]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
b1b788531a4077c2d7aedccad5c54e16b55e24f0
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <stdint.h>
21 #include <string.h>
22 #include <math.h>
23 #include <glib.h>
24 #include "libsigrok.h"
25 #include "libsigrok-internal.h"
26
27 #define LOG_PREFIX "es51919"
28
29 struct dev_buffer {
30         /** Total size of the buffer. */
31         size_t size;
32         /** Amount of data currently in the buffer. */
33         size_t len;
34         /** Offset where the data starts in the buffer. */
35         size_t offset;
36         /** Space for the data. */
37         uint8_t data[];
38 };
39
40 static struct dev_buffer *dev_buffer_new(size_t size)
41 {
42         struct dev_buffer *dbuf;
43
44         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
45         dbuf->size = size;
46         dbuf->len = 0;
47         dbuf->offset = 0;
48
49         return dbuf;
50 }
51
52 static void dev_buffer_destroy(struct dev_buffer *dbuf)
53 {
54         g_free(dbuf);
55 }
56
57 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
58                                   struct sr_dev_inst *sdi)
59 {
60         struct sr_serial_dev_inst *serial;
61         int len;
62
63         serial = sdi->conn;
64
65         /* If we already have data, move it to the beginning of the buffer. */
66         if (dbuf->len > 0 && dbuf->offset > 0)
67                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
68
69         dbuf->offset = 0;
70
71         len = dbuf->size - dbuf->len;
72         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
73         if (len < 0) {
74                 sr_err("Serial port read error: %d.", len);
75                 return len;
76         }
77
78         dbuf->len += len;
79
80         return SR_OK;
81 }
82
83 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
84                                 gboolean (*packet_valid)(const uint8_t *),
85                                 size_t packet_size)
86 {
87         size_t offset;
88
89         while (dbuf->len >= packet_size) {
90                 if (packet_valid(dbuf->data + dbuf->offset)) {
91                         offset = dbuf->offset;
92                         dbuf->offset += packet_size;
93                         dbuf->len -= packet_size;
94                         return dbuf->data + offset;
95                 }
96                 dbuf->offset++;
97                 dbuf->len--;
98         }
99
100         return NULL;
101 }
102
103 struct dev_sample_counter {
104         /** The current number of already received samples. */
105         uint64_t count;
106         /** The current sampling limit (in number of samples). */
107         uint64_t limit;
108 };
109
110 static void dev_sample_counter_start(struct dev_sample_counter *cnt)
111 {
112         cnt->count = 0;
113 }
114
115 static void dev_sample_counter_inc(struct dev_sample_counter *cnt)
116 {
117         cnt->count++;
118 }
119
120 static void dev_sample_limit_set(struct dev_sample_counter *cnt, uint64_t limit)
121 {
122         cnt->limit = limit;
123 }
124
125 static gboolean dev_sample_limit_reached(struct dev_sample_counter *cnt)
126 {
127         if (cnt->limit && cnt->count >= cnt->limit) {
128                 sr_info("Requested sample limit reached.");
129                 return TRUE;
130         }
131
132         return FALSE;
133 }
134
135 struct dev_time_counter {
136         /** The starting time of current sampling run. */
137         int64_t starttime;
138         /** The time limit (in milliseconds). */
139         uint64_t limit;
140 };
141
142 static void dev_time_counter_start(struct dev_time_counter *cnt)
143 {
144         cnt->starttime = g_get_monotonic_time();
145 }
146
147 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
148 {
149         cnt->limit = limit;
150 }
151
152 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
153 {
154         int64_t time;
155
156         if (cnt->limit) {
157                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
158                 if (time > (int64_t)cnt->limit) {
159                         sr_info("Requested time limit reached.");
160                         return TRUE;
161                 }
162         }
163
164         return FALSE;
165 }
166
167 static void serial_conf_get(GSList *options, const char *def_serialcomm,
168                             const char **conn, const char **serialcomm)
169 {
170         struct sr_config *src;
171         GSList *l;
172
173         *conn = *serialcomm = NULL;
174         for (l = options; l; l = l->next) {
175                 src = l->data;
