]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/onewire/onewire.py
srd: Drop 'usb' PD, replaced by two others.
[libsigrokdecode.git] / decoders / onewire / onewire.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2012 Iztok Jeras <iztok.jeras@gmail.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# 1-Wire protocol decoder
22
23import sigrokdecode as srd
24
25# Annotation feed formats
26ANN_LINK = 0
27ANN_NETWORK = 1
28ANN_TRANSPORT = 2
29
30# a dictionary of ROM commands and their names
31rom_command = {0x33: "READ ROM",
32 0x0f: "CONDITIONAL READ ROM",
33 0xcc: "SKIP ROM",
34 0x55: "MATCH ROM",
35 0xf0: "SEARCH ROM",
36 0xec: "CONDITIONAL SEARCH ROM",
37 0x3c: "OVERDRIVE SKIP ROM",
38 0x6d: "OVERDRIVE MATCH ROM"}
39
40class Decoder(srd.Decoder):
41 api_version = 1
42 id = 'onewire'
43 name = '1-Wire'
44 longname = '1-Wire serial communication bus'
45 desc = 'Bidirectional, half-duplex, asynchronous serial bus.'
46 license = 'gplv2+'
47 inputs = ['logic']
48 outputs = ['onewire']
49 probes = [
50 {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
51 ]
52 optional_probes = [
53 {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
54 ]
55 options = {
56 'overdrive' : ['Overdrive', 1],
57 'cnt_normal_bit' : ['Time (in samplerate periods) for normal mode sample bit' , 0],
58 'cnt_normal_presence' : ['Time (in samplerate periods) for normal mode sample presence', 0],
59 'cnt_normal_reset' : ['Time (in samplerate periods) for normal mode reset' , 0],
60 'cnt_overdrive_bit' : ['Time (in samplerate periods) for overdrive mode sample bit' , 0],
61 'cnt_overdrive_presence': ['Time (in samplerate periods) for overdrive mode sample presence', 0],
62 'cnt_overdrive_reset' : ['Time (in samplerate periods) for overdrive mode reset' , 0],
63 }
64 annotations = [
65 ['Link', 'Link layer events (reset, presence, bit slots)'],
66 ['Network', 'Network layer events (device addressing)'],
67 ['Transport', 'Transport layer events'],
68 ]
69
70 def __init__(self, **kwargs):
71 # Common variables
72 self.samplenum = 0
73 # Link layer variables
74 self.lnk_state = 'WAIT FOR FALLING EDGE'
75 self.lnk_event = 'NONE'
76 self.lnk_present = 0
77 self.lnk_bit = 0
78 self.lnk_overdrive = 0
79 # Event timing variables
80 self.lnk_fall = 0
81 self.lnk_rise = 0
82 self.net_beg = 0
83 self.net_end = 0
84 self.net_len = 0
85 # Network layer variables
86 self.net_state = 'IDLE'
87 self.net_cnt = 0
88 self.net_search = "P"
89 self.net_data_p = 0x0
90 self.net_data_n = 0x0
91 self.net_data = 0x0
92 self.net_rom = 0x0000000000000000
93
94 def start(self, metadata):
95 self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire')
96 self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire')
97
98 # check if samplerate is appropriate
99 self.samplerate = metadata['samplerate']
100 if (self.options['overdrive']):
101 self.put(0, 0, self.out_ann, [ANN_LINK,
102 ['NOTE: Sample rate checks assume overdrive mode.']])
103 if (self.samplerate < 2000000):
104 self.put(0, 0, self.out_ann, [ANN_LINK,
105 ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']])
106 elif (self.samplerate < 5000000):
107 self.put(0, 0, self.out_ann, [ANN_LINK,
108 ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']])
109 else:
110 self.put(0, 0, self.out_ann, [ANN_LINK,
111 ['NOTE: Sample rate checks assume normal mode only.']])
112 if (self.samplerate < 400000):
113 self.put(0, 0, self.out_ann, [ANN_LINK,
114 ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']])
115 elif (self.samplerate < 1000000):
116 self.put(0, 0, self.out_ann, [ANN_LINK,
117 ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']])
118
119 # The default 1-Wire time base is 30us, this is used to calculate sampling times.
