]> sigrok.org Git - libsigrokdecode.git/blame - decoders/dali/pd.py
Add a DALI protocol decoder.
[libsigrokdecode.git] / decoders / dali / pd.py
CommitLineData
b26c713b
JS
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2015 Jeremy Swanson <jeremy@rakocontrols.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program. If not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from .lists import *
22
23class SamplerateError(Exception):
24 pass
25
26class Decoder(srd.Decoder):
27 api_version = 2
28 id = 'dali'
29 name = 'DALI'
30 longname = 'Digital Addressable Lighting Interface'
31 desc = 'DALI lighting control protocol.'
32 license = 'gplv2+'
33 inputs = ['logic']
34 outputs = ['dali']
35 channels = (
36 {'id': 'dali', 'name': 'DALI', 'desc': 'DALI data line'},
37 )
38 options = (
39 {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
40 'values': ('active-low', 'active-high')},
41 )
42 annotations = (
43 ('bit', 'Bit'),
44 ('startbit', 'Startbit'),
45 ('sbit', 'Select bit'),
46 ('ybit', 'Individual or group'),
47 ('address', 'Address'),
48 ('command', 'Command'),
49 ('reply', 'Reply data'),
50 ('raw', 'Raw data'),
51 )
52 annotation_rows = (
53 ('bits', 'Bits', (0,)),
54 ('raw', 'Raw data', (7,)),
55 ('fields', 'Fields', (1, 2, 3, 4, 5, 6,)),
56 )
57
58 def __init__(self):
59 self.samplerate = None
60 self.samplenum = None
61 self.edges, self.bits, self.ss_es_bits = [], [], []
62 self.state = 'IDLE'
63 self.nextSamplePoint = None
64 self.nextSample = None
65 self.devType = None
66
67 def start(self):
68 self.out_ann = self.register(srd.OUTPUT_ANN)
69 self.old_ir = 1 if self.options['polarity'] == 'active-low' else 0
70
71 def metadata(self, key, value):
72 if key == srd.SRD_CONF_SAMPLERATE:
73 self.samplerate = value
74 # One bit: 833.33us (one half low, one half high).
75 # This is how may samples are in 1TE.
76 self.halfbit = int((self.samplerate * 0.0008333) / 2.0)
77
78 def putb(self, bit1, bit2, data):
79 ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1]
80 self.put(ss, es, self.out_ann, data)
81
82 def handle_bits(self, length):
83 a, c, f, g, b = 0, 0, 0, 0, self.bits
84 # Individual raw bits.
85 for i in range(length):
86 if i == 0:
87 ss = max(0, self.bits[0][0])
88 else:
89 ss = self.ss_es_bits[i - 1][1]
90 es = self.bits[i][0] + (self.halfbit * 2)
91 self.ss_es_bits.append([ss, es])
92 self.putb(i, i, [0, ['%d' % self.bits[i][1]]])
93 # Bits[0:0]: Startbit
94 s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S']
95 self.putb(0, 0, [1, s])
96 self.putb(0, 0, [7, s])
97 # Bits[1:8]
98 for i in range(8):
99 f |= (b[1 + i][1] << (7 - i))
100 if length == 9: # BACKWARD Frame
101 s = ['Reply: %02X' % f, 'Rply: %02X' % f,
102 'Rep: %02X' % f, 'R: %02X' % f, 'R']
103 self.putb(1, 8, [7, s])
104 s = ['Reply: %d' % f, 'Rply: %d' % f,
105 'Rep: %d' % f, 'R: %d' % f, 'R']
106 self.putb(1, 8, [6, s])
107 return
108
109 # FORWARD FRAME
110 # Bits[9:16]: Command/data (MSB-first)
111 for i in range(8):
112 c |= (b[9 + i][1] << (7 - i))
113 # Raw output
114 s = ['Raw data: %02X' % f, 'Raw: %02X' % f,
115 'Raw: %02X' % f, 'R: %02X' % f, 'R']
116 self.putb(1, 8, [7, s])
117 s = ['Raw data: %02X' % c, 'Raw: %02X' % c,
118 'Raw: %02X' % c, 'R: %02X' % c, 'R']
119 self.putb(9, 16, [7, s])
120
121 # Bits[8:8]: Select bit
122 # s = ['Selectbit: %d' % b[8][1], 'SEL: %d' % b[8][1], 'SEL', 'SE', 'S']
123 if b[8][1] == 1:
124 s = ['Command', 'Comd', 'COM', 'CO', 'C']
125 else:
126 s = ['Arc Power Level', 'Arc Pwr', 'ARC', 'AC', 'A']
127 self.putb(8, 8, [1, s])
128
129 # f &= 254 # Clear the select bit.