176                 switch (src->key) {
177                 case SR_CONF_CONN:
178                         *conn = g_variant_get_string(src->data, NULL);
179                         break;
180                 case SR_CONF_SERIALCOMM:
181                         *serialcomm = g_variant_get_string(src->data, NULL);
182                         break;
183                 }
184         }
185
186         if (*serialcomm == NULL)
187                 *serialcomm = def_serialcomm;
188 }
189
190 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
191                                                  const char *def_serialcomm)
192
193 {
194         const char *conn, *serialcomm;
195
196         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
197
198         if (!conn)
199                 return NULL;
200
201         return sr_serial_dev_inst_new(conn, serialcomm);
202 }
203
204 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
205                                    uint8_t *buf, size_t buflen,
206                                    size_t packet_size,
207                                    packet_valid_callback is_valid,
208                                    uint64_t timeout_ms, int baudrate)
209 {
210         size_t len, dropped;
211         int ret;
212
213         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
214                 return ret;
215
216         serial_flush(serial);
217
218         len = buflen;
219         ret = serial_stream_detect(serial, buf, &len, packet_size,
220                                    is_valid, timeout_ms, baudrate);
221
222         serial_close(serial);
223
224         if (ret != SR_OK)
225                 return ret;
226
227         /*
228          * If we dropped more than two packets worth of data, something is
229          * wrong. We shouldn't quit however, since the dropped bytes might be
230          * just zeroes at the beginning of the stream. Those can occur as a
231          * combination of the nonstandard cable that ships with some devices
232          * and the serial port or USB to serial adapter.
233          */
234         dropped = len - packet_size;
235         if (dropped > 2 * packet_size)
236                 sr_warn("Had to drop too much data.");
237
238         return SR_OK;
239 }
240
241 static int serial_stream_check(struct sr_serial_dev_inst *serial,
242                                size_t packet_size,
243                                packet_valid_callback is_valid,
244                                uint64_t timeout_ms, int baudrate)
245 {
246         uint8_t buf[128];
247
248         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
249                                        is_valid, timeout_ms, baudrate);
250 }
251
252 struct std_opt_desc {
253         const uint32_t *scanopts;
254         const int num_scanopts;
255         const uint32_t *devopts;
256         const int num_devopts;
257 };
258
259 static int std_config_list(uint32_t key, GVariant **data,
260                            const struct std_opt_desc *d)
261 {
262         switch (key) {
263         case SR_CONF_SCAN_OPTIONS:
264                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
265                         d->scanopts, d->num_scanopts, sizeof(uint32_t));
266                 break;
267         case SR_CONF_DEVICE_OPTIONS:
268                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
269                         d->devopts, d->num_devopts, sizeof(uint32_t));
270                 break;
271         default:
272                 return SR_ERR_NA;
273         }
274
275         return SR_OK;
276 }
277
278 static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
279 {
280         struct sr_datafeed_packet packet;
281         struct sr_datafeed_meta meta;
282
283         memset(&meta, 0, sizeof(meta));
284
285         packet.type = SR_DF_META;
286         packet.payload = &meta;
287
288         meta.config = g_slist_append(meta.config, cfg);
289
290         return sr_session_send(sdi, &packet);
291 }
292
293 static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
294                                   GVariant *var)
295 {
296         struct sr_config *cfg;
297         int ret;
298
299         cfg = sr_config_new(key, var);
300         if (!cfg)
301                 return SR_ERR;
302
303         ret = send_config_update(sdi, cfg);
304         sr_config_free(cfg);
305
306         return ret;
307
308 }
309
310 /*
311  * Cyrustek ES51919 LCR chipset host protocol.
312  *
313  * Public official documentation does not contain the protocol
314  * description, so this is all based on reverse engineering.
