]> sigrok.org Git - libsigrok.git/blobdiff - src/hardware/asix-sigma/protocol.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
index 80e60706085fd110bf75befda024ae5b46180118..142316514c7ceab0ebda7fc8a157fa66cc495302 100644 (file)
@@ -4,6 +4,7 @@
  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
+ * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
  *
  * This program is free software: you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
@@ -36,7 +37,7 @@
  * few discrete values, while setter routines accept any user specified
  * rate that is supported by the hardware.
  */
-SR_PRIV const uint64_t samplerates[] = {
+static const uint64_t samplerates[] = {
        /* 50MHz and integer divider. 1/2/5 steps (where possible). */
        SR_KHZ(200), SR_KHZ(500),
        SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
@@ -45,7 +46,10 @@ SR_PRIV const uint64_t samplerates[] = {
        SR_MHZ(100), SR_MHZ(200),
 };
 
-SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
+SR_PRIV GVariant *sigma_get_samplerates_list(void)
+{
+       return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
+}
 
 static const char *firmware_files[] = {
        [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
@@ -57,221 +61,477 @@ static const char *firmware_files[] = {
 
 #define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
 
-static int sigma_read(void *buf, size_t size, struct dev_context *devc)
+static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
 {
+       struct dev_context *devc;
+       int vid, pid;
+       const char *serno;
        int ret;
 
-       ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.is_open)
+               return SR_OK;
+
+       vid = devc->id.vid;
+       pid = devc->id.pid;
+       serno = sdi->serial_num;
+       if (!vid || !pid || !serno || !*serno)
+               return SR_ERR_ARG;
+
+       ret = ftdi_init(&devc->ftdi.ctx);
        if (ret < 0) {
-               sr_err("ftdi_read_data failed: %s",
-                      ftdi_get_error_string(&devc->ftdic));
+               sr_err("Cannot initialize FTDI context (%d): %s.",
+                       ret, ftdi_get_error_string(&devc->ftdi.ctx));
+               return SR_ERR_IO;
+       }
+       ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
+               vid, pid, NULL, serno, 0);
+       if (ret < 0) {
+               sr_err("Cannot open device (%d): %s.",
+                       ret, ftdi_get_error_string(&devc->ftdi.ctx));
+               return SR_ERR_IO;
        }
+       devc->ftdi.is_open = TRUE;
+
+       return SR_OK;
+}
+
+static int sigma_ftdi_close(struct dev_context *devc)
+{
+       int ret;
+
+       ret = ftdi_usb_close(&devc->ftdi.ctx);
+       devc->ftdi.is_open = FALSE;
+       devc->ftdi.must_close = FALSE;
+       ftdi_deinit(&devc->ftdi.ctx);
+
+       return ret == 0 ? SR_OK : SR_ERR_IO;
+}
+
+SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+
+       if (!sdi)
+               return SR_ERR_ARG;
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.is_open)
+               return SR_OK;
+
+       ret = sigma_ftdi_open(sdi);
+       if (ret != SR_OK)
+               return ret;
+       devc->ftdi.must_close = TRUE;
 
        return ret;
 }
 
-static int sigma_write(void *buf, size_t size, struct dev_context *devc)
+SR_PRIV int sigma_check_close(struct dev_context *devc)
+{
+       int ret;
+
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.must_close) {
+               ret = sigma_ftdi_close(devc);
+               if (ret != SR_OK)
+                       return ret;
+               devc->ftdi.must_close = FALSE;
+       }
+
+       return SR_OK;
+}
+
+SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
 {
+       struct dev_context *devc;
        int ret;
 
-       ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
-       if (ret < 0)
-               sr_err("ftdi_write_data failed: %s",
-                      ftdi_get_error_string(&devc->ftdic));
-       else if ((size_t) ret != size)
-               sr_err("ftdi_write_data did not complete write.");
+       if (!sdi)
+               return SR_ERR_ARG;
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       ret = sigma_ftdi_open(sdi);
+       if (ret != SR_OK)
+               return ret;
+       devc->ftdi.must_close = FALSE;
+
+       return SR_OK;
+}
+
+SR_PRIV int sigma_force_close(struct dev_context *devc)
+{
+       return sigma_ftdi_close(devc);
+}
+
+/*
+ * BEWARE! Error propagation is important, as are kinds of return values.
+ *
+ * - Raw USB tranport communicates the number of sent or received bytes,
+ *   or negative error codes in the external library's(!) range of codes.
+ * - Internal routines at the "sigrok driver level" communicate success
+ *   or failure in terms of SR_OK et al error codes.
+ * - Main loop style receive callbacks communicate booleans which arrange
+ *   for repeated calls to drive progress during acquisition.
+ *
+ * Careful consideration by maintainers is essential, because all of the
+ * above kinds of values are assignment compatbile from the compiler's
+ * point of view. Implementation errors will go unnoticed at build time.
+ */
+
+static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
+{
+       int ret;
+
+       ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
+       if (ret < 0) {
+               sr_err("USB data read failed: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
+       }
 
        return ret;
 }
 
+static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
+{
+       int ret;
+
+       ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
+       if (ret < 0) {
+               sr_err("USB data write failed: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
+       } else if ((size_t)ret != size) {
+               sr_err("USB data write length mismatch.");
+       }
+
+       return ret;
+}
+
+static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
+{
+       int ret;
+
+       ret = sigma_read_raw(devc, buf, size);
+       if (ret < 0 || (size_t)ret != size)
+               return SR_ERR_IO;
+
+       return SR_OK;
+}
+
+static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
+{
+       int ret;
+
+       ret = sigma_write_raw(devc, buf, size);
+       if (ret < 0 || (size_t)ret != size)
+               return SR_ERR_IO;
+
+       return SR_OK;
+}
+
 /*
- * NOTE: We chose the buffer size to be large enough to hold any write to the
- * device. We still print a message just in case.
+ * Implementor's note: The local write buffer's size shall suffice for
+ * any know FPGA register transaction that is involved in the supported
+ * feature set of this sigrok device driver. If the length check trips,
+ * that's a programmer's error and needs adjustment in the complete call
+ * stack of the respective code path.
  */
-SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
-                                struct dev_context *devc)
+#define SIGMA_MAX_REG_DEPTH    32
+
+/*
+ * Implementor's note: The FPGA command set supports register access
+ * with automatic address adjustment. This operation is documented to
+ * wrap within a 16-address range, it cannot cross boundaries where the
+ * register address' nibble overflows. An internal helper assumes that
+ * callers remain within this auto-adjustment range, and thus multi
+ * register access requests can never exceed that count.
+ */
+#define SIGMA_MAX_REG_COUNT    16
+
+SR_PRIV int sigma_write_register(struct dev_context *devc,
+       uint8_t reg, uint8_t *data, size_t len)
 {
-       size_t i;
-       uint8_t buf[80];
-       int idx = 0;
+       uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
+       size_t idx;
 
-       if ((2 * len + 2) > sizeof(buf)) {
-               sr_err("Attempted to write %zu bytes, but buffer is too small.",
-                      len);
+       if (len > SIGMA_MAX_REG_DEPTH) {
+               sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
                return SR_ERR_BUG;
        }
 
-       buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
-       buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
-
-       for (i = 0; i < len; i++) {
-               buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
-               buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
+       wrptr = buf;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
+       for (idx = 0; idx < len; idx++) {
+               write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
+               write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
        }
 
-       return sigma_write(buf, idx, devc);
+       return sigma_write_sr(devc, buf, wrptr - buf);
 }
 
-SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
+SR_PRIV int sigma_set_register(struct dev_context *devc,
+       uint8_t reg, uint8_t value)
 {
-       return sigma_write_register(reg, &value, 1, devc);
+       return sigma_write_register(devc, reg, &value, sizeof(value));
 }
 
-static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
-                              struct dev_context *devc)
+static int sigma_read_register(struct dev_context *devc,
+       uint8_t reg, uint8_t *data, size_t len)
 {
-       uint8_t buf[3];
+       uint8_t buf[3], *wrptr;
+       int ret;
 
-       buf[0] = REG_ADDR_LOW | (reg & 0xf);
-       buf[1] = REG_ADDR_HIGH | (reg >> 4);
-       buf[2] = REG_READ_ADDR;
+       wrptr = buf;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
+       write_u8_inc(&wrptr, REG_READ_ADDR);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
-       sigma_write(buf, sizeof(buf), devc);
+       return sigma_read_sr(devc, data, len);
+}
 
-       return sigma_read(data, len, devc);
+static int sigma_get_register(struct dev_context *devc,
+       uint8_t reg, uint8_t *data)
+{
+       return sigma_read_register(devc, reg, data, sizeof(*data));
 }
 
-static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
-                         struct dev_context *devc)
+static int sigma_get_registers(struct dev_context *devc,
+       uint8_t reg, uint8_t *data, size_t count)
 {
-       /*
-        * Read 6 registers starting at trigger position LSB.
-        * Which yields two 24bit counter values.
-        */
-       uint8_t buf[] = {
-               REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-       };
-       uint8_t result[6];
+       uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
+       size_t idx;
+       int ret;
 
-       sigma_write(buf, sizeof(buf), devc);
+       if (count > SIGMA_MAX_REG_COUNT) {
+               sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
+               return SR_ERR_BUG;
+       }
 
-       sigma_read(result, sizeof(result), devc);
+       wrptr = buf;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
+       for (idx = 0; idx < count; idx++)
+               write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
-       *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
-       *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
+       return sigma_read_sr(devc, data, count);
+}
+
+static int sigma_read_pos(struct dev_context *devc,
+       uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
+{
+       uint8_t result[7];
+       const uint8_t *rdptr;
+       uint32_t v32;
+       uint8_t v8;
+       int ret;
 
        /*
-        * These "position" values point to after the event (end of
-        * capture data, trigger condition matched). This is why they
-        * get decremented here. Sample memory consists of 512-byte
-        * chunks with meta data in the upper 64 bytes. Thus when the
-        * decrements takes us into this upper part of the chunk, then
-        * further move backwards to the end of the chunk's data part.
-        *
-        * TODO Re-consider the above comment's validity. It's true
-        * that a 1024byte row contains 512 u16 entities, of which 64
-        * are timestamps and 448 are events with sample data. It's not
-        * true that 64bytes of metadata reside at the top of a 512byte
-        * block in a row.
+        * Read 7 registers starting at trigger position LSB.
+        * Which yields two 24bit counter values, and mode flags.
+        */
+       ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
+               result, sizeof(result));
+       if (ret != SR_OK)
+               return ret;
+
+       rdptr = &result[0];
+       v32 = read_u24le_inc(&rdptr);
+       if (triggerpos)
+               *triggerpos = v32;
+       v32 = read_u24le_inc(&rdptr);
+       if (stoppos)
+               *stoppos = v32;
+       v8 = read_u8_inc(&rdptr);
+       if (mode)
+               *mode = v8;
+
+       /*
+        * These positions consist of "the memory row" in the MSB fields,
+        * and "an event index" within the row in the LSB fields. Part
+        * of the memory row's content is sample data, another part is
+        * timestamps.
         *
-        * TODO Use ROW_MASK and CLUSTERS_PER_ROW here?
+        * The retrieved register values point to after the captured
+        * position. So they need to get decremented, and adjusted to
+        * cater for the timestamps when the decrement carries over to
+        * a different memory row.
         */
-       if ((--*stoppos & 0x1ff) == 0x1ff)
-               *stoppos -= 64;
-       if ((--*triggerpos & 0x1ff) == 0x1ff)
-               *triggerpos -= 64;
+       if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
+               *stoppos -= CLUSTERS_PER_ROW;
+       if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
+               *triggerpos -= CLUSTERS_PER_ROW;
 
