]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
Simplify channel creation.
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <stdint.h>
21 #include <string.h>
22 #include <math.h>
23 #include <glib.h>
24 #include "libsigrok.h"
25 #include "libsigrok-internal.h"
26
27 #define LOG_PREFIX "es51919"
28
29 struct dev_buffer {
30         /** Total size of the buffer. */
31         size_t size;
32         /** Amount of data currently in the buffer. */
33         size_t len;
34         /** Offset where the data starts in the buffer. */
35         size_t offset;
36         /** Space for the data. */
37         uint8_t data[];
38 };
39
40 static struct dev_buffer *dev_buffer_new(size_t size)
41 {
42         struct dev_buffer *dbuf;
43
44         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
45         dbuf->size = size;
46         dbuf->len = 0;
47         dbuf->offset = 0;
48
49         return dbuf;
50 }
51
52 static void dev_buffer_destroy(struct dev_buffer *dbuf)
53 {
54         g_free(dbuf);
55 }
56
57 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
58                                   struct sr_dev_inst *sdi)
59 {
60         struct sr_serial_dev_inst *serial;
61         int len;
62
63         serial = sdi->conn;
64
65         /* If we already have data, move it to the beginning of the buffer. */
66         if (dbuf->len > 0 && dbuf->offset > 0)
67                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
68
69         dbuf->offset = 0;
70
71         len = dbuf->size - dbuf->len;
72         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
73         if (len < 0) {
74                 sr_err("Serial port read error: %d.", len);
75                 return len;
76         }
77
78         dbuf->len += len;
79
80         return SR_OK;
81 }
82
83 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
84                                 gboolean (*packet_valid)(const uint8_t *),
85                                 size_t packet_size)
86 {
87         size_t offset;
88
89         while (dbuf->len >= packet_size) {
90                 if (packet_valid(dbuf->data + dbuf->offset)) {
91                         offset = dbuf->offset;
92                         dbuf->offset += packet_size;
93                         dbuf->len -= packet_size;
94                         return dbuf->data + offset;
95                 }
96                 dbuf->offset++;
97                 dbuf->len--;
98         }
99
100         return NULL;
101 }
102
103 struct dev_limit_counter {
104         /** The current number of received samples/frames/etc. */
105         uint64_t count;
106         /** The limit (in number of samples/frames/etc.). */
107         uint64_t limit;
108 };
109
110 static void dev_limit_counter_start(struct dev_limit_counter *cnt)
111 {
112         cnt->count = 0;
113 }
114
115 static void dev_limit_counter_inc(struct dev_limit_counter *cnt)
116 {
117         cnt->count++;
118 }
119
120 static void dev_limit_counter_limit_set(struct dev_limit_counter *cnt,
121                                         uint64_t limit)
122 {
123         cnt->limit = limit;
124 }
125
126 static gboolean dev_limit_counter_limit_reached(struct dev_limit_counter *cnt)
127 {
128         if (cnt->limit && cnt->count >= cnt->limit) {
129                 sr_info("Requested counter limit reached.");
130                 return TRUE;
131         }
132
133         return FALSE;
134 }
135
136 struct dev_time_counter {
137         /** The starting time of current sampling run. */
138         int64_t starttime;
139         /** The time limit (in milliseconds). */
140         uint64_t limit;
141 };
142
143 static void dev_time_counter_start(struct dev_time_counter *cnt)
144 {
145         cnt->starttime = g_get_monotonic_time();
146 }
147
148 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
149 {
150         cnt->limit = limit;
151 }
152
153 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
154 {
155         int64_t time;
156
157         if (cnt->limit) {
158                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
159                 if (time > (int64_t)cnt->limit) {
160                         sr_info("Requested time limit reached.");
161                         return TRUE;
162                 }
163         }
164
165         return FALSE;
166 }
167
168 static void serial_conf_get(GSList *options, const char *def_serialcomm,
169                             const char **conn, const char **serialcomm)
170 {
171         struct sr_config *src;
172         GSList *l;
173
174         *conn = *serialcomm = NULL;
175         for (l = options; l; l = l->next) {
176                 src = l->data;
