]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/uart.py
srd: JTAG/SMT32: Some more improvements.
[libsigrokdecode.git] / decoders / uart / uart.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# UART protocol decoder
22
23import sigrokdecode as srd
24
25# Used for differentiating between the two data directions.
26RX = 0
27TX = 1
28
29# Annotation feed formats
30ANN_ASCII = 0
31ANN_DEC = 1
32ANN_HEX = 2
33ANN_OCT = 3
34ANN_BITS = 4
35
36# Given a parity type to check (odd, even, zero, one), the value of the
37# parity bit, the value of the data, and the length of the data (5-9 bits,
38# usually 8 bits) return True if the parity is correct, False otherwise.
39# 'none' is _not_ allowed as value for 'parity_type'.
40def parity_ok(parity_type, parity_bit, data, num_data_bits):
41
42 # Handle easy cases first (parity bit is always 1 or 0).
43 if parity_type == 'zero':
44 return parity_bit == 0
45 elif parity_type == 'one':
46 return parity_bit == 1
47
48 # Count number of 1 (high) bits in the data (and the parity bit itself!).
49 ones = bin(data).count('1') + parity_bit
50
51 # Check for odd/even parity.
52 if parity_type == 'odd':
53 return (ones % 2) == 1
54 elif parity_type == 'even':
55 return (ones % 2) == 0
56 else:
57 raise Exception('Invalid parity type: %d' % parity_type)
58
59class Decoder(srd.Decoder):
60 api_version = 1
61 id = 'uart'
62 name = 'UART'
63 longname = 'Universal Asynchronous Receiver/Transmitter'
64 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
65 license = 'gplv2+'
66 inputs = ['logic']
67 outputs = ['uart']
68 probes = [
69 # Allow specifying only one of the signals, e.g. if only one data
70 # direction exists (or is relevant).
71 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
72 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
73 ]
74 optional_probes = []
75 options = {
76 'baudrate': ['Baud rate', 115200],
77 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
78 'parity_type': ['Parity type', 'none'],
79 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
80 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
81 'bit_order': ['Bit order', 'lsb-first'],
82 # TODO: Options to invert the signal(s).
83 }
84 annotations = [
85 ['ASCII', 'Data bytes as ASCII characters'],
86 ['Decimal', 'Databytes as decimal, integer values'],
87 ['Hex', 'Data bytes in hex format'],
88 ['Octal', 'Data bytes as octal numbers'],
89 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
90 ]
91
92 def putx(self, rxtx, data):
93 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
94
95 def __init__(self, **kwargs):
96 self.samplenum = 0
97 self.frame_start = [-1, -1]
98 self.startbit = [-1, -1]
99 self.cur_data_bit = [0, 0]
100 self.databyte = [0, 0]
101 self.paritybit = [-1, -1]
102 self.stopbit1 = [-1, -1]
103 self.startsample = [-1, -1]
104 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
105 self.oldbit = [None, None]
106
107 def start(self, metadata):
108 self.samplerate = metadata['samplerate']
109 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
110 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
111
112 # The width of one UART bit in number of samples.
113 self.bit_width = \
114 float(self.samplerate) / float(self.options['baudrate'])
115
116 def report(self):
117 pass
118
119 # Return true if we reached the middle of the desired bit, false otherwise.
120 def reached_bit(self, rxtx, bitnum):
121 # bitpos is the samplenumber which is in the middle of the
122 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
123 # (if used) or the first stop bit, and so on).
124 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
125 bitpos += bitnum * self.bit_width
126 if self.samplenum >= bitpos:
127 return True
128 return False
129
130 def reached_bit_last(self, rxtx, bitnum):
131 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
132 if self.samplenum >= bitpos:
133 return True
134 return False
135
136 def wait_for_start_bit(self, rxtx, old_signal, signal):
137 # The start bit is always 0 (low). As the idle UART (and the stop bit)
138 # level is 1 (high), the beginning of a start bit is a falling edge.
139 if not (old_signal == 1 and signal == 0):
140 return
141
142 # Save the sample number where the start bit begins.
143 self.frame_start[rxtx] = self.samplenum
144
145 self.state[rxtx] = 'GET START BIT'
146
147 def get_start_bit(self, rxtx, signal):
148 # Skip samples until we're in the middle of the start bit.
149 if not self.reached_bit(rxtx, 0):
150 return
151
152 self.startbit[rxtx] = signal
153
154 # The startbit must be 0. If not, we report an error.
155 if self.startbit[rxtx] != 0:
156 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
157 ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
158 # TODO: Abort? Ignore rest of the frame?