315  *
316  * Packet structure (17 bytes):
317  *
318  * 0x00: header1 ?? (0x00)
319  * 0x01: header2 ?? (0x0d)
320  *
321  * 0x02: flags
322  *         bit 0 = hold enabled
323  *         bit 1 = reference shown (in delta mode)
324  *         bit 2 = delta mode
325  *         bit 3 = calibration mode
326  *         bit 4 = sorting mode
327  *         bit 5 = LCR mode
328  *         bit 6 = auto mode
329  *         bit 7 = parallel measurement (vs. serial)
330  *
331  * 0x03: config
332  *         bit 0-4 = ??? (0x10)
333  *         bit 5-7 = test frequency
334  *                     0 = 100 Hz
335  *                     1 = 120 Hz
336  *                     2 = 1 kHz
337  *                     3 = 10 kHz
338  *                     4 = 100 kHz
339  *                     5 = 0 Hz (DC)
340  *
341  * 0x04: tolerance (sorting mode)
342  *         0 = not set
343  *         3 = +-0.25%
344  *         4 = +-0.5%
345  *         5 = +-1%
346  *         6 = +-2%
347  *         7 = +-5%
348  *         8 = +-10%
349  *         9 = +-20%
350  *        10 = -20+80%
351  *
352  * 0x05-0x09: primary measurement
353  *   0x05: measured quantity
354  *           1 = inductance
355  *           2 = capacitance
356  *           3 = resistance
357  *           4 = DC resistance
358  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
359  *   0x07: measurement LSB
360  *   0x08: measurement info
361  *           bit 0-2 = decimal point multiplier (10^-val)
362  *           bit 3-7 = unit
363  *                       0 = no unit
364  *                       1 = Ohm
365  *                       2 = kOhm
366  *                       3 = MOhm
367  *                       5 = uH
368  *                       6 = mH
369  *                       7 = H
370  *                       8 = kH
371  *                       9 = pF
372  *                       10 = nF
373  *                       11 = uF
374  *                       12 = mF
375  *                       13 = %
376  *                       14 = degree
377  *   0x09: measurement status
378  *           bit 0-3 = status
379  *                       0 = normal (measurement shown)
380  *                       1 = blank (nothing shown)
381  *                       2 = lines ("----")
382  *                       3 = outside limits ("OL")
383  *                       7 = pass ("PASS")
384  *                       8 = fail ("FAIL")
385  *                       9 = open ("OPEn")
386  *                      10 = shorted ("Srt")
387  *           bit 4-6 = ??? (maybe part of same field with 0-3)
388  *           bit 7   = ??? (some independent flag)
389  *
390  * 0x0a-0x0e: secondary measurement
391  *   0x0a: measured quantity
392  *           0 = none
393  *           1 = dissipation factor
394  *           2 = quality factor
395  *           3 = parallel AC resistance / ESR
396  *           4 = phase angle
397  *   0x0b-0x0e: like primary measurement
398  *
399  * 0x0f: footer1 (0x0d) ?
400  * 0x10: footer2 (0x0a) ?
401  */
402
403 #define PACKET_SIZE 17
404
405 static const uint64_t frequencies[] = {
406         100, 120, 1000, 10000, 100000, 0,
407 };
408
409 enum { QUANT_AUTO = 5, };
410
411 static const char *const quantities1[] = {
412         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "RESISTANCE", "AUTO",
413 };
414
415 static const char *const list_quantities1[] = {
416         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "AUTO",
417 };
418
419 static const char *const quantities2[] = {
420         "NONE", "DISSIPATION", "QUALITY", "RESISTANCE", "ANGLE", "AUTO",
421 };
422
423 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
424
425 static const char *const models[] = {
426         "NONE", "PARALLEL", "SERIES", "AUTO",
427 };
428
429 /** Private, per-device-instance driver context. */
430 struct dev_context {
431         /** Opaque pointer passed in by the frontend. */
432         void *cb_data;
433
434         /** The number of samples. */
435         struct dev_sample_counter sample_count;
436
437         /** The time limit counter. */
438         struct dev_time_counter time_count;
439
440         /** Data buffer. */
441         struct dev_buffer *buf;
442
443         /** The frequency of the test signal (index to frequencies[]). */
444         unsigned int freq;
445
446         /** Measured primary quantity (index to quantities1[]). */
447         unsigned int quant1;
448
449         /** Measured secondary quantity (index to quantities2[]). */
450         unsigned int quant2;
451
452         /** Equivalent circuit model (index to models[]). */
453         unsigned int model;
454 };
455
456 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
457 {
458         return is_secondary ? pkt + 10 : pkt + 5;
459 }
460
461 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
462 {
463         const uint8_t *buf;
464
465         buf = pkt_to_buf(pkt, is_secondary);
466
467         switch (is_secondary << 8 | buf[0]) {
468         case 0x001:
469                 return is_parallel ?
470                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
471         case 0x002:
472                 return is_parallel ?
473                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
474         case 0x003:
475         case 0x103:
476                 return is_parallel ?