177                 switch (src->key) {
178                 case SR_CONF_CONN:
179                         *conn = g_variant_get_string(src->data, NULL);
180                         break;
181                 case SR_CONF_SERIALCOMM:
182                         *serialcomm = g_variant_get_string(src->data, NULL);
183                         break;
184                 }
185         }
186
187         if (*serialcomm == NULL)
188                 *serialcomm = def_serialcomm;
189 }
190
191 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
192                                                  const char *def_serialcomm)
193
194 {
195         const char *conn, *serialcomm;
196
197         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
198
199         if (!conn)
200                 return NULL;
201
202         return sr_serial_dev_inst_new(conn, serialcomm);
203 }
204
205 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
206                                    uint8_t *buf, size_t buflen,
207                                    size_t packet_size,
208                                    packet_valid_callback is_valid,
209                                    uint64_t timeout_ms, int baudrate)
210 {
211         size_t len, dropped;
212         int ret;
213
214         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
215                 return ret;
216
217         serial_flush(serial);
218
219         len = buflen;
220         ret = serial_stream_detect(serial, buf, &len, packet_size,
221                                    is_valid, timeout_ms, baudrate);
222
223         serial_close(serial);
224
225         if (ret != SR_OK)
226                 return ret;
227
228         /*
229          * If we dropped more than two packets worth of data, something is
230          * wrong. We shouldn't quit however, since the dropped bytes might be
231          * just zeroes at the beginning of the stream. Those can occur as a
232          * combination of the nonstandard cable that ships with some devices
233          * and the serial port or USB to serial adapter.
234          */
235         dropped = len - packet_size;
236         if (dropped > 2 * packet_size)
237                 sr_warn("Had to drop too much data.");
238
239         return SR_OK;
240 }
241
242 static int serial_stream_check(struct sr_serial_dev_inst *serial,
243                                size_t packet_size,
244                                packet_valid_callback is_valid,
245                                uint64_t timeout_ms, int baudrate)
246 {
247         uint8_t buf[128];
248
249         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
250                                        is_valid, timeout_ms, baudrate);
251 }
252
253 struct std_opt_desc {
254         const uint32_t *scanopts;
255         const int num_scanopts;
256         const uint32_t *devopts;
257         const int num_devopts;
258 };
259
260 static int std_config_list(uint32_t key, GVariant **data,
261                            const struct std_opt_desc *d)
262 {
263         switch (key) {
264         case SR_CONF_SCAN_OPTIONS:
265                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
266                         d->scanopts, d->num_scanopts, sizeof(uint32_t));
267                 break;
268         case SR_CONF_DEVICE_OPTIONS:
269                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
270                         d->devopts, d->num_devopts, sizeof(uint32_t));
271                 break;
272         default:
273                 return SR_ERR_NA;
274         }
275
276         return SR_OK;
277 }
278
279 static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
280 {
281         struct sr_datafeed_packet packet;
282         struct sr_datafeed_meta meta;
283
284         memset(&meta, 0, sizeof(meta));
285
286         packet.type = SR_DF_META;
287         packet.payload = &meta;
288
289         meta.config = g_slist_append(meta.config, cfg);
290
291         return sr_session_send(sdi, &packet);
292 }
293
294 static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
295                                   GVariant *var)
296 {
297         struct sr_config *cfg;
298         int ret;
299
300         cfg = sr_config_new(key, var);
301         if (!cfg)
302                 return SR_ERR;
303
304         ret = send_config_update(sdi, cfg);
305         sr_config_free(cfg);
306
307         return ret;
308
309 }
310
311 /*
312  * Cyrustek ES51919 LCR chipset host protocol.
313  *
314  * Public official documentation does not contain the protocol
315  * description, so this is all based on reverse engineering.