-       return 1;
+       return SR_OK;
 }
 
-static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
-                          uint8_t *data, struct dev_context *devc)
+static int sigma_read_dram(struct dev_context *devc,
+       size_t startchunk, size_t numchunks, uint8_t *data)
 {
-       uint8_t buf[4096];
-       int idx;
+       uint8_t buf[128], *wrptr, regval;
        size_t chunk;
-       int sel;
+       int sel, ret;
        gboolean is_last;
 
+       if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
+               sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
+               return SR_ERR_BUG;
+       }
+
        /* Communicate DRAM start address (memory row, aka samples line). */
-       idx = 0;
-       buf[idx++] = startchunk >> 8;
-       buf[idx++] = startchunk & 0xff;
-       sigma_write_register(WRITE_MEMROW, buf, idx, devc);
+       wrptr = buf;
+       write_u16be_inc(&wrptr, startchunk);
+       ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
        /*
         * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
         * then transfer via USB. Interleave the FPGA's DRAM access and
         * USB transfer, use alternating buffers (0/1) in the process.
         */
-       idx = 0;
-       buf[idx++] = REG_DRAM_BLOCK;
-       buf[idx++] = REG_DRAM_WAIT_ACK;
+       wrptr = buf;
+       write_u8_inc(&wrptr, REG_DRAM_BLOCK);
+       write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
        for (chunk = 0; chunk < numchunks; chunk++) {
                sel = chunk % 2;
                is_last = chunk == numchunks - 1;
+               if (!is_last) {
+                       regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
+                       write_u8_inc(&wrptr, regval);
+               }
+               regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
+               write_u8_inc(&wrptr, regval);
                if (!is_last)
-                       buf[idx++] = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
-               buf[idx++] = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
-               if (!is_last)
-                       buf[idx++] = REG_DRAM_WAIT_ACK;
+                       write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
        }
-       sigma_write(buf, idx, devc);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
-       return sigma_read(data, numchunks * ROW_LENGTH_BYTES, devc);
+       return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
 }
 
 /* Upload trigger look-up tables to Sigma. */
-SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
+SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
+       struct triggerlut *lut)
 {
-       int i;
-       uint8_t tmp[2];
+       size_t lut_addr;
        uint16_t bit;
+       uint8_t m3d, m2d, m1d, m0d;
+       uint8_t buf[6], *wrptr;
+       uint8_t trgsel2;
+       uint16_t lutreg, selreg;
+       int ret;
 
-       /* Transpose the table and send to Sigma. */
-       for (i = 0; i < 16; i++) {
-               bit = 1 << i;
-
-               tmp[0] = tmp[1] = 0;
-
-               if (lut->m2d[0] & bit)
-                       tmp[0] |= 0x01;
-               if (lut->m2d[1] & bit)
-                       tmp[0] |= 0x02;
-               if (lut->m2d[2] & bit)
-                       tmp[0] |= 0x04;
-               if (lut->m2d[3] & bit)
-                       tmp[0] |= 0x08;
+       /*
+        * Translate the LUT part of the trigger configuration from the
+        * application's perspective to the hardware register's bitfield
+        * layout. Send the LUT to the device. This configures the logic
+        * which combines pin levels or edges.
+        */
+       for (lut_addr = 0; lut_addr < 16; lut_addr++) {
+               bit = BIT(lut_addr);
 
-               if (lut->m3 & bit)
-                       tmp[0] |= 0x10;
-               if (lut->m3s & bit)
-                       tmp[0] |= 0x20;
+               /* - M4 M3S M3Q */
+               m3d = 0;
                if (lut->m4 & bit)
-                       tmp[0] |= 0x40;
+                       m3d |= BIT(2);
+               if (lut->m3s & bit)
+                       m3d |= BIT(1);
+               if (lut->m3q & bit)
+                       m3d |= BIT(0);
 
-               if (lut->m0d[0] & bit)
-                       tmp[1] |= 0x01;
-               if (lut->m0d[1] & bit)
-                       tmp[1] |= 0x02;
-               if (lut->m0d[2] & bit)
-                       tmp[1] |= 0x04;
-               if (lut->m0d[3] & bit)
-                       tmp[1] |= 0x08;
+               /* M2D3 M2D2 M2D1 M2D0 */
+               m2d = 0;
+               if (lut->m2d[3] & bit)
+                       m2d |= BIT(3);
+               if (lut->m2d[2] & bit)
+                       m2d |= BIT(2);
+               if (lut->m2d[1] & bit)
+                       m2d |= BIT(1);
+               if (lut->m2d[0] & bit)
+                       m2d |= BIT(0);
 
-               if (lut->m1d[0] & bit)
-                       tmp[1] |= 0x10;
-               if (lut->m1d[1] & bit)
-                       tmp[1] |= 0x20;
-               if (lut->m1d[2] & bit)
-                       tmp[1] |= 0x40;
+               /* M1D3 M1D2 M1D1 M1D0 */
+               m1d = 0;
                if (lut->m1d[3] & bit)
-                       tmp[1] |= 0x80;
+                       m1d |= BIT(3);
+               if (lut->m1d[2] & bit)
+                       m1d |= BIT(2);
+               if (lut->m1d[1] & bit)
+                       m1d |= BIT(1);
+               if (lut->m1d[0] & bit)
+                       m1d |= BIT(0);
 
-               sigma_write_register(WRITE_TRIGGER_SELECT, tmp, sizeof(tmp),
-                                    devc);
-               sigma_set_register(WRITE_TRIGGER_SELECT2, 0x30 | i, devc);
+               /* M0D3 M0D2 M0D1 M0D0 */
+               m0d = 0;
+               if (lut->m0d[3] & bit)
+                       m0d |= BIT(3);
+               if (lut->m0d[2] & bit)
+                       m0d |= BIT(2);
+               if (lut->m0d[1] & bit)
+                       m0d |= BIT(1);
+               if (lut->m0d[0] & bit)
+                       m0d |= BIT(0);
+
+               /*
+                * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
+                * TriggerSelect register, then strobe the LUT write by
+                * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
+                * programming.
+                */
+               wrptr = buf;
+               lutreg = 0;
+               lutreg <<= 4; lutreg |= m3d;
+               lutreg <<= 4; lutreg |= m2d;
+               lutreg <<= 4; lutreg |= m1d;
+               lutreg <<= 4; lutreg |= m0d;
+               write_u16be_inc(&wrptr, lutreg);
+               ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
+                       buf, wrptr - buf);
+               if (ret != SR_OK)
+                       return ret;
+               trgsel2 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
+                       (lut_addr & TRGSEL2_LUT_ADDR_MASK);
+               ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trgsel2);
+               if (ret != SR_OK)
+                       return ret;
        }
 
-       /* Send the parameters */
-       sigma_write_register(WRITE_TRIGGER_SELECT, (uint8_t *) &lut->params,
-                            sizeof(lut->params), devc);
+       /*
+        * Send the parameters. This covers counters and durations.
+        */
+       wrptr = buf;
+       selreg = 0;
+       selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
+       selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
+       selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
+       selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
+       selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
+       selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
+       write_u16be_inc(&wrptr, selreg);
+       write_u16be_inc(&wrptr, lut->params.cmpb);
+       write_u16be_inc(&wrptr, lut->params.cmpa);
+       ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
        return SR_OK;
 }
@@ -298,14 +558,14 @@ SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *
  * mode and sending configuration data. Set D7 and toggle D2, D3, D4
  * a few times.
  */
-#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
-#define BB_PIN_PROG (1 << 1) /* D1, PROG */
-#define BB_PIN_D2   (1 << 2) /* D2, (part of) SUICIDE */
-#define BB_PIN_D3   (1 << 3) /* D3, (part of) SUICIDE */
-#define BB_PIN_D4   (1 << 4) /* D4, (part of) SUICIDE (unused?) */
-#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
-#define BB_PIN_DIN  (1 << 6) /* D6, DIN */
-#define BB_PIN_D7   (1 << 7) /* D7, (part of) SUICIDE */
+#define BB_PIN_CCLK BIT(0) /* D0, CCLK */
+#define BB_PIN_PROG BIT(1) /* D1, PROG */
+#define BB_PIN_D2   BIT(2) /* D2, (part of) SUICIDE */
+#define BB_PIN_D3   BIT(3) /* D3, (part of) SUICIDE */
+#define BB_PIN_D4   BIT(4) /* D4, (part of) SUICIDE (unused?) */
+#define BB_PIN_INIT BIT(5) /* D5, INIT, input pin */
+#define BB_PIN_DIN  BIT(6) /* D6, DIN */
+#define BB_PIN_D7   BIT(7) /* D7, (part of) SUICIDE */
 
 #define BB_BITRATE (750 * 1000)
 #define BB_PINMASK (0xff & ~BB_PIN_INIT)
@@ -324,7 +584,7 @@ SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *
  */
 static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
 {
-       uint8_t suicide[] = {
+       const uint8_t suicide[] = {
                BB_PIN_D7 | BB_PIN_D2,
                BB_PIN_D7 | BB_PIN_D2,
                BB_PIN_D7 |           BB_PIN_D3,
@@ -334,7 +594,7 @@ static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
                BB_PIN_D7 |           BB_PIN_D3,
                BB_PIN_D7 | BB_PIN_D2,
        };
-       uint8_t init_array[] = {
+       const uint8_t init_array[] = {
                BB_PIN_CCLK,
                BB_PIN_CCLK | BB_PIN_PROG,
                BB_PIN_CCLK | BB_PIN_PROG,
@@ -346,30 +606,48 @@ static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
                BB_PIN_CCLK,
                BB_PIN_CCLK,
        };
-       int retries, ret;
+       size_t retries;
+       int ret;
        uint8_t data;
 
