(end_sample >= 0);
86         assert(end_sample <= (int64_t)_sample_count);
87         assert(start_sample <= end_sample);
88
89         lock_guard<recursive_mutex> lock(_mutex);
90
91         const size_t size = (end_sample - start_sample) * _unit_size;
92         memcpy(data, (const uint8_t*)_data + start_sample, size);
93 }
94
95 void LogicSnapshot::reallocate_mipmap_level(MipMapLevel &m)
96 {
97         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
98                 MipMapDataUnit) * MipMapDataUnit;
99         if (new_data_length > m.data_length)
100         {
101                 m.data_length = new_data_length;
102
103                 // Padding is added to allow for the uint64_t write word
104                 m.data = realloc(m.data, new_data_length * _unit_size +
105                         sizeof(uint64_t));
106         }
107 }
108
109 void LogicSnapshot::append_payload_to_mipmap()
110 {
111         MipMapLevel &m0 = _mip_map[0];
112         uint64_t prev_length;
113         const uint8_t *src_ptr;
114         uint8_t *dest_ptr;
115         uint64_t accumulator;
116         unsigned int diff_counter;
117
118         // Expand the data buffer to fit the new samples
119         prev_length = m0.length;
120         m0.length = _sample_count / MipMapScaleFactor;
121
122         // Break off if there are no new samples to compute
123         if (m0.length == prev_length)
124                 return;
125
126         reallocate_mipmap_level(m0);
127
128         dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
129
130         // Iterate through the samples to populate the first level mipmap
131         const uint8_t *const end_src_ptr = (uint8_t*)_data +
132                 m0.length * _unit_size * MipMapScaleFactor;
133         for (src_ptr = (uint8_t*)_data +
134                 prev_length * _unit_size * MipMapScaleFactor;
135                 src_ptr < end_src_ptr;)
136         {
137                 // Accumulate transitions which have occurred in this sample
138                 accumulator = 0;
139                 diff_counter = MipMapScaleFactor;
140                 while (diff_counter-- > 0)
141                 {
142                         const uint64_t sample = *(uint64_t*)src_ptr;
143                         accumulator |= _last_append_sample ^ sample;
144                         _last_append_sample = sample;
145                         src_ptr += _unit_size;
146                 }
147
148                 *(uint64_t*)dest_ptr = accumulator;
149                 dest_ptr += _unit_size;
150         }
151
152         // Compute higher level mipmaps
153         for (unsigned int level = 1; level < ScaleStepCount; level++)
154         {
155                 MipMapLevel &m = _mip_map[level];
156                 const MipMapLevel &ml = _mip_map[level-1];
157
158                 // Expand the data buffer to fit the new samples
159                 prev_length = m.length;
160                 m.length = ml.length / MipMapScaleFactor;
161
162                 // Break off if there are no more samples to computed
163                 if (m.length == prev_length)
164                         break;
165
166                 reallocate_mipmap_level(m);
167
168                 // Subsample the level lower level
169                 src_ptr = (uint8_t*)ml.data +
170                         _unit_size * prev_length * MipMapScaleFactor;
171                 const uint8_t *const end_dest_ptr =
172                         (uint8_t*)m.data + _unit_size * m.length;
173                 for (dest_ptr = (uint8_t*)m.data +
174                         _unit_size * prev_length;
175                         dest_ptr < end_dest_ptr;
176                         dest_ptr += _unit_size)
177                 {
178                         accumulator = 0;
179                         diff_counter = MipMapScaleFactor;
180                         while (diff_counter-- > 0)
181                         {
182                                 accumulator |= *(uint64_t*)src_ptr;
183                                 src_ptr += _unit_size;
184                         }
185
186                         *(uint64_t*)dest_ptr = accumulator;
187                 }
188         }
189 }
190
191 uint64_t LogicSnapshot::get_sample(uint64_t index) const
192 {
193         assert(_data);
194         assert(index < _sample_count);
195
196         return *(uint64_t*)((uint8_t*)_data + index * _unit_size);
197 }
198
199 void LogicSnapshot::get_subsampled_edges(
200         std::vector<EdgePair> &edges,
201         uint64_t start, uint64_t end,
202         float min_length, int sig_index)
203 {
204         uint64_t index = start;
205         unsigned int level;
206         bool last_sample;
207         bool fast_forward;
208
209         assert(end <= get_sample_count());
210         assert(start <= end);
211         assert(min_length > 0);
212         assert(sig_index >= 0);
213         assert(sig_index < 64);
214
215         lock_guard<recursive_mutex> lock(_mutex);
216
217         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
218         const unsigned int min_level = max((int)floorf(logf(min_length) /
219                 LogMipMapScaleFactor) - 1, 0);
220         const uint64_t sig_mask = 1ULL << sig_index;
221
222         // Store the initial state
223         last_sample = (get_sample(start) & sig_mask) != 0;
224         edges.push_back(pair<int64_t, bool>(index++, last_sample));
225
226         while (index + block_length <= end)
227         {
228                 //----- Continue to search -----//
229                 level = min_level;
230
231                 // We cannot fast-forward if there is no mip-map data at
232                 // at the minimum level.