316  *
317  * Packet structure (17 bytes):
318  *
319  * 0x00: header1 ?? (0x00)
320  * 0x01: header2 ?? (0x0d)
321  *
322  * 0x02: flags
323  *         bit 0 = hold enabled
324  *         bit 1 = reference shown (in delta mode)
325  *         bit 2 = delta mode
326  *         bit 3 = calibration mode
327  *         bit 4 = sorting mode
328  *         bit 5 = LCR mode
329  *         bit 6 = auto mode
330  *         bit 7 = parallel measurement (vs. serial)
331  *
332  * 0x03: config
333  *         bit 0-4 = ??? (0x10)
334  *         bit 5-7 = test frequency
335  *                     0 = 100 Hz
336  *                     1 = 120 Hz
337  *                     2 = 1 kHz
338  *                     3 = 10 kHz
339  *                     4 = 100 kHz
340  *                     5 = 0 Hz (DC)
341  *
342  * 0x04: tolerance (sorting mode)
343  *         0 = not set
344  *         3 = +-0.25%
345  *         4 = +-0.5%
346  *         5 = +-1%
347  *         6 = +-2%
348  *         7 = +-5%
349  *         8 = +-10%
350  *         9 = +-20%
351  *        10 = -20+80%
352  *
353  * 0x05-0x09: primary measurement
354  *   0x05: measured quantity
355  *           1 = inductance
356  *           2 = capacitance
357  *           3 = resistance
358  *           4 = DC resistance
359  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
360  *   0x07: measurement LSB
361  *   0x08: measurement info
362  *           bit 0-2 = decimal point multiplier (10^-val)
363  *           bit 3-7 = unit
364  *                       0 = no unit
365  *                       1 = Ohm
366  *                       2 = kOhm
367  *                       3 = MOhm
368  *                       5 = uH
369  *                       6 = mH
370  *                       7 = H
371  *                       8 = kH
372  *                       9 = pF
373  *                       10 = nF
374  *                       11 = uF
375  *                       12 = mF
376  *                       13 = %
377  *                       14 = degree
378  *   0x09: measurement status
379  *           bit 0-3 = status
380  *                       0 = normal (measurement shown)
381  *                       1 = blank (nothing shown)
382  *                       2 = lines ("----")
383  *                       3 = outside limits ("OL")
384  *                       7 = pass ("PASS")
385  *                       8 = fail ("FAIL")
386  *                       9 = open ("OPEn")
387  *                      10 = shorted ("Srt")
388  *           bit 4-6 = ??? (maybe part of same field with 0-3)
389  *           bit 7   = ??? (some independent flag)
390  *
391  * 0x0a-0x0e: secondary measurement
392  *   0x0a: measured quantity
393  *           0 = none
394  *           1 = dissipation factor
395  *           2 = quality factor
396  *           3 = parallel AC resistance / ESR
397  *           4 = phase angle
398  *   0x0b-0x0e: like primary measurement
399  *
400  * 0x0f: footer1 (0x0d) ?
401  * 0x10: footer2 (0x0a) ?
402  */
403
404 #define PACKET_SIZE 17
405
406 static const uint64_t frequencies[] = {
407         100, 120, 1000, 10000, 100000, 0,
408 };
409
410 enum { QUANT_AUTO = 5, };
411
412 static const char *const quantities1[] = {
413         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "RESISTANCE", "AUTO",
414 };
415
416 static const char *const list_quantities1[] = {
417         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "AUTO",
418 };
419
420 static const char *const quantities2[] = {
421         "NONE", "DISSIPATION", "QUALITY", "RESISTANCE", "ANGLE", "AUTO",
422 };
423
424 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
425
426 static const char *const models[] = {
427         "NONE", "PARALLEL", "SERIES", "AUTO",
428 };
429
430 /** Private, per-device-instance driver context. */
431 struct dev_context {
432         /** Opaque pointer passed in by the frontend. */
433         void *cb_data;
434
435         /** The number of frames. */
436         struct dev_limit_counter frame_count;
437
438         /** The time limit counter. */
439         struct dev_time_counter time_count;
440
441         /** Data buffer. */
442         struct dev_buffer *buf;
443
444         /** The frequency of the test signal (index to frequencies[]). */
445         unsigned int freq;
446
447         /** Measured primary quantity (index to quantities1[]). */
448         unsigned int quant1;
449
450         /** Measured secondary quantity (index to quantities2[]). */
451         unsigned int quant2;
452
453         /** Equivalent circuit model (index to models[]). */
454         unsigned int model;
455 };
456
457 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
458 {
459         return is_secondary ? pkt + 10 : pkt + 5;
460 }
461
462 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
463 {
464         const uint8_t *buf;
465
466         buf = pkt_to_buf(pkt, is_secondary);
467
468         switch (is_secondary << 8 | buf[0]) {
469         case 0x001:
470                 return is_parallel ?
