]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
s/out_proto/out_python/.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22
23'''
24OUTPUT_PYTHON format:
25
26UART packet:
27[<packet-type>, <rxtx>, <packet-data>]
28
29This is the list of <packet-type>s and their respective <packet-data>:
30 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
31 - 'DATA': The data is the (integer) value of the UART data. Valid values
32 range from 0 to 512 (as the data can be up to 9 bits in size).
33 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
34 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
35 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
36 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
37 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
38 the expected parity value, the second is the actual parity value.
39 - TODO: Frame error?
40
41The <rxtx> field is 0 for RX packets, 1 for TX packets.
42'''
43
44# Used for differentiating between the two data directions.
45RX = 0
46TX = 1
47
48# Given a parity type to check (odd, even, zero, one), the value of the
49# parity bit, the value of the data, and the length of the data (5-9 bits,
50# usually 8 bits) return True if the parity is correct, False otherwise.
51# 'none' is _not_ allowed as value for 'parity_type'.
52def parity_ok(parity_type, parity_bit, data, num_data_bits):
53
54 # Handle easy cases first (parity bit is always 1 or 0).
55 if parity_type == 'zero':
56 return parity_bit == 0
57 elif parity_type == 'one':
58 return parity_bit == 1
59
60 # Count number of 1 (high) bits in the data (and the parity bit itself!).
61 ones = bin(data).count('1') + parity_bit
62
63 # Check for odd/even parity.
64 if parity_type == 'odd':
65 return (ones % 2) == 1
66 elif parity_type == 'even':
67 return (ones % 2) == 0
68 else:
69 raise Exception('Invalid parity type: %d' % parity_type)
70
71class Decoder(srd.Decoder):
72 api_version = 1
73 id = 'uart'
74 name = 'UART'
75 longname = 'Universal Asynchronous Receiver/Transmitter'
76 desc = 'Asynchronous, serial bus.'
77 license = 'gplv2+'
78 inputs = ['logic']
79 outputs = ['uart']
80 probes = [
81 # Allow specifying only one of the signals, e.g. if only one data
82 # direction exists (or is relevant).
83 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
84 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
85 ]
86 optional_probes = []
87 options = {
88 'baudrate': ['Baud rate', 115200],
89 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
90 'parity_type': ['Parity type', 'none'],
91 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
92 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
93 'bit_order': ['Bit order', 'lsb-first'],
94 'format': ['Data format', 'ascii'], # ascii/dec/hex/oct/bin
95 # TODO: Options to invert the signal(s).
96 }
97 annotations = [
98 ['rx-data', 'UART RX data'],
99 ['tx-data', 'UART TX data'],
100 ['start-bits', 'UART start bits'],
101 ['parity-bits', 'UART parity bits'],
102 ['stop-bits', 'UART stop bits'],
103 ['warnings', 'Warnings'],
104 ]
105 binary = (
106 ('rx', 'RX dump'),
107 ('tx', 'TX dump'),
108 ('rxtx', 'RX/TX dump'),
109 )
110
111 def putx(self, rxtx, data):
112 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
113 self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
114
115 def putg(self, data):
116 s, halfbit = self.samplenum, int(self.bit_width / 2)
117 self.put(s - halfbit, s + halfbit, self.out_ann, data)
118
119 def putp(self, data):
120 s, halfbit = self.samplenum, int(self.bit_width / 2)
121 self.put(s - halfbit, s + halfbit, self.out_python, data)
122
123 def putbin(self, rxtx, data):
124 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
125 self.put(s - halfbit, self.samplenum + halfbit, self.out_bin, data)
126
127 def __init__(self, **kwargs):
128 self.samplerate = None
129 self.samplenum = 0
130 self.frame_start = [-1, -1]
131 self.startbit = [-1, -1]
132 self.cur_data_bit = [0, 0]
133 self.databyte = [0, 0]
134 self.paritybit = [-1, -1]
135 self.stopbit1 = [-1, -1]
136 self.startsample = [-1, -1]
137 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
138 self.oldbit = [1, 1]
139 self.oldpins = [1, 1]
140
141 def start(self):
142 self.out_python = self.register(srd.OUTPUT_PYTHON)
143 self.out_bin = self.register(srd.OUTPUT_BINARY)
144 self.out_ann = self.register(srd.OUTPUT_ANN)
145
146 def metadata(self, key, value):
147 if key == srd.SRD_CONF_SAMPLERATE:
148 self.samplerate = value;
149 # The width of one UART bit in number of samples.
150 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
151
152 # Return true if we reached the middle of the desired bit, false otherwise.
153 def reached_bit(self, rxtx, bitnum):
154 # bitpos is the samplenumber which is in the middle of the
155 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
156 # (if used) or the first stop bit, and so on).
157 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
158 bitpos += bitnum * self.bit_width
159 if self.samplenum >= bitpos:
160 return True
161 return False
162
163 def reached_bit_last(self, rxtx, bitnum):
164 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
165 if self.samplenum >= bitpos:
166 return True
167 return False
168
169 def wait_for_start_bit(self, rxtx, old_signal, signal):
170 # The start bit is always 0 (low). As the idle UART (and the stop bit)
171 # level is 1 (high), the beginning of a start bit is a falling edge.
172 if not (old_signal == 1 and signal == 0):
173 return
174
175 # Save the sample number where the start bit begins.
176 self.frame_start[rxtx] = self.samplenum
177
178 self.state[rxtx] = 'GET START BIT'
179
180 def get_start_bit(self, rxtx, signal):
181 # Skip samples until we're in the middle of the start bit.