477                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
478         case 0x004:
479                 return SR_MQ_RESISTANCE;
480         case 0x100:
481                 return SR_MQ_DIFFERENCE;
482         case 0x101:
483                 return SR_MQ_DISSIPATION_FACTOR;
484         case 0x102:
485                 return SR_MQ_QUALITY_FACTOR;
486         case 0x104:
487                 return SR_MQ_PHASE_ANGLE;
488         }
489
490         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
491
492         return -1;
493 }
494
495 static float parse_value(const uint8_t *buf)
496 {
497         static const float decimals[] = {
498                 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7
499         };
500         int16_t val;
501
502         val = (buf[1] << 8) | buf[2];
503         return (float)val * decimals[buf[3] & 7];
504 }
505
506 static void parse_measurement(const uint8_t *pkt, float *floatval,
507                               struct sr_datafeed_analog *analog,
508                               int is_secondary)
509 {
510         static const struct {
511                 int unit;
512                 float mult;
513         } units[] = {
514                 { SR_UNIT_UNITLESS, 1 },        /* no unit */
515                 { SR_UNIT_OHM, 1 },             /* Ohm     */
516                 { SR_UNIT_OHM, 1e3 },           /* kOhm    */
517                 { SR_UNIT_OHM, 1e6 },           /* MOhm    */
518                 { -1, 0 },                      /* ???     */
519                 { SR_UNIT_HENRY, 1e-6 },        /* uH      */
520                 { SR_UNIT_HENRY, 1e-3 },        /* mH      */
521                 { SR_UNIT_HENRY, 1 },           /* H       */
522                 { SR_UNIT_HENRY, 1e3 },         /* kH      */
523                 { SR_UNIT_FARAD, 1e-12 },       /* pF      */
524                 { SR_UNIT_FARAD, 1e-9 },        /* nF      */
525                 { SR_UNIT_FARAD, 1e-6 },        /* uF      */
526                 { SR_UNIT_FARAD, 1e-3 },        /* mF      */
527                 { SR_UNIT_PERCENTAGE, 1 },      /* %       */
528                 { SR_UNIT_DEGREE, 1 }           /* degree  */
529         };
530         const uint8_t *buf;
531         int state;
532
533         buf = pkt_to_buf(pkt, is_secondary);
534
535         analog->mq = -1;
536         analog->mqflags = 0;
537
538         state = buf[4] & 0xf;
539
540         if (state != 0 && state != 3)
541                 return;
542
543         if (pkt[2] & 0x18) {
544                 /* Calibration and Sorting modes not supported. */
545                 return;
546         }
547
548         if (!is_secondary) {
549                 if (pkt[2] & 0x01)
550                         analog->mqflags |= SR_MQFLAG_HOLD;
551                 if (pkt[2] & 0x02)
552                         analog->mqflags |= SR_MQFLAG_REFERENCE;
553         } else {
554                 if (pkt[2] & 0x04)
555                         analog->mqflags |= SR_MQFLAG_RELATIVE;
556         }
557
558         if ((analog->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) < 0)
559                 return;
560
561         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
562                 sr_err("Unknown unit %u.", buf[3] >> 3);
563                 analog->mq = -1;
564                 return;
565         }
566
567         analog->unit = units[buf[3] >> 3].unit;
568
569         *floatval = parse_value(buf);
570         *floatval *= (state == 0) ? units[buf[3] >> 3].mult : INFINITY;
571 }
572
573 static unsigned int parse_freq(const uint8_t *pkt)
574 {
575         unsigned int freq;
576
577         freq = pkt[3] >> 5;
578
579         if (freq >= ARRAY_SIZE(frequencies)) {
580                 sr_err("Unknown frequency %u.", freq);
581                 freq = ARRAY_SIZE(frequencies) - 1;
582         }
583
584         return freq;
585 }
586
587 static unsigned int parse_quant(const uint8_t *pkt, int is_secondary)
588 {
589         const uint8_t *buf;
590
591         if (pkt[2] & 0x20)
592                 return QUANT_AUTO;
593
594         buf = pkt_to_buf(pkt, is_secondary);
595
596         return buf[0];
597 }
598
599 static unsigned int parse_model(const uint8_t *pkt)
600 {
601         if (pkt[2] & 0x40)
602                 return MODEL_AUTO;
603         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
604                 return MODEL_NONE;
605         else if (pkt[2] & 0x80)
606                 return MODEL_PAR;
607         else
608                 return MODEL_SER;
609
610 }
611
612 static gboolean packet_valid(const uint8_t *pkt)
613 {
614         /*
615          * If the first two bytes of the packet are indeed a constant
616          * header, they should be checked too. Since we don't know it
617          * for sure, we'll just check the last two for now since they
618          * seem to be constant just like in the other Cyrustek chipset
619          * protocols.