471                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
472         case 0x002:
473                 return is_parallel ?
474                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
475         case 0x003:
476         case 0x103:
477                 return is_parallel ?
478                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
479         case 0x004:
480                 return SR_MQ_RESISTANCE;
481         case 0x100:
482                 return SR_MQ_DIFFERENCE;
483         case 0x101:
484                 return SR_MQ_DISSIPATION_FACTOR;
485         case 0x102:
486                 return SR_MQ_QUALITY_FACTOR;
487         case 0x104:
488                 return SR_MQ_PHASE_ANGLE;
489         }
490
491         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
492
493         return -1;
494 }
495
496 static float parse_value(const uint8_t *buf)
497 {
498         static const float decimals[] = {
499                 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7
500         };
501         int16_t val;
502
503         val = (buf[1] << 8) | buf[2];
504         return (float)val * decimals[buf[3] & 7];
505 }
506
507 static void parse_measurement(const uint8_t *pkt, float *floatval,
508                               struct sr_datafeed_analog *analog,
509                               int is_secondary)
510 {
511         static const struct {
512                 int unit;
513                 float mult;
514         } units[] = {
515                 { SR_UNIT_UNITLESS, 1 },        /* no unit */
516                 { SR_UNIT_OHM, 1 },             /* Ohm     */
517                 { SR_UNIT_OHM, 1e3 },           /* kOhm    */
518                 { SR_UNIT_OHM, 1e6 },           /* MOhm    */
519                 { -1, 0 },                      /* ???     */
520                 { SR_UNIT_HENRY, 1e-6 },        /* uH      */
521                 { SR_UNIT_HENRY, 1e-3 },        /* mH      */
522                 { SR_UNIT_HENRY, 1 },           /* H       */
523                 { SR_UNIT_HENRY, 1e3 },         /* kH      */
524                 { SR_UNIT_FARAD, 1e-12 },       /* pF      */
525                 { SR_UNIT_FARAD, 1e-9 },        /* nF      */
526                 { SR_UNIT_FARAD, 1e-6 },        /* uF      */
527                 { SR_UNIT_FARAD, 1e-3 },        /* mF      */
528                 { SR_UNIT_PERCENTAGE, 1 },      /* %       */
529                 { SR_UNIT_DEGREE, 1 }           /* degree  */
530         };
531         const uint8_t *buf;
532         int state;
533
534         buf = pkt_to_buf(pkt, is_secondary);
535
536         analog->mq = -1;
537         analog->mqflags = 0;
538
539         state = buf[4] & 0xf;
540
541         if (state != 0 && state != 3)
542                 return;
543
544         if (pkt[2] & 0x18) {
545                 /* Calibration and Sorting modes not supported. */
546                 return;
547         }
548
549         if (!is_secondary) {
550                 if (pkt[2] & 0x01)
551                         analog->mqflags |= SR_MQFLAG_HOLD;
552                 if (pkt[2] & 0x02)
553                         analog->mqflags |= SR_MQFLAG_REFERENCE;
554         } else {
555                 if (pkt[2] & 0x04)
556                         analog->mqflags |= SR_MQFLAG_RELATIVE;
557         }
558
559         if ((analog->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) < 0)
560                 return;
561
562         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
563                 sr_err("Unknown unit %u.", buf[3] >> 3);
564                 analog->mq = -1;
565                 return;
566         }
567
568         analog->unit = units[buf[3] >> 3].unit;
569
570         *floatval = parse_value(buf);
571         *floatval *= (state == 0) ? units[buf[3] >> 3].mult : INFINITY;
572 }
573
574 static unsigned int parse_freq(const uint8_t *pkt)
575 {
576         unsigned int freq;
577
578         freq = pkt[3] >> 5;
579
580         if (freq >= ARRAY_SIZE(frequencies)) {
581                 sr_err("Unknown frequency %u.", freq);
582                 freq = ARRAY_SIZE(frequencies) - 1;
583         }
584
585         return freq;
586 }
587
588 static unsigned int parse_quant(const uint8_t *pkt, int is_secondary)
589 {
590         const uint8_t *buf;
591
592         if (pkt[2] & 0x20)
593                 return QUANT_AUTO;
594
595         buf = pkt_to_buf(pkt, is_secondary);
596
597         return buf[0];
598 }
599
600 static unsigned int parse_model(const uint8_t *pkt)
601 {
602         if (pkt[2] & 0x40)
603                 return MODEL_AUTO;
604         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
605                 return MODEL_NONE;
606         else if (pkt[2] & 0x80)
607                 return MODEL_PAR;
608         else
609                 return MODEL_SER;
610
611 }
612
613 static gboolean packet_valid(const uint8_t *pkt)
614 {
615         /*
616          * If the first two bytes of the packet are indeed a constant
617          * header, they should be checked too. Since we don't know it
618          * for sure, we'll just check the last two for now since they
619          * seem to be constant just like in the other Cyrustek chipset
620          * protocols.
