]> sigrok.org Git - libsigrokdecode.git/blame - decoders/swim/pd.py
Decoder for STM8 series MCUs SWIM protocol.
[libsigrokdecode.git] / decoders / swim / pd.py
CommitLineData
f8cc803b
MJ
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2018 Mike Jagdis <mjagdis@eris-associates.co.uk>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import math
22import sigrokdecode as srd
23
24class SamplerateError(Exception):
25 pass
26
27class Decoder(srd.Decoder):
28 api_version = 3
29 id = 'swim'
30 name = 'SWIM'
31 longname = 'STM8 SWIM bus'
32 desc = 'STM8 Single Wire Interface Module (SWIM) protocol.'
33 license = 'gplv2+'
34 inputs = ['logic']
35 outputs = []
36 options = (
37 {'id': 'debug', 'desc': 'Debug', 'default': 'no', 'values': ('yes', 'no') },
38 )
39 channels = (
40 {'id': 'swim', 'name': 'SWIM', 'desc': 'SWIM data line'},
41 )
42 annotations = (
43 ('bit', 'Bit'),
44 ('enterseq', 'SWIM enter sequence'),
45 ('start-host', 'Start bit (host)'),
46 ('start-target', 'Start bit (target)'),
47 ('parity', 'Parity bit'),
48 ('ack', 'Acknowledgement'),
49 ('nack', 'Negative acknowledgement'),
50 ('byte-write', 'Byte write'),
51 ('byte-read', 'Byte read'),
52 ('cmd-unknown', 'Unknown SWIM command'),
53 ('cmd', 'SWIM command'),
54 ('bytes', 'Byte count'),
55 ('address', 'Address'),
56 ('data-write', 'Data write'),
57 ('data-read', 'Data read'),
58 ('debug', 'Debug'),
59 )
60 annotation_rows = (
61 ('bits', 'Bits', (0,)),
62 ('framing', 'Framing', (2, 3, 4, 5, 6, 7, 8)),
63 ('protocol', 'Protocol', (1, 9, 10, 11, 12, 13, 14)),
64 ('debug', 'Debug', (15,)),
65 )
66 binary = (
67 ('tx', 'Dump of data written to target'),
68 ('rx', 'Dump of data read from target'),
69 )
70
71 def __init__(self):
72 # SWIM clock for the target is normally HSI/2 where HSI is 8MHz +- 5%
73 # although the divisor can be removed by setting the SWIMCLK bit in
74 # the CLK_SWIMCCR register. There is no standard for the host so we
75 # will be generous and assume it is using an 8MHz +- 10% oscillator.
76 # We do not need to be accurate. We just need to avoid treating enter
77 # sequence pulses as bits. A synchronization frame will cause this
78 # to be adjusted.
79 self.HSI = 8000000
80 self.HSI_min = self.HSI * 0.9
81 self.HSI_max = self.HSI * 1.1
82 self.swim_clock = self.HSI_min / 2
83
84 self.eseq_edge = [[-1, None], [-1, None]]
85 self.eseq_pairnum = 0
86 self.eseq_pairstart = None
87
88 self.reset()
89
90 def reset(self):
91 self.bit_edge = [[-1, None], [-1, None]]
92 self.bit_maxlen = -1
93 self.bitseq_len = 0
94 self.bitseq_end = None
95 self.proto_state = 'CMD'
96
97 def metadata(self, key, value):
98 if key == srd.SRD_CONF_SAMPLERATE:
99 self.samplerate = value
100
101 def adjust_timings(self):
102 # A low-speed bit is 22 SWIM clocks long.
103 # There are options to shorten bits to 10 clocks or use HSI rather
104 # than HSI/2 as the SWIM clock but the longest valid bit should be no
105 # more than this many samples. This does not need to be accurate.
106 # It exists simply to prevent bits extending unecessarily far into
107 # trailing bus-idle periods. This will be adjusted every time we see
108 # a synchronization frame or start bit in order to show idle periods
109 # as accurately as possible.
110 self.bit_reflen = math.ceil(self.samplerate * 22 / self.swim_clock)
111
112 def start(self):
113 self.out_ann = self.register(srd.OUTPUT_ANN)
114 self.out_binary = self.register(srd.OUTPUT_BINARY)
115
116 if not self.samplerate:
117 raise SamplerateError('Cannot decode without samplerate.')
118
119 # A synchronization frame is a low that lasts for more than 64 but no
120 # more than 128 SWIM clock periods based on the standard SWIM clock.
121 # Note: we also allow for the possibility that the SWIM clock divisor
122 # has been disabled here.
