]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
Change sr_dev_inst_new() to take no parameters.
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <stdint.h>
21 #include <string.h>
22 #include <math.h>
23 #include <glib.h>
24 #include "libsigrok.h"
25 #include "libsigrok-internal.h"
26
27 #define LOG_PREFIX "es51919"
28
29 struct dev_buffer {
30         /** Total size of the buffer. */
31         size_t size;
32         /** Amount of data currently in the buffer. */
33         size_t len;
34         /** Offset where the data starts in the buffer. */
35         size_t offset;
36         /** Space for the data. */
37         uint8_t data[];
38 };
39
40 static struct dev_buffer *dev_buffer_new(size_t size)
41 {
42         struct dev_buffer *dbuf;
43
44         if (!(dbuf = g_try_malloc(sizeof(struct dev_buffer) + size))) {
45                 sr_err("Dev buffer malloc failed (size=%zu).", size);
46                 return NULL;
47         }
48
49         dbuf->size = size;
50         dbuf->len = 0;
51         dbuf->offset = 0;
52
53         return dbuf;
54 }
55
56 static void dev_buffer_destroy(struct dev_buffer *dbuf)
57 {
58         g_free(dbuf);
59 }
60
61 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
62                                   struct sr_dev_inst *sdi)
63 {
64         struct sr_serial_dev_inst *serial;
65         int len;
66
67         serial = sdi->conn;
68
69         /* If we already have data, move it to the beginning of the buffer. */
70         if (dbuf->len > 0 && dbuf->offset > 0)
71                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
72
73         dbuf->offset = 0;
74
75         len = dbuf->size - dbuf->len;
76         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
77         if (len < 0) {
78                 sr_err("Serial port read error: %d.", len);
79                 return len;
80         }
81
82         dbuf->len += len;
83
84         return SR_OK;
85 }
86
87 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
88                                 gboolean (*packet_valid)(const uint8_t *),
89                                 size_t packet_size)
90 {
91         size_t offset;
92
93         while (dbuf->len >= packet_size) {
94                 if (packet_valid(dbuf->data + dbuf->offset)) {
95                         offset = dbuf->offset;
96                         dbuf->offset += packet_size;
97                         dbuf->len -= packet_size;
98                         return dbuf->data + offset;
99                 }
100                 dbuf->offset++;
101                 dbuf->len--;
102         }
103
104         return NULL;
105 }
106
107 struct dev_sample_counter {
108         /** The current number of already received samples. */
109         uint64_t count;
110         /** The current sampling limit (in number of samples). */
111         uint64_t limit;
112 };
113
114 static void dev_sample_counter_start(struct dev_sample_counter *cnt)
115 {
116         cnt->count = 0;
117 }
118
119 static void dev_sample_counter_inc(struct dev_sample_counter *cnt)
120 {
121         cnt->count++;
122 }
123
124 static void dev_sample_limit_set(struct dev_sample_counter *cnt, uint64_t limit)
125 {
126         cnt->limit = limit;
127 }
128
129 static gboolean dev_sample_limit_reached(struct dev_sample_counter *cnt)
130 {
131         if (cnt->limit && cnt->count >= cnt->limit) {
132                 sr_info("Requested sample limit reached.");
133                 return TRUE;
134         }
135
136         return FALSE;
137 }
138
139 struct dev_time_counter {
140         /** The starting time of current sampling run. */
141         int64_t starttime;
142         /** The time limit (in milliseconds). */
143         uint64_t limit;
144 };
145
146 static void dev_time_counter_start(struct dev_time_counter *cnt)
147 {
148         cnt->starttime = g_get_monotonic_time();
149 }
150
151 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
152 {
153         cnt->limit = limit;
154 }
155
156 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
157 {
158         int64_t time;
159
160         if (cnt->limit) {
161                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
162                 if (time > (int64_t)cnt->limit) {
163                         sr_info("Requested time limit reached.");
164                         return TRUE;
165                 }
166         }
167
168         return FALSE;
169 }
170
171 static void serial_conf_get(GSList *options, const char *def_serialcomm,
172                             const char **conn, const char **serialcomm)
173 {
174         struct sr_config *src;
175         GSList *l;
176
177         *conn = *serialcomm = NULL;
178         for (l = options; l; l = l->next) {
179                 src = l->data;
180                 switch (src->key) {
181                 case SR_CONF_CONN:
182                         *conn = g_variant_get_string(src->data, NULL);
183                         break;
184                 case SR_CONF_SERIALCOMM:
185                         *serialcomm = g_variant_get_string(src->data, NULL);
186                         break;
187                 }
188         }
189
190         if (*serialcomm == NULL)
191                 *serialcomm = def_serialcomm;
192 }
193
194 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
195                                                  const char *def_serialcomm)
196
197 {
198         const char *conn, *serialcomm;
199
200         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
201
202         if (!conn)
203                 return NULL;
204
205         return sr_serial_dev_inst_new(conn, serialcomm);
206 }
207
208 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
209                                    uint8_t *buf, size_t buflen,
210                                    size_t packet_size,
211                                    packet_valid_callback is_valid,
212                                    uint64_t timeout_ms, int baudrate)
213 {
214         size_t len, dropped;
215         int ret;
216
217         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
218                 return ret;
219
220         serial_flush(serial);
221
222         len = buflen;
223         ret = serial_stream_detect(serial, buf, &len, packet_size,
224                                    is_valid, timeout_ms, baudrate);
225
226         serial_close(serial);
227
228         if (ret != SR_OK)
229                 return ret;
230
231         /*
232          * If we dropped more than two packets worth of data, something is
233          * wrong. We shouldn't quit however, since the dropped bytes might be
234          * just zeroes at the beginning of the stream. Those can occur as a
235          * combination of the nonstandard cable that ships with some devices
236          * and the serial port or USB to serial adapter.