621          */
622         if (pkt[15] == 0xd && pkt[16] == 0xa)
623                 return TRUE;
624
625         return FALSE;
626 }
627
628 static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
629                             GVariant *var)
630 {
631         struct dev_context *devc;
632
633         devc = sdi->priv;
634
635         return send_config_update_key(devc->cb_data, key, var);
636 }
637
638 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
639 {
640         return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
641                                 g_variant_new_uint64(frequencies[freq]));
642 }
643
644 static int send_quant1_update(struct sr_dev_inst *sdi, unsigned int quant)
645 {
646         return do_config_update(sdi, SR_CONF_MEASURED_QUANTITY,
647                                 g_variant_new_string(quantities1[quant]));
648 }
649
650 static int send_quant2_update(struct sr_dev_inst *sdi, unsigned int quant)
651 {
652         return do_config_update(sdi, SR_CONF_MEASURED_2ND_QUANTITY,
653                                 g_variant_new_string(quantities2[quant]));
654 }
655
656 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
657 {
658         return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
659                                 g_variant_new_string(models[model]));
660 }
661
662 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
663 {
664         struct sr_datafeed_packet packet;
665         struct sr_datafeed_analog analog;
666         struct dev_context *devc;
667         unsigned int val;
668         float floatval;
669         gboolean frame;
670
671         devc = sdi->priv;
672
673         val = parse_freq(pkt);
674         if (val != devc->freq) {
675                 if (send_freq_update(sdi, val) == SR_OK)
676                         devc->freq = val;
677                 else
678                         return;
679         }
680
681         val = parse_quant(pkt, 0);
682         if (val != devc->quant1) {
683                 if (send_quant1_update(sdi, val) == SR_OK)
684                         devc->quant1 = val;
685                 else
686                         return;
687         }
688
689         val = parse_quant(pkt, 1);
690         if (val != devc->quant2) {
691                 if (send_quant2_update(sdi, val) == SR_OK)
692                         devc->quant2 = val;
693                 else
694                         return;
695         }
696
697         val = parse_model(pkt);
698         if (val != devc->model) {
699                 if (send_model_update(sdi, val) == SR_OK)
700                         devc->model = val;
701                 else
702                         return;
703         }
704
705         frame = FALSE;
706
707         memset(&analog, 0, sizeof(analog));
708
709         analog.num_samples = 1;
710         analog.data = &floatval;
711
712         analog.channels = g_slist_append(NULL, sdi->channels->data);
713
714         parse_measurement(pkt, &floatval, &analog, 0);
715         if (analog.mq >= 0) {
716                 if (!frame) {
717                         packet.type = SR_DF_FRAME_BEGIN;
718                         sr_session_send(devc->cb_data, &packet);
719                         frame = TRUE;
720                 }
721
722                 packet.type = SR_DF_ANALOG;
723                 packet.payload = &analog;
724
725                 sr_session_send(devc->cb_data, &packet);
726         }
727
728         analog.channels = g_slist_append(NULL, sdi->channels->next->data);
729
730         parse_measurement(pkt, &floatval, &analog, 1);
731         if (analog.mq >= 0) {
732                 if (!frame) {
733                         packet.type = SR_DF_FRAME_BEGIN;
734                         sr_session_send(devc->cb_data, &packet);
735                         frame = TRUE;
736                 }
737
738                 packet.type = SR_DF_ANALOG;
739                 packet.payload = &analog;
740
741                 sr_session_send(devc->cb_data, &packet);
742         }
743
744         if (frame) {
745                 packet.type = SR_DF_FRAME_END;
746                 sr_session_send(devc->cb_data, &packet);
747                 dev_limit_counter_inc(&devc->frame_count);
748         }
749 }
750
751 static int handle_new_data(struct sr_dev_inst *sdi)
752 {
753         struct dev_context *devc;
754         uint8_t *pkt;
755         int ret;
756
757         devc = sdi->priv;
758