        /* Section 2. part 1), do the FPGA suicide. */
-       sigma_write(suicide, sizeof(suicide), devc);
-       sigma_write(suicide, sizeof(suicide), devc);
-       sigma_write(suicide, sizeof(suicide), devc);
-       sigma_write(suicide, sizeof(suicide), devc);
+       ret = SR_OK;
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       if (ret != SR_OK)
+               return SR_ERR_IO;
        g_usleep(10 * 1000);
 
        /* Section 2. part 2), pulse PROG. */
-       sigma_write(init_array, sizeof(init_array), devc);
+       ret = sigma_write_sr(devc, init_array, sizeof(init_array));
+       if (ret != SR_OK)
+               return ret;
        g_usleep(10 * 1000);
-       ftdi_usb_purge_buffers(&devc->ftdic);
+       PURGE_FTDI_BOTH(&devc->ftdi.ctx);
 
-       /* Wait until the FPGA asserts INIT_B. */
+       /*
+        * Wait until the FPGA asserts INIT_B. Check in a maximum number
+        * of bursts with a given delay between them. Read as many pin
+        * capture results as the combination of FTDI chip and FTID lib
+        * may provide. Cope with absence of pin capture data in a cycle.
+        * This approach shall result in fast reponse in case of success,
+        * low cost of execution during wait, reliable error handling in
+        * the transport layer, and robust response to failure or absence
+        * of result data (hardware inactivity after stimulus).
+        */
        retries = 10;
        while (retries--) {
-               ret = sigma_read(&data, 1, devc);
-               if (ret < 0)
-                       return ret;
-               if (data & BB_PIN_INIT)
-                       return SR_OK;
-               g_usleep(10 * 1000);
+               do {
+                       ret = sigma_read_raw(devc, &data, sizeof(data));
+                       if (ret < 0)
+                               return SR_ERR_IO;
+                       if (ret == sizeof(data) && (data & BB_PIN_INIT))
+                               return SR_OK;
+               } while (ret == sizeof(data));
+               if (retries)
+                       g_usleep(10 * 1000);
        }
 
        return SR_ERR_TIMEOUT;
@@ -401,52 +679,71 @@ static int sigma_fpga_init_bitbang(struct dev_context *devc)
  */
 static int sigma_fpga_init_la(struct dev_context *devc)
 {
-       /*
-        * TODO Construct the sequence at runtime? Such that request data
-        * and response check values will match more apparently?
-        */
-       uint8_t mode_regval = WMR_SDRAMINIT;
-       uint8_t logic_mode_start[] = {
-               /* Read ID register. */
-               REG_ADDR_LOW  | (READ_ID & 0xf),
-               REG_ADDR_HIGH | (READ_ID >> 4),
-               REG_READ_ADDR,
-
-               /* Write 0x55 to scratch register, read back. */
-               REG_ADDR_LOW | (WRITE_TEST & 0xf),
-               REG_DATA_LOW | 0x5,
-               REG_DATA_HIGH_WRITE | 0x5,
-               REG_READ_ADDR,
-
-               /* Write 0xaa to scratch register, read back. */
-               REG_DATA_LOW | 0xa,
-               REG_DATA_HIGH_WRITE | 0xa,
-               REG_READ_ADDR,
-
-               /* Initiate SDRAM initialization in mode register. */
-               REG_ADDR_LOW | (WRITE_MODE & 0xf),
-               REG_DATA_LOW | (mode_regval & 0xf),
-               REG_DATA_HIGH_WRITE | (mode_regval >> 4),
-       };
+       uint8_t buf[20], *wrptr;
+       uint8_t data_55, data_aa, mode;
        uint8_t result[3];
+       const uint8_t *rdptr;
        int ret;
 
+       wrptr = buf;
+
+       /* Read ID register. */
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
+       write_u8_inc(&wrptr, REG_READ_ADDR);
+
+       /* Write 0x55 to scratch register, read back. */
+       data_55 = 0x55;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
+       write_u8_inc(&wrptr, REG_READ_ADDR);
+
+       /* Write 0xaa to scratch register, read back. */
+       data_aa = 0xaa;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
+       write_u8_inc(&wrptr, REG_READ_ADDR);
+
+       /* Initiate SDRAM initialization in mode register. */
+       mode = WMR_SDRAMINIT;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
+
        /*
         * Send the command sequence which contains 3 READ requests.
         * Expect to see the corresponding 3 response bytes.
         */
-       sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
-       ret = sigma_read(result, ARRAY_SIZE(result), devc);
-       if (ret != ARRAY_SIZE(result))
-               goto err;
-       if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
-               goto err;
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK) {
+               sr_err("Could not request LA start response.");
+               return ret;
+       }
+       ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
+       if (ret != SR_OK) {
+               sr_err("Could not receive LA start response.");
+               return SR_ERR_IO;
+       }
+       rdptr = result;
+       if (read_u8_inc(&rdptr) != 0xa6) {
+               sr_err("Unexpected ID response.");
+               return SR_ERR_DATA;
+       }
+       if (read_u8_inc(&rdptr) != data_55) {
+               sr_err("Unexpected scratch read-back (55).");
+               return SR_ERR_DATA;
+       }
+       if (read_u8_inc(&rdptr) != data_aa) {
+               sr_err("Unexpected scratch read-back (aa).");
+               return SR_ERR_DATA;
+       }
 
        return SR_OK;
-
-err:
-       sr_err("Configuration failed. Invalid reply received.");
-       return SR_ERR;
 }
 
 /*
@@ -455,7 +752,7 @@ err:
  * by the caller of this function.
  */
 static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
-                             uint8_t **bb_cmd, gsize *bb_cmd_size)
+       uint8_t **bb_cmd, size_t *bb_cmd_size)
 {
        uint8_t *firmware;
        size_t file_size;
@@ -498,7 +795,7 @@ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
        bb_size = file_size * 8 * 2;
        bb_stream = g_try_malloc(bb_size);
        if (!bb_stream) {
-               sr_err("%s: Failed to allocate bitbang stream", __func__);
+               sr_err("Memory allocation failed during firmware upload.");
                g_free(firmware);
                return SR_ERR_MALLOC;
        }
@@ -524,12 +821,12 @@ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
        return SR_OK;
 }
 
-static int upload_firmware(struct sr_context *ctx,
-       struct dev_context *devc, enum sigma_firmware_idx firmware_idx)
+static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
+       enum sigma_firmware_idx firmware_idx)
 {
        int ret;
-       unsigned char *buf;
-       unsigned char pins;
+       uint8_t *buf;
+       uint8_t pins;
        size_t buf_size;
        const char *firmware;
 
@@ -546,59 +843,65 @@ static int upload_firmware(struct sr_context *ctx,
                return SR_OK;
        }
 
-       devc->state.state = SIGMA_CONFIG;
+       devc->state = SIGMA_CONFIG;
 
        /* Set the cable to bitbang mode. */
-       ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
+       ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
        if (ret < 0) {
-               sr_err("ftdi_set_bitmode failed: %s",
-                      ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup cable mode for upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
-       ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
+       ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
        if (ret < 0) {
-               sr_err("ftdi_set_baudrate failed: %s",
-                      ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup bitrate for upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
 
        /* Initiate FPGA configuration mode. */
        ret = sigma_fpga_init_bitbang(devc);
-       if (ret)
+       if (ret) {
+               sr_err("Could not initiate firmware upload to hardware");
                return ret;
+       }
 
        /* Prepare wire format of the firmware image. */
        ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
        if (ret != SR_OK) {
-               sr_err("An error occurred while reading the firmware: %s",
-                      firmware);
+               sr_err("Could not prepare file %s for upload.", firmware);
                return ret;
        }
 
        /* Write the FPGA netlist to the cable. */
        sr_info("Uploading firmware file '%s'.", firmware);
-       sigma_write(buf, buf_size, devc);
-
+       ret = sigma_write_sr(devc, buf, buf_size);
        g_free(buf);
+       if (ret != SR_OK) {
+               sr_err("Could not upload firmware file '%s'.", firmware);
+               return ret;
+       }
 
        /* Leave bitbang mode and discard pending input data. */
-       ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
+       ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
        if (ret < 0) {
-               sr_err("ftdi_set_bitmode failed: %s",
-                      ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup cable mode after upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
-       ftdi_usb_purge_buffers(&devc->ftdic);
-       while (sigma_read(&pins, 1, devc) == 1)
+       PURGE_FTDI_BOTH(&devc->ftdi.ctx);
+       while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
                ;
 
        /* Initialize the FPGA for logic-analyzer mode. */
        ret = sigma_fpga_init_la(devc);
-       if (ret != SR_OK)
+       if (ret != SR_OK) {
+               sr_err("Hardware response after firmware upload failed.");
                return ret;
+       }
 
        /* Keep track of successful firmware download completion. */
-       devc->state.state = SIGMA_IDLE;
+       devc->state = SIGMA_IDLE;
        devc->firmware_idx = firmware_idx;
        sr_info("Firmware uploaded.");
 
@@ -635,47 +938,61 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
        uint64_t worst_cluster_time_ms;
        uint64_t count_msecs, acquire_msecs;
 
-       sr_sw_limits_init(&devc->acq_limits);
+       sr_sw_limits_init(&devc->limit.acquire);
+       devc->late_trigger_timeout = FALSE;
 
        /* Get sample count limit, convert to msecs. */
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_SAMPLES, &data);
        if (ret != SR_OK)
                return ret;
        user_count = g_variant_get_uint64(data);
        g_variant_unref(data);
        count_msecs = 0;
+       if (devc->use_triggers) {
+               user_count *= 100 - devc->capture_ratio;
+               user_count /= 100;
+       }
        if (user_count)
-               count_msecs = 1000 * user_count / devc->samplerate + 1;
+               count_msecs = 1000 * user_count / devc->clock.samplerate + 1;
 
        /* Get time limit, which is in msecs. */
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_MSEC, &data);
        if (ret != SR_OK)
                return ret;
        user_msecs = g_variant_get_uint64(data);
        g_variant_unref(data);
+       if (devc->use_triggers) {
+               user_msecs *= 100 - devc->capture_ratio;
+               user_msecs /= 100;
+       }
 
        /* Get the lesser of them, with both being optional. */
-       acquire_msecs = ~0ull;
+       acquire_msecs = ~UINT64_C(0);
        if (user_count && count_msecs < acquire_msecs)
                acquire_msecs = count_msecs;
        if (user_msecs && user_msecs < acquire_msecs)
                acquire_msecs = user_msecs;
-       if (acquire_msecs == ~0ull)
+       if (acquire_msecs == ~UINT64_C(0))
                return SR_OK;
 