233                 fast_forward = (_mip_map[level].data != NULL);
234
235                 if (min_length < MipMapScaleFactor)
236                 {
237                         // Search individual samples up to the beginning of
238                         // the next first level mip map block
239                         const uint64_t final_index = min(end,
240                                 pow2_ceil(index, MipMapScalePower));
241
242                         for (; index < final_index &&
243                                 (index & ~(~0 << MipMapScalePower)) != 0;
244                                 index++)
245                         {
246                                 const bool sample =
247                                         (get_sample(index) & sig_mask) != 0;
248
249                                 // If there was a change we cannot fast forward
250                                 if (sample != last_sample) {
251                                         fast_forward = false;
252                                         break;
253                                 }
254                         }
255                 }
256                 else
257                 {
258                         // If resolution is less than a mip map block,
259                         // round up to the beginning of the mip-map block
260                         // for this level of detail
261                         const int min_level_scale_power =
262                                 (level + 1) * MipMapScalePower;
263                         index = pow2_ceil(index, min_level_scale_power);
264                         if (index >= end)
265                                 break;
266
267                         // We can fast forward only if there was no change
268                         const bool sample =
269                                 (get_sample(index) & sig_mask) != 0;
270                         if (last_sample != sample)
271                                 fast_forward = false;
272                 }
273
274                 if (fast_forward) {
275
276                         // Fast forward: This involves zooming out to higher
277                         // levels of the mip map searching for changes, then
278                         // zooming in on them to find the point where the edge
279                         // begins.
280
281                         // Slide right and zoom out at the beginnings of mip-map
282                         // blocks until we encounter a change
283                         while (1) {
284                                 const int level_scale_power =
285                                         (level + 1) * MipMapScalePower;
286                                 const uint64_t offset =
287                                         index >> level_scale_power;
288
289                                 // Check if we reached the last block at this
290                                 // level, or if there was a change in this block
291                                 if (offset >= _mip_map[level].length ||
292                                         (get_subsample(level, offset) &
293                                                 sig_mask))
294                                         break;
295
296                                 if ((offset & ~(~0 << MipMapScalePower)) == 0) {
297                                         // If we are now at the beginning of a
298                                         // higher level mip-map block ascend one
299                                         // level
300                                         if (level + 1 >= ScaleStepCount ||
301                                                 !_mip_map[level + 1].data)
302                                                 break;
303
304                                         level++;
305                                 } else {
306                                         // Slide right to the beginning of the
307                                         // next mip map block
308                                         index = pow2_ceil(index + 1,
309                                                 level_scale_power);
310                                 }
311                         }
312
313                         // Zoom in, and slide right until we encounter a change,
314                         // and repeat until we reach min_level
315                         while (1) {
316                                 assert(_mip_map[level].data);
317
318                                 const int level_scale_power =
319                                         (level + 1) * MipMapScalePower;
320                                 const uint64_t offset =
321                                         index >> level_scale_power;
322
323                                 // Check if we reached the last block at this
324                                 // level, or if there was a change in this block
325                                 if (offset >= _mip_map[level].length ||
326                                         (get_subsample(level, offset) &
327                                                 sig_mask)) {
328                                         // Zoom in unless we reached the minimum
329                                         // zoom
330                                         if (level == min_level)
331                                                 break;
332
333                                         level--;
334                                 } else {
335                                         // Slide right to the beginning of the
336                                         // next mip map block
337                                         index = pow2_ceil(index + 1,
338                                                 level_scale_power);
339                                 }
340                         }
341
342                         // If individual samples within the limit of resolution,
343                         // do a linear search for the next transition within the
344                         // block
345                         if (min_length < MipMapScaleFactor) {
346                                 for (; index < end; index++) {
347                                         const bool sample = (get_sample(index) &
348                                                 sig_mask) != 0;
349                                         if (sample != last_sample)
350                                                 break;
351                                 }
352                         }
353                 }
354
355                 //----- Store the edge -----//
356
357                 // Take the last sample of the quanization block
358                 const int64_t final_index = index + block_length;
359                 if (index + block_length > end)
360                         break;
361
362                 // Store the final state
363                 const bool final_sample =
364                         (get_sample(final_index - 1) & sig_mask) != 0;
365                 edges.push_back(pair<int64_t, bool>(index, final_sample));
366
367                 index = final_index;
368                 last_sample = final_sample;
369         }
370
371         // Add the final state
372         const bool end_sample = get_sample(end) & sig_mask;
373         if (last_sample != end_sample)
374                 edges.push_back(pair<int64_t, bool>(end, end_sample));
375         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
376 }
377
378 uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
379 {
380         assert(level >= 0);
381         assert(_mip_map[level].data);
382         return *(uint64_t*)((uint8_t*)_mip_map[level].data +
383                 _unit_size * offset);
384 }
385
386 uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
387 {
388         const uint64_t p = 1 << power;
389         return (x + p - 1) / p * p;
390 }
391
392 } // namespace data
393 } // namespace pv