620          */
621         if (pkt[15] == 0xd && pkt[16] == 0xa)
622                 return TRUE;
623
624         return FALSE;
625 }
626
627 static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
628                             GVariant *var)
629 {
630         struct dev_context *devc;
631
632         devc = sdi->priv;
633
634         return send_config_update_key(devc->cb_data, key, var);
635 }
636
637 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
638 {
639         return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
640                                 g_variant_new_uint64(frequencies[freq]));
641 }
642
643 static int send_quant1_update(struct sr_dev_inst *sdi, unsigned int quant)
644 {
645         return do_config_update(sdi, SR_CONF_MEASURED_QUANTITY,
646                                 g_variant_new_string(quantities1[quant]));
647 }
648
649 static int send_quant2_update(struct sr_dev_inst *sdi, unsigned int quant)
650 {
651         return do_config_update(sdi, SR_CONF_MEASURED_2ND_QUANTITY,
652                                 g_variant_new_string(quantities2[quant]));
653 }
654
655 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
656 {
657         return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
658                                 g_variant_new_string(models[model]));
659 }
660
661 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
662 {
663         struct sr_datafeed_packet packet;
664         struct sr_datafeed_analog analog;
665         struct dev_context *devc;
666         unsigned int val;
667         float floatval;
668         gboolean frame;
669
670         devc = sdi->priv;
671
672         val = parse_freq(pkt);
673         if (val != devc->freq) {
674                 if (send_freq_update(sdi, val) == SR_OK)
675                         devc->freq = val;
676                 else
677                         return;
678         }
679
680         val = parse_quant(pkt, 0);
681         if (val != devc->quant1) {
682                 if (send_quant1_update(sdi, val) == SR_OK)
683                         devc->quant1 = val;
684                 else
685                         return;
686         }
687
688         val = parse_quant(pkt, 1);
689         if (val != devc->quant2) {
690                 if (send_quant2_update(sdi, val) == SR_OK)
691                         devc->quant2 = val;
692                 else
693                         return;
694         }
695
696         val = parse_model(pkt);
697         if (val != devc->model) {
698                 if (send_model_update(sdi, val) == SR_OK)
699                         devc->model = val;
700                 else
701                         return;
702         }
703
704         frame = FALSE;
705
706         memset(&analog, 0, sizeof(analog));
707
708         analog.num_samples = 1;
709         analog.data = &floatval;
710
711         analog.channels = g_slist_append(NULL, sdi->channels->data);
712
713         parse_measurement(pkt, &floatval, &analog, 0);
714         if (analog.mq >= 0) {
715                 if (!frame) {
716                         packet.type = SR_DF_FRAME_BEGIN;
717                         sr_session_send(devc->cb_data, &packet);
718                         frame = TRUE;
719                 }
720
721                 packet.type = SR_DF_ANALOG;
722                 packet.payload = &analog;
723
724                 sr_session_send(devc->cb_data, &packet);
725         }
726
727         analog.channels = g_slist_append(NULL, sdi->channels->next->data);
728
729         parse_measurement(pkt, &floatval, &analog, 1);
730         if (analog.mq >= 0) {
731                 if (!frame) {
732                         packet.type = SR_DF_FRAME_BEGIN;
733                         sr_session_send(devc->cb_data, &packet);
734                         frame = TRUE;
735                 }
736
737                 packet.type = SR_DF_ANALOG;
738                 packet.payload = &analog;
739
740                 sr_session_send(devc->cb_data, &packet);
741         }
742
743         if (frame) {
744                 packet.type = SR_DF_FRAME_END;
745                 sr_session_send(devc->cb_data, &packet);
746                 dev_sample_counter_inc(&devc->sample_count);
747         }
748 }
749
750 static int handle_new_data(struct sr_dev_inst *sdi)
751 {
752         struct dev_context *devc;
753         uint8_t *pkt;
754         int ret;
755
756         devc = sdi->priv;
757
758         ret = dev_buffer_fill_serial(devc->buf, sdi);
759         if (ret < 0)
760                 return ret;
761