        /* Add some slack, and use that timeout for acquisition. */
-       worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
+       worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate;
        acquire_msecs += 2 * worst_cluster_time_ms;
        data = g_variant_new_uint64(acquire_msecs);
-       ret = sr_sw_limits_config_set(&devc->acq_limits,
+       ret = sr_sw_limits_config_set(&devc->limit.acquire,
                SR_CONF_LIMIT_MSEC, data);
        g_variant_unref(data);
        if (ret != SR_OK)
                return ret;
 
-       sr_sw_limits_acquisition_start(&devc->acq_limits);
+       /* Deferred or immediate (trigger-less) timeout period start. */
+       if (devc->use_triggers)
+               devc->late_trigger_timeout = TRUE;
+       else
+               sr_sw_limits_acquisition_start(&devc->limit.acquire);
+
        return SR_OK;
 }
 
@@ -717,19 +1034,66 @@ SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
        return SR_ERR_ARG;
 }
 
+/* Gets called at probe time. Can seed software settings from hardware state. */
+SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+       uint8_t regaddr, regval;
+
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       /* Seed configuration values from defaults. */
+       devc->firmware_idx = SIGMA_FW_NONE;
+       devc->clock.samplerate = samplerates[0];
+
+       /* TODO
+        * Ideally the device driver could retrieve recently stored
+        * details from hardware registers, thus re-use user specified
+        * configuration values across sigrok sessions. Which could
+        * avoid repeated expensive though unnecessary firmware uploads,
+        * improve performance and usability. Unfortunately it appears
+        * that the registers range which is documented as available for
+        * application use keeps providing 0xff data content. At least
+        * with the netlist version which ships with sigrok. The same
+        * was observed with unused registers in the first page.
+        */
+       return SR_ERR_NA;
+
+       /* This is for research, currently does not work yet. */
+       ret = sigma_check_open(sdi);
+       regaddr = 16;
+       regaddr = 14;
+       ret = sigma_set_register(devc, regaddr, 'F');
+       ret = sigma_get_register(devc, regaddr, &regval);
+       sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret);
+       ret = sigma_check_close(devc);
+       return ret;
+}
+
+/* Gets called after successful (volatile) hardware configuration. */
+SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi)
+{
+       /* TODO See above, registers seem to not hold written data. */
+       (void)sdi;
+       return SR_ERR_NA;
+}
+
 SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
 {
        struct dev_context *devc;
        struct drv_context *drvc;
        uint64_t samplerate;
        int ret;
-       int num_channels;
+       size_t num_channels;
 
        devc = sdi->priv;
        drvc = sdi->driver->context;
 
        /* Accept any caller specified rate which the hardware supports. */
-       ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
+       ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate);
        if (ret != SR_OK)
                return ret;
 
@@ -738,7 +1102,7 @@ SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
         * firmware is required and higher rates might limit the set
         * of available channels.
         */
-       num_channels = devc->num_channels;
+       num_channels = devc->interp.num_channels;
        if (samplerate <= SR_MHZ(50)) {
                ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
                num_channels = 16;
@@ -756,10 +1120,18 @@ SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
         * which the device will communicate within an "event").
         */
        if (ret == SR_OK) {
-               devc->num_channels = num_channels;
-               devc->samples_per_event = 16 / devc->num_channels;
+               devc->interp.num_channels = num_channels;
+               devc->interp.samples_per_event = 16 / devc->interp.num_channels;
        }
 
+       /*
+        * Store the firmware type and most recently configured samplerate
+        * in hardware, such that subsequent sessions can start from there.
+        * This is a "best effort" approach. Failure is non-fatal.
+        */
+       if (ret == SR_OK)
+               (void)sigma_store_hw_config(sdi);
+
        return ret;
 }
 
@@ -804,7 +1176,7 @@ static int alloc_submit_buffer(struct sr_dev_inst *sdi)
        if (!buffer->sample_data)
                return SR_ERR_MALLOC;
        buffer->write_pointer = buffer->sample_data;
-       sr_sw_limits_init(&devc->feed_limits);
+       sr_sw_limits_init(&devc->limit.submit);
 
        buffer->sdi = sdi;
        memset(&buffer->logic, 0, sizeof(buffer->logic));
@@ -824,9 +1196,9 @@ static int setup_submit_limit(struct dev_context *devc)
        GVariant *data;
        uint64_t total;
 
-       limits = &devc->feed_limits;
+       limits = &devc->limit.submit;
 
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_SAMPLES, &data);
        if (ret != SR_OK)
                return ret;
@@ -896,8 +1268,8 @@ static int addto_submit_buffer(struct dev_context *devc,
        int ret;
 
        buffer = devc->buffer;
-       limits = &devc->feed_limits;
-       if (sr_sw_limits_check(limits))
+       limits = &devc->limit.submit;
+       if (!devc->use_triggers && sr_sw_limits_check(limits))
                count = 0;
 
        /*
@@ -906,8 +1278,7 @@ static int addto_submit_buffer(struct dev_context *devc,
         * enforcement of user specified limits is exact.
         */
        while (count--) {
-               WL16(buffer->write_pointer, sample);
-               buffer->write_pointer += buffer->unit_size;
+               write_u16le_inc(&buffer->write_pointer, sample);
                buffer->curr_samples++;
                if (buffer->curr_samples == buffer->max_samples) {
                        ret = flush_submit_buffer(devc);
@@ -915,20 +1286,319 @@ static int addto_submit_buffer(struct dev_context *devc,
                                return ret;
                }
                sr_sw_limits_update_samples_read(limits, 1);
-               if (sr_sw_limits_check(limits))
+               if (!devc->use_triggers && sr_sw_limits_check(limits))
                        break;
        }
 