159
160 self.cur_data_bit[rxtx] = 0
161 self.databyte[rxtx] = 0
162 self.startsample[rxtx] = -1
163
164 self.state[rxtx] = 'GET DATA BITS'
165
166 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
167 ['STARTBIT', rxtx, self.startbit[rxtx]])
168 self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
169 [ANN_ASCII, ['Start bit', 'Start', 'S']])
170
171 def get_data_bits(self, rxtx, signal):
172 # Skip samples until we're in the middle of the desired data bit.
173 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
174 return
175
176 # Save the sample number where the data byte starts.
177 if self.startsample[rxtx] == -1:
178 self.startsample[rxtx] = self.samplenum
179
180 # Get the next data bit in LSB-first or MSB-first fashion.
181 if self.options['bit_order'] == 'lsb-first':
182 self.databyte[rxtx] >>= 1
183 self.databyte[rxtx] |= \
184 (signal << (self.options['num_data_bits'] - 1))
185 elif self.options['bit_order'] == 'msb-first':
186 self.databyte[rxtx] <<= 1
187 self.databyte[rxtx] |= (signal << 0)
188 else:
189 raise Exception('Invalid bit order value: %s',
190 self.options['bit_order'])
191
192 # Return here, unless we already received all data bits.
193 # TODO? Off-by-one?
194 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
195 self.cur_data_bit[rxtx] += 1
196 return
197
198 self.state[rxtx] = 'GET PARITY BIT'
199
200 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
201 ['DATA', rxtx, self.databyte[rxtx]])
202
203 s = 'RX: ' if (rxtx == RX) else 'TX: '
204 self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
205 self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
206 self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
207 s + hex(self.databyte[rxtx])[2:]]])
208 self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
209 s + oct(self.databyte[rxtx])[2:]]])
210 self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
211 s + bin(self.databyte[rxtx])[2:]]])
212
213 def get_parity_bit(self, rxtx, signal):
214 # If no parity is used/configured, skip to the next state immediately.
215 if self.options['parity_type'] == 'none':
216 self.state[rxtx] = 'GET STOP BITS'
217 return
218
219 # Skip samples until we're in the middle of the parity bit.
220 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
221 return
222
223 self.paritybit[rxtx] = signal
224
225 self.state[rxtx] = 'GET STOP BITS'
226
227 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
228 self.databyte[rxtx], self.options['num_data_bits']):
229 # TODO: Fix range.
230 self.put(self.samplenum, self.samplenum, self.out_proto,
231 ['PARITYBIT', rxtx, self.paritybit[rxtx]])
232 self.put(self.samplenum, self.samplenum, self.out_ann,
233 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
234 else:
235 # TODO: Fix range.
236 # TODO: Return expected/actual parity values.
237 self.put(self.samplenum, self.samplenum, self.out_proto,
238 ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
239 self.put(self.samplenum, self.samplenum, self.out_ann,
240 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
241
242 # TODO: Currently only supports 1 stop bit.
243 def get_stop_bits(self, rxtx, signal):
244 # Skip samples until we're in the middle of the stop bit(s).
245 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
246 b = self.options['num_data_bits'] + 1 + skip_parity
247 if not self.reached_bit(rxtx, b):
248 return
249
250 self.stopbit1[rxtx] = signal
251
252 # Stop bits must be 1. If not, we report an error.
253 if self.stopbit1[rxtx] != 1:
254 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
255 ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
256 # TODO: Abort? Ignore the frame? Other?
257
258 self.state[rxtx] = 'WAIT FOR START BIT'
259
260 # TODO: Fix range.
261 self.put(self.samplenum, self.samplenum, self.out_proto,
262 ['STOPBIT', rxtx, self.stopbit1[rxtx]])
263 self.put(self.samplenum, self.samplenum, self.out_ann,
264 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
265
266 def decode(self, ss, es, data):
267 # TODO: Either RX or TX could be omitted (optional probe).
268 for (self.samplenum, (rx, tx)) in data:
269
270 # First sample: Save RX/TX value.
271 if self.oldbit[RX] == None:
272 self.oldbit[RX] = rx
273 continue
274 if self.oldbit[TX] == None:
275 self.oldbit[TX] = tx
276 continue
277
278 # State machine.
279 for rxtx in (RX, TX):
280 signal = rx if (rxtx == RX) else tx
281
282 if self.state[rxtx] == 'WAIT FOR START BIT':
283 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
284 elif self.state[rxtx] == 'GET START BIT':
285 self.get_start_bit(rxtx, signal)
286 elif self.state[rxtx] == 'GET DATA BITS':
287 self.get_data_bits(rxtx, signal)
288 elif self.state[rxtx] == 'GET PARITY BIT':
289 self.get_parity_bit(rxtx, signal)
290 elif self.state[rxtx] == 'GET STOP BITS':
291 self.get_stop_bits(rxtx, signal)
292 else:
293 raise Exception('Invalid state: %d' % self.state[rxtx])
294
295 # Save current RX/TX values for the next round.
296 self.oldbit[rxtx] = signal
297