762         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
763                                              PACKET_SIZE)))
764                 handle_packet(sdi, pkt);
765
766         return SR_OK;
767 }
768
769 static int receive_data(int fd, int revents, void *cb_data)
770 {
771         struct sr_dev_inst *sdi;
772         struct dev_context *devc;
773
774         (void)fd;
775
776         if (!(sdi = cb_data))
777                 return TRUE;
778
779         if (!(devc = sdi->priv))
780                 return TRUE;
781
782         if (revents == G_IO_IN) {
783                 /* Serial data arrived. */
784                 handle_new_data(sdi);
785         }
786
787         if (dev_sample_limit_reached(&devc->sample_count) ||
788             dev_time_limit_reached(&devc->time_count))
789                 sdi->driver->dev_acquisition_stop(sdi, cb_data);
790
791         return TRUE;
792 }
793
794 static int add_channel(struct sr_dev_inst *sdi, int idx, const char *name)
795 {
796         struct sr_channel *ch;
797
798         ch = sr_channel_new(idx, SR_CHANNEL_ANALOG, TRUE, name);
799         sdi->channels = g_slist_append(sdi->channels, ch);
800
801         return SR_OK;
802 }
803
804 static const char *const channel_names[] = { "P1", "P2" };
805
806 static int setup_channels(struct sr_dev_inst *sdi)
807 {
808         unsigned int i;
809         int ret;
810
811         ret = SR_ERR_BUG;
812
813         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
814                 ret = add_channel(sdi, i, channel_names[i]);
815                 if (ret != SR_OK)
816                         break;
817         }
818
819         return ret;
820 }
821
822 SR_PRIV void es51919_serial_clean(void *priv)
823 {
824         struct dev_context *devc;
825
826         if (!(devc = priv))
827                 return;
828
829         dev_buffer_destroy(devc->buf);
830         g_free(devc);
831 }
832
833 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
834                                                 const char *vendor,
835                                                 const char *model)
836 {
837         struct sr_serial_dev_inst *serial;
838         struct sr_dev_inst *sdi;
839         struct dev_context *devc;
840         int ret;
841
842         serial = NULL;
843         sdi = NULL;
844         devc = NULL;
845
846         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
847                 goto scan_cleanup;
848
849         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
850                                   3000, 9600);
851         if (ret != SR_OK)
852                 goto scan_cleanup;
853
854         sr_info("Found device on port %s.", serial->port);
855
856         sdi = g_malloc0(sizeof(struct sr_dev_inst));
857         sdi->status = SR_ST_INACTIVE;
858         sdi->vendor = g_strdup(vendor);
859         sdi->model = g_strdup(model);
860         devc = g_malloc0(sizeof(struct dev_context));
861         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
862         sdi->inst_type = SR_INST_SERIAL;
863         sdi->conn = serial;
864         sdi->priv = devc;
865
866         if (setup_channels(sdi) != SR_OK)
867                 goto scan_cleanup;
868
869         return sdi;
870
871 scan_cleanup:
872         es51919_serial_clean(devc);
873         if (sdi)
874                 sr_dev_inst_free(sdi);
875         if (serial)
876                 sr_serial_dev_inst_free(serial);
877
878         return NULL;
879 }
880
881 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
882                                       const struct sr_dev_inst *sdi,
883                                       const struct sr_channel_group *cg)
884 {
885         struct dev_context *devc;
886
887         (void)cg;
888
889         if (!(devc = sdi->priv))
890                 return SR_ERR_BUG;
891
892         switch (key) {
893         case SR_CONF_OUTPUT_FREQUENCY:
894                 *data = g_variant_new_uint64(frequencies[devc->freq]);
895                 break;
896         case SR_CONF_MEASURED_QUANTITY:
897                 *data = g_variant_new_string(quantities1[devc->quant1]);
898                 break;
899         case SR_CONF_MEASURED_2ND_QUANTITY:
900                 *data = g_variant_new_string(quantities2[devc->quant2]);
901                 break;
902         case SR_CONF_EQUIV_CIRCUIT_MODEL:
903                 *data = g_variant_new_string(models[devc->model]);
904                 break;
905         default:
906                 sr_spew("%s: Unsupported key %u", __func__, key);
907                 return SR_ERR_NA;
908         }