        return SR_OK;
 }
 
+static void sigma_location_break_down(struct sigma_location *loc)
+{
+
+       loc->line = loc->raw / ROW_LENGTH_U16;
+       loc->line += ROW_COUNT;
+       loc->line %= ROW_COUNT;
+       loc->cluster = loc->raw % ROW_LENGTH_U16;
+       loc->event = loc->cluster % EVENTS_PER_CLUSTER;
+       loc->cluster = loc->cluster / EVENTS_PER_CLUSTER;
+}
+
+static gboolean sigma_location_is_eq(struct sigma_location *loc1,
+       struct sigma_location *loc2, gboolean with_event)
+{
+
+       if (!loc1 || !loc2)
+               return FALSE;
+
+       if (loc1->line != loc2->line)
+               return FALSE;
+       if (loc1->cluster != loc2->cluster)
+               return FALSE;
+
+       if (with_event && loc1->event != loc2->event)
+               return FALSE;
+
+       return TRUE;
+}
+
+/* Decrement the broken-down location fields (leave 'raw' as is). */
+static void sigma_location_decrement(struct sigma_location *loc,
+       gboolean with_event)
+{
+
+       if (!loc)
+               return;
+
+       if (with_event) {
+               if (loc->event--)
+                       return;
+               loc->event = EVENTS_PER_CLUSTER - 1;
+       }
+
+       if (loc->cluster--)
+               return;
+       loc->cluster = CLUSTERS_PER_ROW - 1;
+
+       if (loc->line--)
+               return;
+       loc->line = ROW_COUNT - 1;
+}
+
+static void sigma_location_increment(struct sigma_location *loc)
+{
+
+       if (!loc)
+               return;
+
+       if (++loc->event < EVENTS_PER_CLUSTER)
+               return;
+       loc->event = 0;
+       if (++loc->cluster < CLUSTERS_PER_ROW)
+               return;
+       loc->cluster = 0;
+       if (++loc->line < ROW_COUNT)
+               return;
+       loc->line = 0;
+}
+
+/*
+ * Determine the position where to open the period of trigger match
+ * checks. Setup an "impossible" location when triggers are not used.
+ * Start from the hardware provided 'trig' position otherwise, and
+ * go back a few clusters, but don't go before the 'start' position.
+ */
+static void rewind_trig_arm_pos(struct dev_context *devc, size_t count)
+{
+       struct sigma_sample_interp *interp;
+
+       if (!devc)
+               return;
+       interp = &devc->interp;
+
+       if (!devc->use_triggers) {
+               interp->trig_arm.raw = ~0;
+               sigma_location_break_down(&interp->trig_arm);
+               return;
+       }
+
+       interp->trig_arm = interp->trig;
+       while (count--) {
+               if (sigma_location_is_eq(&interp->trig_arm, &interp->start, TRUE))
+                       break;
+               sigma_location_decrement(&interp->trig_arm, TRUE);
+       }
+}
+
+static int alloc_sample_buffer(struct dev_context *devc,
+       size_t stop_pos, size_t trig_pos, uint8_t mode)
+{
+       struct sigma_sample_interp *interp;
+       gboolean wrapped;
+       size_t alloc_size;
+
+       interp = &devc->interp;
+
+       /*
+        * Either fetch sample memory from absolute start of DRAM to the
+        * current write position. Or from after the current write position
+        * to before the current write position, if the write pointer has
+        * wrapped around at the upper DRAM boundary. Assume that the line
+        * which most recently got written to is of unknown state, ignore
+        * its content in the "wrapped" case.
+        */
+       wrapped = mode & RMR_ROUND;
+       interp->start.raw = 0;
+       interp->stop.raw = stop_pos;
+       if (wrapped) {
+               interp->start.raw = stop_pos;
+               interp->start.raw >>= ROW_SHIFT;
+               interp->start.raw++;
+               interp->start.raw <<= ROW_SHIFT;
+               interp->stop.raw = stop_pos;
+               interp->stop.raw >>= ROW_SHIFT;
+               interp->stop.raw--;
+               interp->stop.raw <<= ROW_SHIFT;
+       }
+       interp->trig.raw = trig_pos;
+       interp->iter.raw = 0;
+
+       /* Break down raw values to line, cluster, event fields. */
+       sigma_location_break_down(&interp->start);
+       sigma_location_break_down(&interp->stop);
+       sigma_location_break_down(&interp->trig);
+       sigma_location_break_down(&interp->iter);
+
+       /*
+        * The hardware provided trigger location "is late" because of
+        * latency in hardware pipelines. It points to after the trigger
+        * condition match. Arrange for a software check of sample data
+        * matches starting just a little before the hardware provided
+        * location. The "4 clusters" distance is an arbitrary choice.
+        */
+       rewind_trig_arm_pos(devc, 4 * EVENTS_PER_CLUSTER);
+       memset(&interp->trig_chk, 0, sizeof(interp->trig_chk));
+
+       /* Determine which DRAM lines to fetch from the device. */
+       memset(&interp->fetch, 0, sizeof(interp->fetch));
+       interp->fetch.lines_total = interp->stop.line + 1;
+       interp->fetch.lines_total -= interp->start.line;
+       interp->fetch.lines_total += ROW_COUNT;
+       interp->fetch.lines_total %= ROW_COUNT;
+       interp->fetch.lines_done = 0;
+
+       /* Arrange for chunked download, N lines per USB request. */
+       interp->fetch.lines_per_read = 32;
+       alloc_size = sizeof(devc->interp.fetch.rcvd_lines[0]);
+       alloc_size *= devc->interp.fetch.lines_per_read;
+       devc->interp.fetch.rcvd_lines = g_try_malloc0(alloc_size);
+       if (!devc->interp.fetch.rcvd_lines)
+               return SR_ERR_MALLOC;
+
+       return SR_OK;
+}
+
+static uint16_t sigma_deinterlace_data_4x4(uint16_t indata, int idx);
+static uint16_t sigma_deinterlace_data_2x8(uint16_t indata, int idx);
+
+static int fetch_sample_buffer(struct dev_context *devc)
+{
+       struct sigma_sample_interp *interp;
+       size_t count;
+       int ret;
+       const uint8_t *rdptr;
+       uint16_t ts, data;
+
+       interp = &devc->interp;
+
+       /* First invocation? Seed the iteration position. */
+       if (!interp->fetch.lines_done) {
+               interp->iter = interp->start;
+       }
+
+       /* Get another set of DRAM lines in one read call. */
+       count = interp->fetch.lines_total - interp->fetch.lines_done;
+       if (count > interp->fetch.lines_per_read)
+               count = interp->fetch.lines_per_read;
+       ret = sigma_read_dram(devc, interp->iter.line, count,
+               (uint8_t *)interp->fetch.rcvd_lines);
+       if (ret != SR_OK)
+               return ret;
+       interp->fetch.lines_rcvd = count;
+       interp->fetch.curr_line = &interp->fetch.rcvd_lines[0];
+
+       /* First invocation? Get initial timestamp and sample data. */
+       if (!interp->fetch.lines_done) {
+               rdptr = (void *)interp->fetch.curr_line;
+               ts = read_u16le_inc(&rdptr);
+               data = read_u16le_inc(&rdptr);
+               if (interp->samples_per_event == 4) {
+                       data = sigma_deinterlace_data_4x4(data, 0);
+               } else if (interp->samples_per_event == 2) {
+                       data = sigma_deinterlace_data_2x8(data, 0);
+               }
+               interp->last.ts = ts;
+               interp->last.sample = data;
+       }
+
+       return SR_OK;
+}
+
+static void free_sample_buffer(struct dev_context *devc)
+{
+       g_free(devc->interp.fetch.rcvd_lines);
+       devc->interp.fetch.rcvd_lines = NULL;
+       devc->interp.fetch.lines_per_read = 0;
+}
+
 /*
- * In 100 and 200 MHz mode, only a single pin rising/falling can be
- * set as trigger. In other modes, two rising/falling triggers can be set,
- * in addition to value/mask trigger for any number of channels.
+ * Parse application provided trigger conditions to the driver's internal
+ * presentation. Yields a mask of pins of interest, and their expected
+ * pin levels or edges.
+ *
+ * In 100 and 200 MHz mode, only a single pin's rising/falling edge can be
+ * set as trigger. In 50- MHz modes, two rising/falling edges can be set,
+ * in addition to value/mask specs for any number of channels.
+ *
+ * Hardware implementation detail: When more than one edge is specified,
+ * then the condition is only considered a match when _all_ transitions
+ * are seen in the same 20ns check interval, regardless of the user's
+ * perceived samplerate which can be a fraction of 50MHz. Which reduces
+ * practical use to edges on a single pin in addition to data patterns.
+ * Which still covers a lot of users' typical scenarios. Not an issue,
+ * just something to remain aware of.
+ *
+ * The Sigma hardware also supports complex triggers which involve the
+ * logical combination of several patterns, pulse durations, counts of
+ * condition matches, A-then-B sequences, etc. But this has not been
+ * implemented yet here, and applications may lack means to express
+ * these conditions (present the complex conditions to users for entry
+ * and review, pass application specs to drivers covering the versatile
+ * combinations).
+ *
+ * Implementor's note: This routine currently exclusively accepts input
+ * in the form of sr_trigger stages, which results from "01rf-" choices
+ * on a multitude of individual GUI traces, or the CLI's --trigger spec
+ * which takes one list of <pin>=<value/edge> details.
  *
- * The Sigma supports complex triggers using boolean expressions, but this
- * has not been implemented yet.
+ * TODO Consider the addition of SR_CONF_TRIGGER_PATTERN support, which
+ * accepts a single free form string argument, and could describe a
+ * multi-bit pattern without the tedious trace name/index selection.
+ * Fortunately the number of channels is fixed for this device, we need
+ * not come up with variable length support and counts beyond 64. _When_
+ * --trigger as well as SR_CONF_TRIGGER_PATTERN are supported, then the
+ * implementation needs to come up with priorities for these sources of
+ * input specs, or enforce exclusive use of either form (at one time,
+ * per acquisition / invocation).
+ *
+ * Text forms that may be worth supporting:
+ * - Simple forms, mere numbers, optional base specs. These are easiest
+ *   to implement with existing common conversion helpers.
+ *     triggerpattern=<value>[/<mask>]
+ *     triggerpattern=255
+ *     triggerpattern=45054
+ *     triggerpattern=0xaffe
+ *     triggerpattern=0xa0f0/0xf0f0
+ *     triggerpattern=0b1010111111111110/0x7ffe
+ * - Alternative bit pattern form, including wildcards in a single value.
+ *   This cannot use common conversion support, needs special handling.
+ *     triggerpattern=0b1010xxxx1111xxx0
+ *   This is most similar to SR_CONF_TRIGGER_PATTERN as hameg-hmo uses
+ *   it. Passes the app's spec via SCPI to the device. See section 2.3.5
+ *   "Pattern trigger" and :TRIG:A:PATT:SOUR in the Hameg document.
+ * - Prefixed form to tell the above variants apart, and support both of
+ *   them at the same time. Additional optional separator for long digit
+ *   runs, and edge support in the form which lists individual bits (not
+ *   useful for dec/hex formats).
+ *     triggerpattern=value=45054
+ *     triggerpattern=value=0b1010111111111110
+ *     triggerpattern=value=0xa0f0,mask=0xf0f0
+ *     triggerpattern=bits=1010-xxxx-1111-xxxx
+ *     triggerpattern=bits=0010-r100
+ *
+ * TODO Check this set of processing rules for completeness/correctness.
+ * - Do implement the prefixed format which covers most use cases, _and_
+ *   should be usable from CLI and GUI environments.
+ * - Default to 'bits=' prefix if none was found (and only accept one
+ *   single key/value pair in that case with the default key).
+ * - Accept dash and space separators in the 'bits=' value. Stick with
+ *   mere unseparated values for value and mask, use common conversion.
+ *   This results in transparent dec/bin/oct/hex support. Underscores?
+ * - Accept 0/1 binary digits in 'bits=', as well as r/f/e edge specs.
+ * - Only use --trigger (struct sr_trigger) when SR_CONF_TRIGGER_PATTERN
+ *   is absent? Or always accept --trigger in addition to the data pattern
+ *   spec? Then only accept edge specs from --trigger, since data pattern
+ *   was most importantly motivated by address/data bus inspection?
+ * - TODO Consider edge=<pin><slope> as an optional additional spec in
+ *   the value= and mask= group? Does that help make exclusive support
+ *   for either --trigger or -c triggerpattern acceptable?
+ *     triggerpattern=value=0xa0f0,mask=0xb0f0,edge=15r
+ *     triggerpattern=bits=1r10-xxxx-1111-xxxx
+ *     triggerpattern=1r10-xxxx-1111-xxxx
+ * - *Any* input spec regardless of format and origin must end up in the
+ *   'struct sigma_trigger' internal presentation used by this driver.
+ *   It's desirable to have sigma_convert_trigger() do all the parsing,
+ *   and constraint checking in a central location.
  */
 SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
 {
@@ -937,40 +1607,43 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
        struct sr_trigger_stage *stage;
        struct sr_trigger_match *match;
        const GSList *l, *m;
-       int channelbit, trigger_set;
+       uint16_t channelbit;
+       size_t edge_count;
 
        devc = sdi->priv;
-       memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
-       if (!(trigger = sr_session_trigger_get(sdi->session)))
+       memset(&devc->trigger, 0, sizeof(devc->trigger));
+       devc->use_triggers = FALSE;
+
+       /* TODO Consider additional SR_CONF_TRIGGER_PATTERN support. */
+       trigger = sr_session_trigger_get(sdi->session);
+       if (!trigger)
                return SR_OK;
 
-       trigger_set = 0;
+       edge_count = 0;
        for (l = trigger->stages; l; l = l->next) {
                stage = l->data;
                for (m = stage->matches; m; m = m->next) {
                        match = m->data;
+                       /* Ignore disabled channels with a trigger. */
                        if (!match->channel->enabled)
-                               /* Ignore disabled channels with a trigger. */
                                continue;
-                       channelbit = 1 << (match->channel->index);
-                       if (devc->samplerate >= SR_MHZ(100)) {
+                       channelbit = BIT(match->channel->index);
+                       if (devc->clock.samplerate >= SR_MHZ(100)) {
                                /* Fast trigger support. */
-                               if (trigger_set) {
-                                       sr_err("Only a single pin trigger is "
-                                                       "supported in 100 and 200MHz mode.");
+                               if (edge_count > 0) {
+                                       sr_err("100/200MHz modes limited to single trigger pin.");
                                        return SR_ERR;
                                }
-                               if (match->match == SR_TRIGGER_FALLING)
+                               if (match->match == SR_TRIGGER_FALLING) {
                                        devc->trigger.fallingmask |= channelbit;
-                               else if (match->match == SR_TRIGGER_RISING)
+                               } else if (match->match == SR_TRIGGER_RISING) {
                                        devc->trigger.risingmask |= channelbit;
-                               else {
-                                       sr_err("Only rising/falling trigger is "
-                                                       "supported in 100 and 200MHz mode.");
+                               } else {
+                                       sr_err("100/200MHz modes limited to edge trigger.");
                                        return SR_ERR;
                                }
 
-                               trigger_set++;
+                               edge_count++;
                        } else {
                                /* Simple trigger support (event). */
                                if (match->match == SR_TRIGGER_ONE) {
@@ -981,10 +1654,10 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
                                        devc->trigger.simplemask |= channelbit;
                                } else if (match->match == SR_TRIGGER_FALLING) {
                                        devc->trigger.fallingmask |= channelbit;
-                                       trigger_set++;
+                                       edge_count++;
                                } else if (match->match == SR_TRIGGER_RISING) {
                                        devc->trigger.risingmask |= channelbit;
-                                       trigger_set++;
+                                       edge_count++;
                                }
 