120 if (self.options['cnt_normal_bit']):
121 self.cnt_normal_bit = self.options['cnt_normal_bit']
122 else:
123 self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns
124 if (self.options['cnt_normal_presence']):
125 self.cnt_normal_presence = self.options['cnt_normal_presence']
126 else:
127 self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns
128 if (self.options['cnt_normal_reset']):
129 self.cnt_normal_reset = self.options['cnt_normal_reset']
130 else:
131 self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns
132 if (self.options['cnt_overdrive_bit']):
133 self.cnt_overdrive_bit = self.options['cnt_overdrive_bit']
134 else:
135 self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns
136 if (self.options['cnt_overdrive_presence']):
137 self.cnt_overdrive_presence = self.options['cnt_overdrive_presence']
138 else:
139 self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns
140 if (self.options['cnt_overdrive_reset']):
141 self.cnt_overdrive_reset = self.options['cnt_overdrive_reset']
142 else:
143 self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns
144
145 # calculating the slot size
146 self.cnt_normal_slot = int(float(self.samplerate) * 0.000060) - 1 # 60ns
147 self.cnt_overdrive_slot = int(float(self.samplerate) * 0.000006) - 1 # 6ns
148
149 # organize values into lists
150 self.cnt_bit = [self.cnt_normal_bit , self.cnt_overdrive_bit ]
151 self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence]
152 self.cnt_reset = [self.cnt_normal_reset , self.cnt_overdrive_reset ]
153 self.cnt_slot = [self.cnt_normal_slot , self.cnt_overdrive_slot ]
154
155 # Check if sample times are in the allowed range
156 time_min = float(self.cnt_normal_bit ) / self.samplerate
157 time_max = float(self.cnt_normal_bit+1) / self.samplerate
158 if ( (time_min < 0.000005) or (time_max > 0.000015) ) :
159 self.put(0, 0, self.out_ann, [ANN_LINK,
160 ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).'
161 % (time_min*1000000, time_max*1000000)]])
162 time_min = float(self.cnt_normal_presence ) / self.samplerate
163 time_max = float(self.cnt_normal_presence+1) / self.samplerate
164 if ( (time_min < 0.0000681) or (time_max > 0.000075) ) :
165 self.put(0, 0, self.out_ann, [ANN_LINK,
166 ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).'
167 % (time_min*1000000, time_max*1000000)]])
168 time_min = float(self.cnt_overdrive_bit ) / self.samplerate
169 time_max = float(self.cnt_overdrive_bit+1) / self.samplerate
170 if ( (time_min < 0.000001) or (time_max > 0.000002) ) :
171 self.put(0, 0, self.out_ann, [ANN_LINK,
172 ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).'
173 % (time_min*1000000, time_max*1000000)]])
174 time_min = float(self.cnt_overdrive_presence ) / self.samplerate
175 time_max = float(self.cnt_overdrive_presence+1) / self.samplerate
176 if ( (time_min < 0.0000073) or (time_max > 0.000010) ) :
177 self.put(0, 0, self.out_ann, [ANN_LINK,
178 ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).'
179 % (time_min*1000000, time_max*1000000)]])
180
181 def report(self):
182 pass
183
184 def decode(self, ss, es, data):
185 for (self.samplenum, (owr, pwr)) in data:
186
187 # Data link layer
188
189 # Clear events.
190 self.lnk_event = "NONE"
191 # State machine.
192 if self.lnk_state == 'WAIT FOR FALLING EDGE':
193 # The start of a cycle is a falling edge.
194 if (owr == 0):
195 # Save the sample number for the falling edge.
196 self.lnk_fall = self.samplenum
197 # Go to waiting for sample time
198 self.lnk_state = 'WAIT FOR DATA SAMPLE'
199 elif self.lnk_state == 'WAIT FOR DATA SAMPLE':
200 # Sample data bit
201 if (self.samplenum - self.lnk_fall == self.cnt_bit[self.lnk_overdrive]):
202 self.lnk_bit = owr & 0x1
203 self.lnk_event = "DATA BIT"
204 if (self.lnk_bit): self.lnk_state = 'WAIT FOR FALLING EDGE'
205 else : self.lnk_state = 'WAIT FOR RISING EDGE'
206 self.put(self.lnk_fall, self.cnt_bit[self.lnk_overdrive], self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]])
207 elif self.lnk_state == 'WAIT FOR RISING EDGE':
208 # The end of a cycle is a rising edge.
209 if (owr == 1):
210 # Check if this was a reset cycle
211 if (self.samplenum - self.lnk_fall > self.cnt_normal_reset):
212 # Save the sample number for the falling edge.
213 self.lnk_rise = self.samplenum
214 # Send a reset event to the next protocol layer.
215 self.lnk_event = "RESET"
216 self.lnk_state = "WAIT FOR PRESENCE DETECT"
217 self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET'])
218 self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET']])
219 self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET']])
220 # Reset the timer.
221 self.lnk_fall = self.samplenum
222 elif ((self.samplenum - self.lnk_fall > self.cnt_overdrive_reset) and (self.lnk_overdrive)):
223 # Save the sample number for the falling edge.
224 self.lnk_rise = self.samplenum
225 # Send a reset event to the next protocol layer.
226 self.lnk_event = "RESET"
227 self.lnk_state = "WAIT FOR PRESENCE DETECT"
228 self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET OVERDRIVE'])
229 self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']])
230 self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']])
231 # Reset the timer.
232 self.lnk_fall = self.samplenum
233 # Otherwise this is assumed to be a data bit.
234 else :
235 self.lnk_state = "WAIT FOR FALLING EDGE"
236 elif self.lnk_state == 'WAIT FOR PRESENCE DETECT':
237 # Sample presence status
238 if (self.samplenum - self.lnk_rise == self.cnt_presence[self.lnk_overdrive]):
239 self.lnk_present = owr & 0x1
240 # Save the sample number for the falling edge.