909
910         return SR_OK;
911 }
912
913 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
914                                       const struct sr_dev_inst *sdi,
915                                       const struct sr_channel_group *cg)
916 {
917         struct dev_context *devc;
918         uint64_t val;
919
920         (void)cg;
921
922         if (!(devc = sdi->priv))
923                 return SR_ERR_BUG;
924
925         switch (key) {
926         case SR_CONF_LIMIT_MSEC:
927                 val = g_variant_get_uint64(data);
928                 dev_time_limit_set(&devc->time_count, val);
929                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
930                 break;
931         case SR_CONF_LIMIT_SAMPLES:
932                 val = g_variant_get_uint64(data);
933                 dev_sample_limit_set(&devc->sample_count, val);
934                 sr_dbg("Setting sample limit to %" PRIu64 ".", val);
935                 break;
936         default:
937                 sr_spew("%s: Unsupported key %u", __func__, key);
938                 return SR_ERR_NA;
939         }
940
941         return SR_OK;
942 }
943
944 static const uint32_t scanopts[] = {
945         SR_CONF_CONN,
946         SR_CONF_SERIALCOMM,
947 };
948
949 static const uint32_t devopts[] = {
950         SR_CONF_LCRMETER,
951         SR_CONF_CONTINUOUS,
952         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
953         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
954         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
955         SR_CONF_MEASURED_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
956         SR_CONF_MEASURED_2ND_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
957         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
958 };
959
960 static const struct std_opt_desc opts = {
961         scanopts, ARRAY_SIZE(scanopts),
962         devopts, ARRAY_SIZE(devopts),
963 };
964
965 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
966                                        const struct sr_dev_inst *sdi,
967                                        const struct sr_channel_group *cg)
968 {
969         (void)sdi;
970         (void)cg;
971
972         if (std_config_list(key, data, &opts) == SR_OK)
973                 return SR_OK;
974
975         switch (key) {
976         case SR_CONF_OUTPUT_FREQUENCY:
977                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
978                         frequencies, ARRAY_SIZE(frequencies), sizeof(uint64_t));
979                 break;
980         case SR_CONF_MEASURED_QUANTITY:
981                 *data = g_variant_new_strv(list_quantities1,
982                                            ARRAY_SIZE(list_quantities1));
983                 break;
984         case SR_CONF_MEASURED_2ND_QUANTITY:
985                 *data = g_variant_new_strv(quantities2,
986                                            ARRAY_SIZE(quantities2));
987                 break;
988         case SR_CONF_EQUIV_CIRCUIT_MODEL:
989                 *data = g_variant_new_strv(models, ARRAY_SIZE(models));
990                 break;
991         default:
992                 sr_spew("%s: Unsupported key %u", __func__, key);
993                 return SR_ERR_NA;
994         }
995
996         return SR_OK;
997 }
998
999 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi,
1000                                              void *cb_data)
1001 {
1002         struct dev_context *devc;
1003         struct sr_serial_dev_inst *serial;
1004
1005         if (sdi->status != SR_ST_ACTIVE)
1006                 return SR_ERR_DEV_CLOSED;
1007
1008         if (!(devc = sdi->priv))
1009                 return SR_ERR_BUG;
1010
1011         devc->cb_data = cb_data;
1012
1013         dev_sample_counter_start(&devc->sample_count);
1014         dev_time_counter_start(&devc->time_count);
1015
1016         /* Send header packet to the session bus. */
1017         std_session_send_df_header(cb_data, LOG_PREFIX);
1018
1019         /* Poll every 50ms, or whenever some data comes in. */
1020         serial = sdi->conn;
1021         serial_source_add(sdi->session, serial, G_IO_IN, 50,
1022                           receive_data, (void *)sdi);
1023
1024         return SR_OK;
1025 }
1026
1027 SR_PRIV int es51919_serial_acquisition_stop(struct sr_dev_inst *sdi,
1028                                             void *cb_data)
1029 {
1030         return std_serial_dev_acquisition_stop(sdi, cb_data,
1031                         std_serial_dev_close, sdi->conn, LOG_PREFIX);
1032 }