759         ret = dev_buffer_fill_serial(devc->buf, sdi);
760         if (ret < 0)
761                 return ret;
762
763         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
764                                              PACKET_SIZE)))
765                 handle_packet(sdi, pkt);
766
767         return SR_OK;
768 }
769
770 static int receive_data(int fd, int revents, void *cb_data)
771 {
772         struct sr_dev_inst *sdi;
773         struct dev_context *devc;
774
775         (void)fd;
776
777         if (!(sdi = cb_data))
778                 return TRUE;
779
780         if (!(devc = sdi->priv))
781                 return TRUE;
782
783         if (revents == G_IO_IN) {
784                 /* Serial data arrived. */
785                 handle_new_data(sdi);
786         }
787
788         if (dev_limit_counter_limit_reached(&devc->frame_count) ||
789             dev_time_limit_reached(&devc->time_count))
790                 sdi->driver->dev_acquisition_stop(sdi, cb_data);
791
792         return TRUE;
793 }
794
795 static const char *const channel_names[] = { "P1", "P2" };
796
797 static int setup_channels(struct sr_dev_inst *sdi)
798 {
799         unsigned int i;
800         int ret;
801
802         ret = SR_ERR_BUG;
803
804         for (i = 0; i < ARRAY_SIZE(channel_names); i++)
805                 sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
806
807         return ret;
808 }
809
810 SR_PRIV void es51919_serial_clean(void *priv)
811 {
812         struct dev_context *devc;
813
814         if (!(devc = priv))
815                 return;
816
817         dev_buffer_destroy(devc->buf);
818         g_free(devc);
819 }
820
821 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
822                                                 const char *vendor,
823                                                 const char *model)
824 {
825         struct sr_serial_dev_inst *serial;
826         struct sr_dev_inst *sdi;
827         struct dev_context *devc;
828         int ret;
829
830         serial = NULL;
831         sdi = NULL;
832         devc = NULL;
833
834         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
835                 goto scan_cleanup;
836
837         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
838                                   3000, 9600);
839         if (ret != SR_OK)
840                 goto scan_cleanup;
841
842         sr_info("Found device on port %s.", serial->port);
843
844         sdi = g_malloc0(sizeof(struct sr_dev_inst));
845         sdi->status = SR_ST_INACTIVE;
846         sdi->vendor = g_strdup(vendor);
847         sdi->model = g_strdup(model);
848         devc = g_malloc0(sizeof(struct dev_context));
849         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
850         sdi->inst_type = SR_INST_SERIAL;
851         sdi->conn = serial;
852         sdi->priv = devc;
853
854         if (setup_channels(sdi) != SR_OK)
855                 goto scan_cleanup;
856
857         return sdi;
858
859 scan_cleanup:
860         es51919_serial_clean(devc);
861         if (sdi)
862                 sr_dev_inst_free(sdi);
863         if (serial)
864                 sr_serial_dev_inst_free(serial);
865
866         return NULL;
867 }
868
869 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
870                                       const struct sr_dev_inst *sdi,
871                                       const struct sr_channel_group *cg)
872 {
873         struct dev_context *devc;
874
875         (void)cg;
876
877         if (!(devc = sdi->priv))
878                 return SR_ERR_BUG;
879
880         switch (key) {
881         case SR_CONF_OUTPUT_FREQUENCY:
882                 *data = g_variant_new_uint64(frequencies[devc->freq]);
883                 break;
884         case SR_CONF_MEASURED_QUANTITY:
885                 *data = g_variant_new_string(quantities1[devc->quant1]);
886                 break;
887         case SR_CONF_MEASURED_2ND_QUANTITY:
888                 *data = g_variant_new_string(quantities2[devc->quant2]);
889                 break;
890         case SR_CONF_EQUIV_CIRCUIT_MODEL:
891                 *data = g_variant_new_string(models[devc->model]);
892                 break;
893         default:
894                 sr_spew("%s: Unsupported key %u", __func__, key);
895                 return SR_ERR_NA;
896         }
897
898         return SR_OK;
899 }
900
901 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