                                /*
@@ -992,84 +1665,84 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
                                 * but they are ORed and the current trigger syntax
                                 * does not permit ORed triggers.
                                 */
-                               if (trigger_set > 1) {
-                                       sr_err("Only 1 rising/falling trigger "
-                                                  "is supported.");
+                               if (edge_count > 1) {
+                                       sr_err("Limited to 1 edge trigger.");
                                        return SR_ERR;
                                }
                        }
                }
        }
 
+       /* Keep track whether triggers are involved during acquisition. */
+       devc->use_triggers = TRUE;
+
        return SR_OK;
 }
 
-/* Software trigger to determine exact trigger position. */
-static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
-                             struct sigma_trigger *t)
+static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
 {
-       int i;
-       uint16_t sample = 0;
-
-       for (i = 0; i < 8; i++) {
-               if (i > 0)
-                       last_sample = sample;
-               sample = samples[2 * i] | (samples[2 * i + 1] << 8);
+       struct sigma_sample_interp *interp;
+       uint16_t last_sample;
+       struct sigma_trigger *t;
+       gboolean simple_match, rising_match, falling_match;
+       gboolean matched;
 
-               /* Simple triggers. */
-               if ((sample & t->simplemask) != t->simplevalue)
-                       continue;
-
-               /* Rising edge. */
-               if (((last_sample & t->risingmask) != 0) ||
-                   ((sample & t->risingmask) != t->risingmask))
-                       continue;
-
-               /* Falling edge. */
-               if ((last_sample & t->fallingmask) != t->fallingmask ||
-                   (sample & t->fallingmask) != 0)
-                       continue;
-
-               break;
-       }
+       /*
+        * This logic is about improving the precision of the hardware
+        * provided trigger match position. Software checks are only
+        * required for a short range of samples, and only when a user
+        * specified trigger condition was involved during acquisition.
+        */
+       if (!devc)
+               return FALSE;
+       if (!devc->use_triggers)
+               return FALSE;
+       interp = &devc->interp;
+       if (!interp->trig_chk.armed)
+               return FALSE;
 
-       /* If we did not match, return original trigger pos. */
-       return i & 0x7;
+       /*
+        * Check if the current sample and its most recent transition
+        * match the initially provided trigger condition. The data
+        * must not fail either of the individual checks. Unused
+        * trigger features remain neutral in the summary expression.
+        */
+       last_sample = interp->last.sample;
+       t = &devc->trigger;
+       simple_match = (sample & t->simplemask) == t->simplevalue;
+       rising_match = ((last_sample & t->risingmask) == 0) &&
+                       ((sample & t->risingmask) == t->risingmask);
+       falling_match = ((last_sample & t->fallingmask) == t->fallingmask) &&
+                       ((sample & t->fallingmask) == 0);
+       matched = simple_match && rising_match && falling_match;
+
+       return matched;
 }
 
-static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
+static int send_trigger_marker(struct dev_context *devc)
 {
-       /* TODO
-        * Check whether the combination of this very sample and the
-        * previous state match the configured trigger condition. This
-        * improves the resolution of the trigger marker's position.
-        * The hardware provided position is coarse, and may point to
-        * a position before the actual match.
-        *
-        * See the previous get_trigger_offset() implementation. This
-        * code needs to get re-used here.
-        */
-       (void)devc;
-       (void)sample;
-       (void)get_trigger_offset;
+       int ret;
+
+       ret = flush_submit_buffer(devc);
+       if (ret != SR_OK)
+               return ret;
+       ret = std_session_send_df_trigger(devc->buffer->sdi);
+       if (ret != SR_OK)
+               return ret;
 
-       return FALSE;
+       return SR_OK;
 }
 
 static int check_and_submit_sample(struct dev_context *devc,
-       uint16_t sample, size_t count, gboolean check_trigger)
+       uint16_t sample, size_t count)
 {
        gboolean triggered;
        int ret;
 
-       triggered = check_trigger && sample_matches_trigger(devc, sample);
+       triggered = sample_matches_trigger(devc, sample);
        if (triggered) {
-               ret = flush_submit_buffer(devc);
-               if (ret != SR_OK)
-                       return ret;
-               ret = std_session_send_df_trigger(devc->buffer->sdi);
-               if (ret != SR_OK)
-                       return ret;
+               send_trigger_marker(devc);
+               devc->interp.trig_chk.matched = TRUE;
        }
 
        ret = addto_submit_buffer(devc, sample, count);
@@ -1079,12 +1752,52 @@ static int check_and_submit_sample(struct dev_context *devc,
        return SR_OK;
 }
 
+static void sigma_location_check(struct dev_context *devc)
+{
+       struct sigma_sample_interp *interp;
+
+       if (!devc)
+               return;
+       interp = &devc->interp;
+
+       /*
+        * Manage the period of trigger match checks in software.
+        * Start supervision somewhere before the hardware provided
+        * location. Stop supervision after an arbitrary amount of
+        * event slots, or when a match was found.
+        */
+       if (interp->trig_chk.armed) {
+               interp->trig_chk.evt_remain--;
+               if (!interp->trig_chk.evt_remain || interp->trig_chk.matched)
+                       interp->trig_chk.armed = FALSE;
+       }
+       if (!interp->trig_chk.armed && !interp->trig_chk.matched) {
+               if (sigma_location_is_eq(&interp->iter, &interp->trig_arm, TRUE)) {
+                       interp->trig_chk.armed = TRUE;
+                       interp->trig_chk.matched = FALSE;
+                       interp->trig_chk.evt_remain = 8 * EVENTS_PER_CLUSTER;
+               }
+       }
+
+       /*
+        * Force a trigger marker when the software check found no match
+        * yet while the hardware provided position was reached. This
+        * very probably is a user initiated button press.
+        */
+       if (interp->trig_chk.armed) {
+               if (sigma_location_is_eq(&interp->iter, &interp->trig, TRUE)) {
+                       (void)send_trigger_marker(devc);
+                       interp->trig_chk.matched = TRUE;
+               }
+       }
+}
+
 /*
  * Return the timestamp of "DRAM cluster".
  */
 static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
 {
-       return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
+       return read_u16le((const uint8_t *)&cluster->timestamp);
 }
 
 /*
@@ -1092,13 +1805,7 @@ static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
  */
 static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
 {
-       uint16_t sample;
-
-       sample = 0;
-       sample |= cl->samples[idx].sample_lo << 0;
-       sample |= cl->samples[idx].sample_hi << 8;
-       sample = (sample >> 8) | (sample << 8);
-       return sample;
+       return read_u16le((const uint8_t *)&cl->samples[idx]);
 }
 
 /*
@@ -1106,7 +1813,7 @@ static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
  * One 16bit item contains two samples of 8bits each. The bits of
  * multiple samples are interleaved.
  */
-static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
+static uint16_t sigma_deinterlace_data_2x8(uint16_t indata, int idx)
 {
        uint16_t outdata;
 
@@ -1128,7 +1835,7 @@ static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
  * One 16bit item contains four samples of 4bits each. The bits of
  * multiple samples are interleaved.
  */
-static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
+static uint16_t sigma_deinterlace_data_4x4(uint16_t indata, int idx)
 {
        uint16_t outdata;
 
@@ -1143,14 +1850,11 @@ static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
 
 static void sigma_decode_dram_cluster(struct dev_context *devc,
        struct sigma_dram_cluster *dram_cluster,
-       size_t events_in_cluster, gboolean triggered)
+       size_t events_in_cluster)
 {
-       struct sigma_state *ss;
        uint16_t tsdiff, ts, sample, item16;
-       unsigned int i;
-
-       if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
-               triggered = FALSE;
+       size_t count;
+       size_t evt;
 
        /*
         * If this cluster is not adjacent to the previously received
@@ -1162,15 +1866,14 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
         * for simple level and edge triggers. It would not for timed or
         * counted conditions, which currently are not supported.)
         */
-       ss = &devc->state;
        ts = sigma_dram_cluster_ts(dram_cluster);
-       tsdiff = ts - ss->lastts;
+       tsdiff = ts - devc->interp.last.ts;
        if (tsdiff > 0) {
-               size_t count;
-               count = tsdiff * devc->samples_per_event;
-               (void)check_and_submit_sample(devc, ss->lastsample, count, FALSE);
+               sample = devc->interp.last.sample;
+               count = tsdiff * devc->interp.samples_per_event;
+               (void)check_and_submit_sample(devc, sample, count);
        }
-       ss->lastts = ts + EVENTS_PER_CLUSTER;
+       devc->interp.last.ts = ts + EVENTS_PER_CLUSTER;
 
        /*
         * Grab sample data from the current cluster and prepare their
@@ -1180,28 +1883,36 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
         * buffer depth is neither assumed nor required here.
         */
        sample = 0;
-       for (i = 0; i < events_in_cluster; i++) {
-               item16 = sigma_dram_cluster_data(dram_cluster, i);
-               if (devc->samplerate == SR_MHZ(200)) {
-                       sample = sigma_deinterlace_200mhz_data(item16, 0);
-                       check_and_submit_sample(devc, sample, 1, triggered);
-                       sample = sigma_deinterlace_200mhz_data(item16, 1);
-                       check_and_submit_sample(devc, sample, 1, triggered);
-                       sample = sigma_deinterlace_200mhz_data(item16, 2);
-                       check_and_submit_sample(devc, sample, 1, triggered);
-                       sample = sigma_deinterlace_200mhz_data(item16, 3);
-                       check_and_submit_sample(devc, sample, 1, triggered);
-               } else if (devc->samplerate == SR_MHZ(100)) {
-                       sample = sigma_deinterlace_100mhz_data(item16, 0);
-                       check_and_submit_sample(devc, sample, 1, triggered);
-                       sample = sigma_deinterlace_100mhz_data(item16, 1);
-                       check_and_submit_sample(devc, sample, 1, triggered);
+       for (evt = 0; evt < events_in_cluster; evt++) {
+               item16 = sigma_dram_cluster_data(dram_cluster, evt);
+               if (devc->interp.samples_per_event == 4) {
+                       sample = sigma_deinterlace_data_4x4(item16, 0);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
+                       sample = sigma_deinterlace_data_4x4(item16, 1);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
+                       sample = sigma_deinterlace_data_4x4(item16, 2);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
+                       sample = sigma_deinterlace_data_4x4(item16, 3);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
+               } else if (devc->interp.samples_per_event == 2) {
+                       sample = sigma_deinterlace_data_2x8(item16, 0);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
+                       sample = sigma_deinterlace_data_2x8(item16, 1);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
                } else {
                        sample = item16;
-                       check_and_submit_sample(devc, sample, 1, triggered);
+                       check_and_submit_sample(devc, sample, 1);
+                       devc->interp.last.sample = sample;
                }
+               sigma_location_increment(&devc->interp.iter);
+               sigma_location_check(devc);
        }
-       ss->lastsample = sample;
 }
 