241 if not (self.lnk_present) : self.lnk_fall = self.samplenum
242 # create presence detect event
243 #self.lnk_event = "PRESENCE DETECT"
244 if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE'
245 else : self.lnk_state = 'WAIT FOR RISING EDGE'
246 present_str = "False" if self.lnk_present else "True"
247 self.put(self.samplenum, 0, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]])
248 self.put(self.samplenum, 0, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]])
249 else:
250 raise Exception('Invalid lnk_state: %d' % self.lnk_state)
251
252 # Network layer
253
254 # State machine.
255 if (self.lnk_event == "RESET"):
256 self.net_state = "COMMAND"
257 self.net_search = "P"
258 self.net_cnt = 0
259 elif (self.net_state == "IDLE"):
260 pass
261 elif (self.net_state == "COMMAND"):
262 # Receiving and decoding a ROM command
263 if (self.onewire_collect(8)):
264 self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK,
265 ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]])
266 if (self.net_data == 0x33): # READ ROM
267 self.net_state = "GET ROM"
268 elif (self.net_data == 0x0f): # CONDITIONAL READ ROM
269 self.net_state = "GET ROM"
270 elif (self.net_data == 0xcc): # SKIP ROM
271 self.net_state = "TRANSPORT"
272 elif (self.net_data == 0x55): # MATCH ROM
273 self.net_state = "GET ROM"
274 elif (self.net_data == 0xf0): # SEARCH ROM
275 self.net_state = "SEARCH ROM"
276 elif (self.net_data == 0xec): # CONDITIONAL SEARCH ROM
277 self.net_state = "SEARCH ROM"
278 elif (self.net_data == 0x3c): # OVERDRIVE SKIP ROM
279 self.lnk_overdrive = 1
280 self.net_state = "TRANSPORT"
281 elif (self.net_data == 0x69): # OVERDRIVE MATCH ROM
282 self.lnk_overdrive = 1
283 self.net_state = "GET ROM"
284 elif (self.net_state == "GET ROM"):
285 # A 64 bit device address is selected
286 # family code (1B) + serial number (6B) + CRC (1B)
287 if (self.onewire_collect(64)):
288 self.net_rom = self.net_data & 0xffffffffffffffff
289 self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
290 self.net_state = "TRANSPORT"
291 elif (self.net_state == "SEARCH ROM"):
292 # A 64 bit device address is searched for
293 # family code (1B) + serial number (6B) + CRC (1B)
294 if (self.onewire_search(64)):
295 self.net_rom = self.net_data & 0xffffffffffffffff
296 self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
297 self.net_state = "TRANSPORT"
298 elif (self.net_state == "TRANSPORT"):
299 # The transport layer is handled in byte sized units
300 if (self.onewire_collect(8)):
301 self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]])
302 self.put(self.net_beg, self.net_len, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]])
303 self.put(self.net_beg, self.net_len, self.out_proto, ['transfer', self.net_data])
304 # TODO: Sending translort layer data to 1-Wire device models
305 else:
306 raise Exception('Invalid net_state: %s' % self.net_state)
307
308
309 # Link/Network layer data collector
310 def onewire_collect (self, length):
311 if (self.lnk_event == "DATA BIT"):
312 # Storing the sampe this sequence begins with
313 if (self.net_cnt == 1):
314 self.net_beg = self.lnk_fall
315 self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
316 self.net_cnt = self.net_cnt + 1
317 # Storing the sampe this sequence ends with
318 # In case the full length of the sequence is received, return 1
319 if (self.net_cnt == length):
320 self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive]
321 self.net_len = self.net_end - self.net_beg
322 self.net_data = self.net_data & ((1<<length)-1)
323 self.net_cnt = 0
324 return (1)
325 else:
326 return (0)
327 else:
328 return (0)
329
330 # Link/Network layer search collector
331 def onewire_search (self, length):
332 if (self.lnk_event == "DATA BIT"):
333 # Storing the sampe this sequence begins with
334 if ((self.net_cnt == 0) and (self.net_search == "P")):
335 self.net_beg = self.lnk_fall
336 # Master receives an original address bit
337 if (self.net_search == "P"):
338 self.net_data_p = self.net_data_p & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
339 self.net_search = "N"
340 # Master receives a complemented address bit
341 elif (self.net_search == "N"):
342 self.net_data_n = self.net_data_n & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
343 self.net_search = "D"
344 # Master transmits an address bit
345 elif (self.net_search == "D"):
346 self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
347 self.net_search = "P"
348 self.net_cnt = self.net_cnt + 1
349 # Storing the sampe this sequence ends with
350 # In case the full length of the sequence is received, return 1
351 if (self.net_cnt == length):
352 self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive]
353 self.net_len = self.net_end - self.net_beg
354 self.net_data_p = self.net_data_p & ((1<<length)-1)
355 self.net_data_n = self.net_data_n & ((1<<length)-1)
356 self.net_data = self.net_data & ((1<<length)-1)
357 self.net_search = "P"
358 self.net_cnt = 0
359 return (1)
360 else:
361 return (0)
362 else:
363 return (0)