182 if not self.reached_bit(rxtx, 0):
183 return
184
185 self.startbit[rxtx] = signal
186
187 # The startbit must be 0. If not, we report an error.
188 if self.startbit[rxtx] != 0:
189 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
190 # TODO: Abort? Ignore rest of the frame?
191
192 self.cur_data_bit[rxtx] = 0
193 self.databyte[rxtx] = 0
194 self.startsample[rxtx] = -1
195
196 self.state[rxtx] = 'GET DATA BITS'
197
198 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
199 self.putg([2, ['Start bit', 'Start', 'S']])
200
201 def get_data_bits(self, rxtx, signal):
202 # Skip samples until we're in the middle of the desired data bit.
203 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
204 return
205
206 # Save the sample number of the middle of the first data bit.
207 if self.startsample[rxtx] == -1:
208 self.startsample[rxtx] = self.samplenum
209
210 # Get the next data bit in LSB-first or MSB-first fashion.
211 if self.options['bit_order'] == 'lsb-first':
212 self.databyte[rxtx] >>= 1
213 self.databyte[rxtx] |= \
214 (signal << (self.options['num_data_bits'] - 1))
215 elif self.options['bit_order'] == 'msb-first':
216 self.databyte[rxtx] <<= 1
217 self.databyte[rxtx] |= (signal << 0)
218 else:
219 raise Exception('Invalid bit order value: %s',
220 self.options['bit_order'])
221
222 # Return here, unless we already received all data bits.
223 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
224 self.cur_data_bit[rxtx] += 1
225 return
226
227 self.state[rxtx] = 'GET PARITY BIT'
228
229 self.putp(['DATA', rxtx, self.databyte[rxtx]])
230
231 b, f = self.databyte[rxtx], self.options['format']
232 if f == 'ascii':
233 c = chr(b) if b in range(30, 126 + 1) else '[%02X]' % b
234 self.putx(rxtx, [rxtx, [c]])
235 elif f == 'dec':
236 self.putx(rxtx, [rxtx, [str(b)]])
237 elif f == 'hex':
238 self.putx(rxtx, [rxtx, [hex(b)[2:].zfill(2).upper()]])
239 elif f == 'oct':
240 self.putx(rxtx, [rxtx, [oct(b)[2:].zfill(3)]])
241 elif f == 'bin':
242 self.putx(rxtx, [rxtx, [bin(b)[2:].zfill(8)]])
243 else:
244 raise Exception('Invalid data format option: %s' % f)
245
246 self.putbin(rxtx, (rxtx, bytes([b])))
247 self.putbin(rxtx, (2, bytes([b])))
248
249 def get_parity_bit(self, rxtx, signal):
250 # If no parity is used/configured, skip to the next state immediately.
251 if self.options['parity_type'] == 'none':
252 self.state[rxtx] = 'GET STOP BITS'
253 return
254
255 # Skip samples until we're in the middle of the parity bit.
256 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
257 return
258
259 self.paritybit[rxtx] = signal
260
261 self.state[rxtx] = 'GET STOP BITS'
262
263 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
264 self.databyte[rxtx], self.options['num_data_bits']):
265 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
266 self.putg([3, ['Parity bit', 'Parity', 'P']])
267 else:
268 # TODO: Return expected/actual parity values.
269 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
270 self.putg([5, ['Parity error', 'Parity err', 'PE']])
271
272 # TODO: Currently only supports 1 stop bit.
273 def get_stop_bits(self, rxtx, signal):
274 # Skip samples until we're in the middle of the stop bit(s).
275 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
276 b = self.options['num_data_bits'] + 1 + skip_parity
277 if not self.reached_bit(rxtx, b):
278 return
279
280 self.stopbit1[rxtx] = signal
281
282 # Stop bits must be 1. If not, we report an error.
283 if self.stopbit1[rxtx] != 1:
284 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
285 self.putg([5, ['Frame error', 'Frame err', 'FE']])
286 # TODO: Abort? Ignore the frame? Other?
287
288 self.state[rxtx] = 'WAIT FOR START BIT'
289
290 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
291 self.putg([4, ['Stop bit', 'Stop', 'T']])
292
293 def decode(self, ss, es, data):
294 if self.samplerate is None:
295 raise Exception("Cannot decode without samplerate.")
296 # TODO: Either RX or TX could be omitted (optional probe).
297 for (self.samplenum, pins) in data:
298
299 # Note: Ignoring identical samples here for performance reasons
300 # is not possible for this PD, at least not in the current state.
301 # if self.oldpins == pins:
302 # continue
303 self.oldpins, (rx, tx) = pins, pins
304
305 # State machine.
306 for rxtx in (RX, TX):
307 signal = rx if (rxtx == RX) else tx
308
309 if self.state[rxtx] == 'WAIT FOR START BIT':
310 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
311 elif self.state[rxtx] == 'GET START BIT':
312 self.get_start_bit(rxtx, signal)
313 elif self.state[rxtx] == 'GET DATA BITS':
314 self.get_data_bits(rxtx, signal)
315 elif self.state[rxtx] == 'GET PARITY BIT':
316 self.get_parity_bit(rxtx, signal)
317 elif self.state[rxtx] == 'GET STOP BITS':
318 self.get_stop_bits(rxtx, signal)
319 else:
320 raise Exception('Invalid state: %s' % self.state[rxtx])
321
322 # Save current RX/TX values for the next round.
323 self.oldbit[rxtx] = signal
324