123 self.sync_reflen_min = math.floor(self.samplerate * 64 / self.HSI_max)
124 self.sync_reflen_max = math.ceil(self.samplerate * 128 / (self.HSI_min / 2))
125
126 if self.options['debug'] == 'yes':
127 self.debug = True
128 else:
129 self.debug = False
130
131 # The SWIM entry sequence is 4 pulses at 2kHz followed by 4 at 1kHz.
132 self.eseq_reflen = math.ceil(self.samplerate / 2048)
133
134 self.adjust_timings()
135
136 def protocol(self):
137 if self.proto_state == 'CMD':
138 # Command
139 if self.bitseq_value == 0x00:
140 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['system reset', 'SRST', '!']])
141 elif self.bitseq_value == 0x01:
142 self.proto_state = 'N'
143 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['read on-the-fly', 'ROTF', 'r']])
144 elif self.bitseq_value == 0x02:
145 self.proto_state = 'N'
146 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [10, ['write on-the-fly', 'WOTF', 'w']])
147 else:
148 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [9, ['unknown', 'UNK']])
149 elif self.proto_state == 'N':
150 # Number of bytes
151 self.proto_byte_count = self.bitseq_value
152 self.proto_state = '@E'
153 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [11, ['byte count 0x%02x' % self.bitseq_value, 'bytes 0x%02x' % self.bitseq_value, '0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
154 elif self.proto_state == '@E':
155 # Address byte 1
156 self.proto_addr = self.bitseq_value
157 self.proto_addr_start = self.bitseq_start
158 self.proto_state = '@H'
159 elif self.proto_state == '@H':
160 # Address byte 2
161 self.proto_addr = (self.proto_addr << 8) | self.bitseq_value
162 self.proto_state = '@L'
163 elif self.proto_state == '@L':
164 # Address byte 3
165 self.proto_addr = (self.proto_addr << 8) | self.bitseq_value
166 self.proto_state = 'D'
167 self.put(self.proto_addr_start, self.bitseq_end, self.out_ann, [12, ['address 0x%06x' % self.proto_addr, 'addr 0x%06x' % self.proto_addr, '0x%06x' % self.proto_addr, '%06x' %self.proto_addr, '%x' % self.proto_addr]])
168 else:
169 if self.proto_byte_count > 0:
170 self.proto_byte_count -= 1
171 if self.proto_byte_count == 0:
172 self.proto_state = 'CMD'
173
174 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [13 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
175 self.put(self.bitseq_start, self.bitseq_end, self.out_binary, [0 + self.bitseq_dir, bytes([self.bitseq_value])])
176 if self.debug:
177 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [15, ['%d more' % self.proto_byte_count, '%d' % self.proto_byte_count]])
178
179 def bitseq(self, bitstart, bitend, bit):
180 if self.bitseq_len == 0:
181 # Looking for start of a bit sequence (command or byte).
182 self.bit_reflen = bitend - bitstart
183 self.bitseq_value = 0
184 self.bitseq_dir = bit
185 self.bitseq_len = 1
186 self.put(bitstart, bitend, self.out_ann, [2 + self.bitseq_dir, ['start', 's']])
187 elif (self.proto_state == 'CMD' and self.bitseq_len == 4) or (self.proto_state != 'CMD' and self.bitseq_len == 9):
188 # Parity bit
189 self.bitseq_end = bitstart
190 self.bitseq_len += 1
191
192 self.put(bitstart, bitend, self.out_ann, [4, ['parity', 'par', 'p']])
193
194 # The start bit is not data but was used for parity calculation.
195 self.bitseq_value &= 0xff
196 self.put(self.bitseq_start, self.bitseq_end, self.out_ann, [7 + self.bitseq_dir, ['0x%02x' % self.bitseq_value, '%02x' % self.bitseq_value, '%x' % self.bitseq_value]])
197 elif (self.proto_state == 'CMD' and self.bitseq_len == 5) or (self.proto_state != 'CMD' and self.bitseq_len == 10):
198 # ACK/NACK bit.
199 if bit:
200 self.put(bitstart, bitend, self.out_ann, [5, ['ack', 'a']])
201 else:
202 self.put(bitstart, bitend, self.out_ann, [6, ['nack', 'n']])
203
204 # We only pass data that was ack'd up the stack.