902                                       const struct sr_dev_inst *sdi,
903                                       const struct sr_channel_group *cg)
904 {
905         struct dev_context *devc;
906         uint64_t val;
907
908         (void)cg;
909
910         if (!(devc = sdi->priv))
911                 return SR_ERR_BUG;
912
913         switch (key) {
914         case SR_CONF_LIMIT_MSEC:
915                 val = g_variant_get_uint64(data);
916                 dev_time_limit_set(&devc->time_count, val);
917                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
918                 break;
919         case SR_CONF_LIMIT_FRAMES:
920                 val = g_variant_get_uint64(data);
921                 dev_limit_counter_limit_set(&devc->frame_count, val);
922                 sr_dbg("Setting frame limit to %" PRIu64 ".", val);
923                 break;
924         default:
925                 sr_spew("%s: Unsupported key %u", __func__, key);
926                 return SR_ERR_NA;
927         }
928
929         return SR_OK;
930 }
931
932 static const uint32_t scanopts[] = {
933         SR_CONF_CONN,
934         SR_CONF_SERIALCOMM,
935 };
936
937 static const uint32_t devopts[] = {
938         SR_CONF_LCRMETER,
939         SR_CONF_CONTINUOUS,
940         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
941         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
942         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
943         SR_CONF_MEASURED_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
944         SR_CONF_MEASURED_2ND_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
945         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
946 };
947
948 static const struct std_opt_desc opts = {
949         scanopts, ARRAY_SIZE(scanopts),
950         devopts, ARRAY_SIZE(devopts),
951 };
952
953 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
954                                        const struct sr_dev_inst *sdi,
955                                        const struct sr_channel_group *cg)
956 {
957         (void)sdi;
958         (void)cg;
959
960         if (std_config_list(key, data, &opts) == SR_OK)
961                 return SR_OK;
962
963         switch (key) {
964         case SR_CONF_OUTPUT_FREQUENCY:
965                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
966                         frequencies, ARRAY_SIZE(frequencies), sizeof(uint64_t));
967                 break;
968         case SR_CONF_MEASURED_QUANTITY:
969                 *data = g_variant_new_strv(list_quantities1,
970                                            ARRAY_SIZE(list_quantities1));
971                 break;
972         case SR_CONF_MEASURED_2ND_QUANTITY:
973                 *data = g_variant_new_strv(quantities2,
974                                            ARRAY_SIZE(quantities2));
975                 break;
976         case SR_CONF_EQUIV_CIRCUIT_MODEL:
977                 *data = g_variant_new_strv(models, ARRAY_SIZE(models));
978                 break;
979         default:
980                 sr_spew("%s: Unsupported key %u", __func__, key);
981                 return SR_ERR_NA;
982         }
983
984         return SR_OK;
985 }
986
987 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi,
988                                              void *cb_data)
989 {
990         struct dev_context *devc;
991         struct sr_serial_dev_inst *serial;
992
993         if (sdi->status != SR_ST_ACTIVE)
994                 return SR_ERR_DEV_CLOSED;
995
996         if (!(devc = sdi->priv))
997                 return SR_ERR_BUG;
998
999         devc->cb_data = cb_data;
1000
1001         dev_limit_counter_start(&devc->frame_count);
1002         dev_time_counter_start(&devc->time_count);
1003
1004         /* Send header packet to the session bus. */
1005         std_session_send_df_header(cb_data, LOG_PREFIX);
1006
1007         /* Poll every 50ms, or whenever some data comes in. */
1008         serial = sdi->conn;
1009         serial_source_add(sdi->session, serial, G_IO_IN, 50,
1010                           receive_data, (void *)sdi);
1011
1012         return SR_OK;
1013 }
1014
1015 SR_PRIV int es51919_serial_acquisition_stop(struct sr_dev_inst *sdi,
1016                                             void *cb_data)
1017 {
1018         return std_serial_dev_acquisition_stop(sdi, cb_data,
1019                         std_serial_dev_close, sdi->conn, LOG_PREFIX);
1020 }