 /*
@@ -1215,36 +1926,23 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
  */
 static int decode_chunk_ts(struct dev_context *devc,
        struct sigma_dram_line *dram_line,
-       size_t events_in_line, size_t trigger_event)
+       size_t events_in_line)
 {
        struct sigma_dram_cluster *dram_cluster;
-       unsigned int clusters_in_line;
-       unsigned int events_in_cluster;
-       unsigned int i;
-       uint32_t trigger_cluster;
+       size_t clusters_in_line;
+       size_t events_in_cluster;
+       size_t cluster;
 
        clusters_in_line = events_in_line;
        clusters_in_line += EVENTS_PER_CLUSTER - 1;
        clusters_in_line /= EVENTS_PER_CLUSTER;
-       trigger_cluster = ~0;
-
-       /* Check if trigger is in this chunk. */
-       if (trigger_event < EVENTS_PER_ROW) {
-               if (devc->samplerate <= SR_MHZ(50)) {
-                       trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
-                                            trigger_event);
-               }
-
-               /* Find in which cluster the trigger occurred. */
-               trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
-       }
 
        /* For each full DRAM cluster. */
-       for (i = 0; i < clusters_in_line; i++) {
-               dram_cluster = &dram_line->cluster[i];
+       for (cluster = 0; cluster < clusters_in_line; cluster++) {
+               dram_cluster = &dram_line->cluster[cluster];
 
                /* The last cluster might not be full. */
-               if ((i == clusters_in_line - 1) &&
+               if ((cluster == clusters_in_line - 1) &&
                    (events_in_line % EVENTS_PER_CLUSTER)) {
                        events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
                } else {
@@ -1252,7 +1950,7 @@ static int decode_chunk_ts(struct dev_context *devc,
                }
 
                sigma_decode_dram_cluster(devc, dram_cluster,
-                       events_in_cluster, i == trigger_cluster);
+                       events_in_cluster);
        }
 
        return SR_OK;
@@ -1260,126 +1958,146 @@ static int decode_chunk_ts(struct dev_context *devc,
 
 static int download_capture(struct sr_dev_inst *sdi)
 {
-       const uint32_t chunks_per_read = 32;
-
        struct dev_context *devc;
-       struct sigma_dram_line *dram_line;
-       int bufsz;
+       struct sigma_sample_interp *interp;
        uint32_t stoppos, triggerpos;
        uint8_t modestatus;
-       uint32_t i;
-       uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
-       uint32_t dl_first_line, dl_line;
-       uint32_t dl_events_in_line;
-       uint32_t trg_line, trg_event;
        int ret;
+       size_t chunks_per_receive_call;
 
        devc = sdi->priv;
-       dl_events_in_line = EVENTS_PER_ROW;
-
-       sr_info("Downloading sample data.");
-       devc->state.state = SIGMA_DOWNLOAD;
+       interp = &devc->interp;
 
        /*
+        * Check the mode register. Force stop the current acquisition
+        * if it has not yet terminated before. Will block until the
+        * acquisition stops, assuming that this won't take long. Should
+        * execute exactly once, then keep finding its condition met.
+        *
         * Ask the hardware to stop data acquisition. Reception of the
         * FORCESTOP request makes the hardware "disable RLE" (store
         * clusters to DRAM regardless of whether pin state changes) and
         * raise the POSTTRIGGERED flag.
         */
-       sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
-       do {
-               if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
-                       sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
-                       return FALSE;
-               }
-       } while (!(modestatus & RMR_POSTTRIGGERED));
-
-       /* Set SDRAM Read Enable. */
-       sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
-
-       /* Get the current position. */
-       sigma_read_pos(&stoppos, &triggerpos, devc);
-
-       /* Check if trigger has fired. */
-       if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
-               sr_err("failed to read READ_MODE register");
+       ret = sigma_get_register(devc, READ_MODE, &modestatus);
+       if (ret != SR_OK) {
+               sr_err("Could not determine current device state.");
                return FALSE;
        }
-       trg_line = ~0;
-       trg_event = ~0;
-       if (modestatus & RMR_TRIGGERED) {
-               trg_line = triggerpos >> 9;
-               trg_event = triggerpos & 0x1ff;
+       if (!(modestatus & RMR_POSTTRIGGERED)) {
+               sr_info("Downloading sample data.");
+               devc->state = SIGMA_DOWNLOAD;
+
+               modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
+               ret = sigma_set_register(devc, WRITE_MODE, modestatus);
+               if (ret != SR_OK)
+                       return FALSE;
+               do {
+                       ret = sigma_get_register(devc, READ_MODE, &modestatus);
+                       if (ret != SR_OK) {
+                               sr_err("Could not poll for post-trigger state.");
+                               return FALSE;
+                       }
+               } while (!(modestatus & RMR_POSTTRIGGERED));
        }
 
        /*
-        * Determine how many "DRAM lines" of 1024 bytes each we need to
-        * retrieve from the Sigma hardware, so that we have a complete
-        * set of samples. Note that the last line need not contain 64
-        * clusters, it might be partially filled only.
+        * Switch the hardware from DRAM write (data acquisition) to
+        * DRAM read (sample memory download). Prepare resources for
+        * sample memory content retrieval. Should execute exactly once,
+        * then keep finding its condition met.
         *
-        * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
-        * around. Since the status of the very next line is uncertain in
-        * that case, we skip it and start reading from the next line.
+        * Get the current positions (acquisition write pointer, and
+        * trigger match location). With disabled triggers, use a value
+        * for the location that will never match during interpretation.
+        * Determine which area of the sample memory to retrieve,
+        * allocate a receive buffer, and setup counters/pointers.
         */
-       dl_first_line = 0;
-       dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
-       if (modestatus & RMR_ROUND) {
-               dl_first_line = dl_lines_total + 1;
-               dl_lines_total = ROW_COUNT - 2;
-       }
-       dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
-       if (!dram_line)
-               return FALSE;
-       ret = alloc_submit_buffer(sdi);
-       if (ret != SR_OK)
-               return FALSE;
-       ret = setup_submit_limit(devc);
-       if (ret != SR_OK)
-               return FALSE;
-       dl_lines_done = 0;
-       while (dl_lines_total > dl_lines_done) {
-               /* We can download only up-to 32 DRAM lines in one go! */
-               dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
-
-               dl_line = dl_first_line + dl_lines_done;
-               dl_line %= ROW_COUNT;
-               bufsz = sigma_read_dram(dl_line, dl_lines_curr,
-                                       (uint8_t *)dram_line, devc);
-               /* TODO: Check bufsz. For now, just avoid compiler warnings. */
-               (void)bufsz;
-
-               /* This is the first DRAM line, so find the initial timestamp. */
-               if (dl_lines_done == 0) {
-                       devc->state.lastts =
-                               sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
-                       devc->state.lastsample = 0;
+       if (!interp->fetch.lines_per_read) {
+               ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
+               if (ret != SR_OK)
+                       return FALSE;
+
+               ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
+               if (ret != SR_OK) {
+                       sr_err("Could not query capture positions/state.");
+                       return FALSE;
                }
+               if (!devc->use_triggers)
+                       triggerpos = ~0;
+               if (!(modestatus & RMR_TRIGGERED))
+                       triggerpos = ~0;
+
+               ret = alloc_sample_buffer(devc, stoppos, triggerpos, modestatus);
+               if (ret != SR_OK)
+                       return FALSE;
+
+               ret = alloc_submit_buffer(sdi);
+               if (ret != SR_OK)
+                       return FALSE;
+               ret = setup_submit_limit(devc);
+               if (ret != SR_OK)
+                       return FALSE;
+       }
 
-               for (i = 0; i < dl_lines_curr; i++) {
-                       uint32_t trigger_event = ~0;
-                       /* The last "DRAM line" can be only partially full. */
-                       if (dl_lines_done + i == dl_lines_total - 1)
-                               dl_events_in_line = stoppos & 0x1ff;
+       /*
+        * Get another set of sample memory rows, and interpret its
+        * content. Will execute as many times as it takes to complete
+        * the memory region that the recent acquisition spans.
+        *
+        * The size of a receive call's workload and the main loop's
+        * receive call poll period determine the UI responsiveness and
+        * the overall transfer time for the sample memory content.
+        */
+       chunks_per_receive_call = 50;
+       while (interp->fetch.lines_done < interp->fetch.lines_total) {
+               size_t dl_events_in_line;
 
-                       /* Test if the trigger happened on this line. */
-                       if (dl_lines_done + i == trg_line)
-                               trigger_event = trg_event;
+               /* Read another chunk of sample memory (several lines). */
+               ret = fetch_sample_buffer(devc);
+               if (ret != SR_OK)
+                       return FALSE;
 
-                       decode_chunk_ts(devc, dram_line + i,
-                               dl_events_in_line, trigger_event);
+               /* Process lines of sample data. Last line may be short. */
+               while (interp->fetch.lines_rcvd--) {
+                       dl_events_in_line = EVENTS_PER_ROW;
+                       if (interp->iter.line == interp->stop.line) {
+                               dl_events_in_line = interp->stop.raw & ROW_MASK;
+                       }
+                       decode_chunk_ts(devc, interp->fetch.curr_line,
+                               dl_events_in_line);
+                       interp->fetch.curr_line++;
+                       interp->fetch.lines_done++;
                }
 
-               dl_lines_done += dl_lines_curr;
+               /* Keep returning to application code for large data sets. */
+               if (!--chunks_per_receive_call) {
+                       ret = flush_submit_buffer(devc);
+                       if (ret != SR_OK)
+                               return FALSE;
+                       break;
+               }
        }
-       flush_submit_buffer(devc);
-       free_submit_buffer(devc);
-       g_free(dram_line);
 
-       std_session_send_df_end(sdi);
+       /*
+        * Release previously allocated resources, and adjust state when
+        * all of the sample memory was retrieved, and interpretation has
+        * completed. Should execute exactly once.
+        */
+       if (interp->fetch.lines_done >= interp->fetch.lines_total) {
+               ret = flush_submit_buffer(devc);
+               if (ret != SR_OK)
+                       return FALSE;
+               free_submit_buffer(devc);
+               free_sample_buffer(devc);
+
+               ret = std_session_send_df_end(sdi);
+               if (ret != SR_OK)
+                       return FALSE;
 