205 if bit:
206 self.protocol()
207
208 self.bitseq_len = 0
209 else:
210 if self.bitseq_len == 1:
211 self.bitseq_start = bitstart
212 self.bitseq_value = (self.bitseq_value << 1) | bit
213 self.bitseq_len += 1
214
215 def bit(self, start, mid, end):
216 if mid - start >= end - mid:
217 self.put(start, end, self.out_ann, [0, ['0']])
218 bit = 0
219 else:
220 self.put(start, end, self.out_ann, [0, ['1']])
221 bit = 1
222
223 self.bitseq(start, end, bit)
224
225 def detect_synchronize_frame(self, start, end):
226 # Strictly speaking, synchronization frames are only recognised when
227 # SWIM is active. A falling edge on reset disables SWIM and an enter
228 # sequence is needed to re-enable it. However we do not want to be
229 # reliant on seeing the NRST pin just for that and we also want to be
230 # able to decode SWIM even if we just sample parts of the dialogue.
231 # For this reason we limit ourselves to only recognizing
232 # synchronization frames that have believable lengths based on our
233 # knowledge of the range of possible SWIM clocks.
234 if self.samplenum - self.eseq_edge[1][1] >= self.sync_reflen_min and self.samplenum - self.eseq_edge[1][1] <= self.sync_reflen_max:
235 self.put(self.eseq_edge[1][1], self.samplenum, self.out_ann, [1, ['synchronization frame', 'synchronization', 'sync', 's']])
236
237 # A low that lasts for more than 64 SWIM clock periods causes a
238 # reset of the SWIM communication state machine and will switch
239 # the SWIM to low-speed mode (SWIM_CSR.HS is cleared).
240 self.reset()
241
242 # The low SHOULD last 128 SWIM clocks. This is used to
243 # resynchronize in order to allow for variation in the frequency
244 # of the internal RC oscillator.
245 self.swim_clock = 128 * (self.samplerate / (self.samplenum - self.eseq_edge[1][1]))
246 self.adjust_timings()
247
248 def eseq_potential_start(self, start, end):
249 self.eseq_pairstart = start
250 self.eseq_reflen = end - start
251 self.eseq_pairnum = 1
252
253 def detect_enter_sequence(self, start, end):
254 # According to the spec the enter sequence is four pulses at 2kHz
255 # followed by four at 1kHz. We do not check the frequency but simply
256 # check the lengths of successive pulses against the first. This means
257 # we have no need to account for the accuracy (or lack of) of the
258 # host's oscillator.
259 if self.eseq_pairnum == 0 or abs(self.eseq_reflen - (end - start)) > 2:
260 self.eseq_potential_start(start, end)
261
262 elif self.eseq_pairnum < 4:
263 # The next three pulses should be the same length as the first.
264 self.eseq_pairnum += 1
265
266 if self.eseq_pairnum == 4:
267 self.eseq_reflen /= 2
268 else:
269 # The final four pulses should each be half the length of the
270 # initial pair. Again, a mismatch causes us to reset and use the
271 # current pulse as a new potential enter sequence start.
272 self.eseq_pairnum += 1
273 if self.eseq_pairnum == 8:
274 # Four matching pulses followed by four more that match each
275 # other but are half the length of the first 4. SWIM is active!
276 self.put(self.eseq_pairstart, end, self.out_ann, [1, ['enter sequence', 'enter seq', 'enter', 'ent', 'e']])
277 self.eseq_pairnum = 0
278
279 def decode(self):
280 while True:
281 if self.bit_maxlen >= 0:
282 (swim,) = self.wait()
283 self.bit_maxlen -= 1
284 else:
285 (swim,) = self.wait({0: 'e'})
286
287 if swim != self.eseq_edge[1][0]:
288 if swim == 1 and self.eseq_edge[1][1] is not None:
289 self.detect_synchronize_frame(self.eseq_edge[1][1], self.samplenum)
290 if self.eseq_edge[0][1] is not None:
291 self.detect_enter_sequence(self.eseq_edge[0][1], self.samplenum)
292 self.eseq_edge.pop(0)
293 self.eseq_edge.append([swim, self.samplenum])
294
295 if (swim != self.bit_edge[1][0] and (swim != 1 or self.bit_edge[1][0] != -1)) or self.bit_maxlen == 0:
296 if self.bit_maxlen == 0 and self.bit_edge[1][0] == 1:
297 swim = -1
298
299 if self.bit_edge[1][0] != 0 and swim == 0:
300 self.bit_maxlen = self.bit_reflen
301
302 if self.bit_edge[0][0] == 0 and self.bit_edge[1][0] == 1 and self.samplenum - self.bit_edge[0][1] <= self.bit_reflen + 2:
303 self.bit(self.bit_edge[0][1], self.bit_edge[1][1], self.samplenum)
304
305 self.bit_edge.pop(0)
306 self.bit_edge.append([swim, self.samplenum])