130 if f >= 254: # BROADCAST
131 s = ['BROADCAST', 'Brdcast', 'BC', 'B', 'B']
132 self.putb(1, 7, [5, s])
133 elif f >= 160: # Extended command 0b10100000
134 if f == 0xC1: # DALI_ENABLE_DEVICE_TYPE_X
135 self.devType = -1
136 x = extendedCommands.get(f, ['Unknown', 'Unk'])
137 s = ['Extended Command: %02X (%s)' % (f, x[0]),
138 'XC: %02X (%s)' % (f, x[1]),
139 'XC: %02X' % f, 'X: %02X' % f, 'X']
140 self.putb(1, 8, [5, s])
141 elif f >= 128: # Group
142 # Bits[1:1]: Ybit
143 s = ['YBit: %d' % b[1][1], 'YB: %d' % b[1][1], 'YB', 'Y', 'Y']
144 self.putb(1, 1, [3, s])
145 g = (f & 127) >> 1
146 s = ['Group address: %d' % g, 'Group: %d' % g,
147 'GP: %d' % g, 'G: %d' % g, 'G']
148 self.putb(2,7, [4, s])
149 else: # Short address
150 # Bits[1:1]: Ybit
151 s = ['YBit: %d' % b[1][1], 'YB: %d' % b[1][1], 'YB', 'Y', 'Y']
152 self.putb(1, 1, [3, s])
153 a = f >> 1
154 # x = system.get(a, ['Unknown', 'Unk'])
155 s = ['Short address: %d' % a, 'Addr: %d' % a,
156 'Addr: %d' % a, 'A: %d' % a, 'A']
157 self.putb(2, 7, [4, s])
158
159 # Bits[9:16]: Command/data (MSB-first)
160 if f >= 160 and f < 254:
161 if self.devType == -1:
162 self.devType = c
163 s = ['Type: %d' % c, 'Typ: %d' % c,
164 'Typ: %d' % c, 'T: %d' % c, 'D']
165 else:
166 self.devType = None
167 s = ['Data: %d' % c, 'Dat: %d' % c,
168 'Dat: %d' % c, 'D: %d' % c, 'D']
169 elif b[8][1] == 1:
170 un = c & 0xF0
171 ln = c & 0x0F
172 if un == 0x10: # Set scene command
173 x = ['Recall Scene %d' % ln, 'SC %d' % ln]
174 elif un == 0x40:
175 x = ['Store DTR as Scene %d' % ln, 'SC %d = DTR' % ln]
176 elif un == 0x50:
177 x = ['Delete Scene %d' % ln, 'DEL SC %d' % ln]
178 elif un == 0x60:
179 x = ['Add to Group %d' % ln, 'Grp %d Add' % ln]
180 elif un == 0x70:
181 x = ['Remove from Group %d' % ln, 'Grp %d Del' % ln]
182 elif un == 0xB0:
183 x = ['Query Scene %d Level' % ln, 'Sc %d Level' % ln]
184 elif c >= 224: # Application specific commands
185 if self.devType == 8:
186 x = DALIDeviceType8.get(c, ['Unknown App', 'Unk'])
187 else:
188 x = ['Application Specific Command %d' % c, 'App Cmd %d' % c]
189 else:
190 x = DALICommands.get(c, ['Unknown', 'Unk'])
191 s = ['Command: %d (%s)' % (c, x[0]), 'Com: %d (%s)' % (c, x[1]),
192 'Com: %d' % c, 'C: %d' % c, 'C']
193 else:
194 s = ['Arc Power Level: %d' % c, 'Level: %d' % c,
195 'Lev: %d' % c, 'L: %d' % c, 'L']
196 self.putb(9, 16, [5, s])
197
198 def reset_decoder_state(self):
199 self.edges, self.bits, self.ss_es_bits = [], [], []
200 self.state = 'IDLE'
201 # self.devType = None
202
203 def decode(self, ss, es, data):
204 if not self.samplerate:
205 raise SamplerateError('Cannot decode without samplerate.')
206 bit = 0;
207 for (self.samplenum, pins) in data:
208 self.ir = pins[0]
209 # data.itercnt += 1
210 # data.logic_mask = 1
211 # data.cur_pos = self.samplenum
212 # data.edge_index = -1
213 if self.options['polarity'] == 'active-high':
214 self.ir ^= 1 # Invert.
215
216 # State machine.
217 if self.state == 'IDLE':
218 # Wait for any edge (rising or falling).
219 if self.old_ir == self.ir:
220 # data.exp_logic = self.exp_logic
221 # data.logic_mask = 1
222 # logic.cur_pos = self.samplenum
223 continue
224 self.edges.append(self.samplenum)
225 self.state = 'PHASE0'
226 self.old_ir = self.ir
227 # Get the next sample point.
228 # self.nextSamplePoint = self.samplenum + int(self.halfbit / 2)
229 self.old_ir = self.ir
230 # bit = self.ir
231 # data.itercnt += int((self.halfbit - 1) * 0.5)
232 continue
233
234 # if(self.samplenum == self.nextSamplePoint):
235 # bit = self.ir
236 # continue
237
238 if (self.old_ir != self.ir):
239 self.edges.append(self.samplenum)
240 elif (self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5))):
241 self.edges.append(self.samplenum - int(self.halfbit * 0.5))
242 else:
243 continue
244
245 bit = self.old_ir
246 if self.state == 'PHASE0':
247 self.phase0 = bit
248 self.state = 'PHASE1'
249 elif self.state == 'PHASE1':
250 if (bit == 1) and (self.phase0 == 1): # Stop bit
251 if len(self.bits) == 17 or len(self.bits) == 9:
252 # Forward or Backward
253 self.handle_bits(len(self.bits))
254 self.reset_decoder_state() # Reset upon errors.
255 continue
256 else:
257 self.bits.append([self.edges[-3], bit])
258 self.state = 'PHASE0'
259
260 # self.nextSamplePoint = self.edges[-1] + int(self.halfbit / 2)
261
262 self.old_ir = self.ir