-       devc->state.state = SIGMA_IDLE;
-       sr_dev_acquisition_stop(sdi);
+               devc->state = SIGMA_IDLE;
+               sr_dev_acquisition_stop(sdi);
+       }
 
        return TRUE;
 }
@@ -1392,9 +2110,58 @@ static int download_capture(struct sr_dev_inst *sdi)
 static int sigma_capture_mode(struct sr_dev_inst *sdi)
 {
        struct dev_context *devc;
+       int ret;
+       uint32_t stoppos, triggerpos;
+       uint8_t mode;
+       gboolean full, wrapped, triggered, complete;
 
        devc = sdi->priv;
-       if (sr_sw_limits_check(&devc->acq_limits))
+
+       /*
+        * Get and interpret current acquisition status. Some of these
+        * thresholds are rather arbitrary.
+        */
+       ret = sigma_read_pos(devc, &stoppos, &triggerpos, &mode);
+       if (ret != SR_OK)
+               return FALSE;
+       stoppos >>= ROW_SHIFT;
+       full = stoppos >= ROW_COUNT - 2;
+       wrapped = mode & RMR_ROUND;
+       triggered = mode & RMR_TRIGGERED;
+       complete = mode & RMR_POSTTRIGGERED;
+
+       /*
+        * Acquisition completed in the hardware? Start or continue
+        * sample memory content download.
+        * (Can user initiated button presses result in auto stop?
+        * Will they "trigger", and later result in expired time limit
+        * of post trigger conditions?)
+        */
+       if (complete)
+               return download_capture(sdi);
+
+       /*
+        * Previously configured acquisition period exceeded? Start
+        * sample download. Start the timeout period late when triggers
+        * are used (unknown period from acquisition start to trigger
+        * match).
+        */
+       if (sr_sw_limits_check(&devc->limit.acquire))
+               return download_capture(sdi);
+       if (devc->late_trigger_timeout && triggered) {
+               sr_sw_limits_acquisition_start(&devc->limit.acquire);
+               devc->late_trigger_timeout = FALSE;
+       }
+
+       /*
+        * No trigger specified, and sample memory exhausted? Start
+        * download (may otherwise keep acquiring, even for infinite
+        * amounts of time without a user specified time/count limit).
+        * This handles situations when users specify limits which
+        * exceed the device's capabilities.
+        */
+       (void)full;
+       if (!devc->use_triggers && wrapped)
                return download_capture(sdi);
 
        return TRUE;
@@ -1411,57 +2178,83 @@ SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
        sdi = cb_data;
        devc = sdi->priv;
 
-       if (devc->state.state == SIGMA_IDLE)
+       if (devc->state == SIGMA_IDLE)
                return TRUE;
 
        /*
         * When the application has requested to stop the acquisition,
-        * then immediately start downloading sample data. Otherwise
+        * then immediately start downloading sample data. Continue a
+        * previously initiated download until completion. Otherwise
         * keep checking configured limits which will terminate the
         * acquisition and initiate download.
         */
-       if (devc->state.state == SIGMA_STOPPING)
+       if (devc->state == SIGMA_STOPPING)
+               return download_capture(sdi);
+       if (devc->state == SIGMA_DOWNLOAD)
                return download_capture(sdi);
-       if (devc->state.state == SIGMA_CAPTURE)
+       if (devc->state == SIGMA_CAPTURE)
                return sigma_capture_mode(sdi);
 
        return TRUE;
 }
 
 /* Build a LUT entry used by the trigger functions. */
-static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
+static void build_lut_entry(uint16_t *lut_entry,
+       uint16_t spec_value, uint16_t spec_mask)
 {
-       int i, j, k, bit;
-
-       /* For each quad channel. */
-       for (i = 0; i < 4; i++) {
-               entry[i] = 0xffff;
-
-               /* For each bit in LUT. */
-               for (j = 0; j < 16; j++)
+       size_t quad, bitidx, ch;
+       uint16_t quadmask, bitmask;
+       gboolean spec_value_low, bit_idx_low;
 
-                       /* For each channel in quad. */
-                       for (k = 0; k < 4; k++) {
-                               bit = 1 << (i * 4 + k);
-
-                               /* Set bit in entry */
-                               if ((mask & bit) && ((!(value & bit)) !=
-                                                       (!(j & (1 << k)))))
-                                       entry[i] &= ~(1 << j);
+       /*
+        * For each quad-channel-group, for each bit in the LUT (each
+        * bit pattern of the channel signals, aka LUT address), for
+        * each channel in the quad, setup the bit in the LUT entry.
+        *
+        * Start from all-ones in the LUT (true, always matches), then
+        * "pessimize the truthness" for specified conditions.
+        */
+       for (quad = 0; quad < 4; quad++) {
+               lut_entry[quad] = ~0;
+               for (bitidx = 0; bitidx < 16; bitidx++) {
+                       for (ch = 0; ch < 4; ch++) {
+                               quadmask = BIT(ch);
+                               bitmask = quadmask << (quad * 4);
+                               if (!(spec_mask & bitmask))
+                                       continue;
+                               /*
+                                * This bit is part of the spec. The
+                                * condition which gets checked here
+                                * (got checked in all implementations
+                                * so far) is uncertain. A bit position
+                                * in the current index' number(!) is
+                                * checked?
+                                */
+                               spec_value_low = !(spec_value & bitmask);
+                               bit_idx_low = !(bitidx & quadmask);
+                               if (spec_value_low == bit_idx_low)
+                                       continue;
+                               lut_entry[quad] &= ~BIT(bitidx);
                        }
+               }
        }
 }
 
 /* Add a logical function to LUT mask. */
 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
-                                int index, int neg, uint16_t *mask)
+       size_t index, gboolean neg, uint16_t *mask)
 {
-       int i, j;
-       int x[2][2], tmp, a, b, aset, bset, rset;
+       int x[2][2], a, b, aset, bset, rset;
+       size_t bitidx;
 
-       memset(x, 0, 4 * sizeof(int));
+       /*
+        * Beware! The x, a, b, aset, bset, rset variables strictly
+        * require the limited 0..1 range. They are not interpreted
+        * as logically true, instead bit arith is done on them.
+        */
 
-       /* Trigger detect condition. */
+       /* Construct a pattern which detects the condition. */
+       memset(x, 0, sizeof(x));
        switch (oper) {
        case OP_LEVEL:
                x[0][1] = 1;
@@ -1497,8 +2290,11 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
                break;
        }
 
-       /* Transpose if neg is set. */
+       /* Transpose the pattern if the condition is negated. */
        if (neg) {
+               size_t i, j;
+               int tmp;
+
                for (i = 0; i < 2; i++) {
                        for (j = 0; j < 2; j++) {
                                tmp = x[i][j];
@@ -1508,29 +2304,30 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
                }
        }
 
-       /* Update mask with function. */
-       for (i = 0; i < 16; i++) {
-               a = (i >> (2 * index + 0)) & 1;
-               b = (i >> (2 * index + 1)) & 1;
+       /* Update the LUT mask with the function's condition. */
+       for (bitidx = 0; bitidx < 16; bitidx++) {
+               a = (bitidx & BIT(2 * index + 0)) ? 1 : 0;
+               b = (bitidx & BIT(2 * index + 1)) ? 1 : 0;
 
-               aset = (*mask >> i) & 1;
+               aset = (*mask & BIT(bitidx)) ? 1 : 0;
                bset = x[b][a];
 
-               rset = 0;
                if (func == FUNC_AND || func == FUNC_NAND)
                        rset = aset & bset;
                else if (func == FUNC_OR || func == FUNC_NOR)
                        rset = aset | bset;
                else if (func == FUNC_XOR || func == FUNC_NXOR)
                        rset = aset ^ bset;
+               else
+                       rset = 0;
 
                if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
-                       rset = !rset;
-
-               *mask &= ~(1 << i);
+                       rset = 1 - rset;
 
                if (rset)
-                       *mask |= 1 << i;
+                       *mask |= BIT(bitidx);
+               else
+                       *mask &= ~BIT(bitidx);
        }
 }
 
@@ -1539,48 +2336,62 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
  * simple pin change and state triggers. Only two transitions (rise/fall) can be
  * set at any time, but a full mask and value can be set (0/1).
  */
-SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
+SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
+       struct triggerlut *lut)
 {
-       int i,j;
-       uint16_t masks[2] = { 0, 0 };
+       uint16_t masks[2];
+       size_t bitidx, condidx;
+       uint16_t value, mask;
 
-       memset(lut, 0, sizeof(struct triggerlut));
+       /* Setup something that "won't match" in the absence of a spec. */
+       memset(lut, 0, sizeof(*lut));
+       if (!devc->use_triggers)
+               return SR_OK;
 
-       /* Constant for simple triggers. */
+       /* Start assuming simple triggers. Edges are handled below. */
        lut->m4 = 0xa000;
-
-       /* Value/mask trigger support. */
-       build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
-                       lut->m2d);
-
-       /* Rise/fall trigger support. */
-       for (i = 0, j = 0; i < 16; i++) {
-               if (devc->trigger.risingmask & (1 << i) ||
-                   devc->trigger.fallingmask & (1 << i))
-                       masks[j++] = 1 << i;
+       lut->m3q = 0xffff;
+
+       /* Process value/mask triggers. */
+       value = devc->trigger.simplevalue;
+       mask = devc->trigger.simplemask;
+       build_lut_entry(lut->m2d, value, mask);
+
+       /* Scan for and process rise/fall triggers. */
+       memset(&masks, 0, sizeof(masks));
+       condidx = 0;
+       for (bitidx = 0; bitidx < 16; bitidx++) {
+               mask = BIT(bitidx);
+               value = devc->trigger.risingmask | devc->trigger.fallingmask;
+               if (!(value & mask))
+                       continue;
+               if (condidx == 0)
+                       build_lut_entry(lut->m0d, mask, mask);
+               if (condidx == 1)
+                       build_lut_entry(lut->m1d, mask, mask);
+               masks[condidx++] = mask;
+               if (condidx == ARRAY_SIZE(masks))
+                       break;
        }
 
-       build_lut_entry(masks[0], masks[0], lut->m0d);
-       build_lut_entry(masks[1], masks[1], lut->m1d);
-
-       /* Add glue logic */
+       /* Add glue logic for rise/fall triggers. */
        if (masks[0] || masks[1]) {
-               /* Transition trigger. */
+               lut->m3q = 0;
                if (masks[0] & devc->trigger.risingmask)
-                       add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
+                       add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
                if (masks[0] & devc->trigger.fallingmask)
-                       add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
+                       add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
                if (masks[1] & devc->trigger.risingmask)
-                       add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
+                       add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
                if (masks[1] & devc->trigger.fallingmask)
-                       add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
-       } else {
-               /* Only value/mask trigger. */
-               lut->m3 = 0xffff;
+                       add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
        }
 
        /* Triggertype: event. */
-       lut->params.selres = 3;
+       lut->params.selres = TRGSEL_SELCODE_NEVER;
+       lut->params.selinc = TRGSEL_SELCODE_LEVEL;
+       lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
+       lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
 
        return SR_OK;
 }