237          */
238         dropped = len - packet_size;
239         if (dropped > 2 * packet_size)
240                 sr_warn("Had to drop too much data.");
241
242         return SR_OK;
243 }
244
245 static int serial_stream_check(struct sr_serial_dev_inst *serial,
246                                size_t packet_size,
247                                packet_valid_callback is_valid,
248                                uint64_t timeout_ms, int baudrate)
249 {
250         uint8_t buf[128];
251
252         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
253                                        is_valid, timeout_ms, baudrate);
254 }
255
256 struct std_opt_desc {
257         const uint32_t *scanopts;
258         const int num_scanopts;
259         const uint32_t *devopts;
260         const int num_devopts;
261 };
262
263 static int std_config_list(uint32_t key, GVariant **data,
264                            const struct std_opt_desc *d)
265 {
266         switch (key) {
267         case SR_CONF_SCAN_OPTIONS:
268                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
269                         d->scanopts, d->num_scanopts, sizeof(uint32_t));
270                 break;
271         case SR_CONF_DEVICE_OPTIONS:
272                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
273                         d->devopts, d->num_devopts, sizeof(uint32_t));
274                 break;
275         default:
276                 return SR_ERR_NA;
277         }
278
279         return SR_OK;
280 }
281
282 static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
283 {
284         struct sr_datafeed_packet packet;
285         struct sr_datafeed_meta meta;
286
287         memset(&meta, 0, sizeof(meta));
288
289         packet.type = SR_DF_META;
290         packet.payload = &meta;
291
292         meta.config = g_slist_append(meta.config, cfg);
293
294         return sr_session_send(sdi, &packet);
295 }
296
297 static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
298                                   GVariant *var)
299 {
300         struct sr_config *cfg;
301         int ret;
302
303         cfg = sr_config_new(key, var);
304         if (!cfg)
305                 return SR_ERR;
306
307         ret = send_config_update(sdi, cfg);
308         sr_config_free(cfg);
309
310         return ret;
311
312 }
313
314 /*
315  * Cyrustek ES51919 LCR chipset host protocol.
316  *
317  * Public official documentation does not contain the protocol
318  * description, so this is all based on reverse engineering.
319  *
320  * Packet structure (17 bytes):
321  *
322  * 0x00: header1 ?? (0x00)
323  * 0x01: header2 ?? (0x0d)
324  *
325  * 0x02: flags
326  *         bit 0 = hold enabled
327  *         bit 1 = reference shown (in delta mode)
328  *         bit 2 = delta mode
329  *         bit 3 = calibration mode
330  *         bit 4 = sorting mode
331  *         bit 5 = LCR mode
332  *         bit 6 = auto mode
333  *         bit 7 = parallel measurement (vs. serial)
334  *
335  * 0x03: config
336  *         bit 0-4 = ??? (0x10)
337  *         bit 5-7 = test frequency
338  *                     0 = 100 Hz
339  *                     1 = 120 Hz
340  *                     2 = 1 kHz
341  *                     3 = 10 kHz
342  *                     4 = 100 kHz
343  *                     5 = 0 Hz (DC)
344  *
345  * 0x04: tolerance (sorting mode)
346  *         0 = not set
347  *         3 = +-0.25%
348  *         4 = +-0.5%
349  *         5 = +-1%
350  *         6 = +-2%
351  *         7 = +-5%
352  *         8 = +-10%
353  *         9 = +-20%
354  *        10 = -20+80%
355  *
356  * 0x05-0x09: primary measurement
357  *   0x05: measured quantity
358  *           1 = inductance
359  *           2 = capacitance
360  *           3 = resistance
361  *           4 = DC resistance
362  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
363  *   0x07: measurement LSB
364  *   0x08: measurement info
365  *           bit 0-2 = decimal point multiplier (10^-val)
366  *           bit 3-7 = unit
367  *                       0 = no unit
368  *                       1 = Ohm
369  *                       2 = kOhm
370  *                       3 = MOhm
371  *                       5 = uH
372  *                       6 = mH
373  *                       7 = H
374  *                       8 = kH
375  *                       9 = pF
376  *                       10 = nF
377  *                       11 = uF
378  *                       12 = mF
379  *                       13 = %
380  *                       14 = degree
381  *   0x09: measurement status
382  *           bit 0-3 = status
383  *                       0 = normal (measurement shown)
384  *                       1 = blank (nothing shown)
385  *                       2 = lines ("----")
386  *                       3 = outside limits ("OL")
387  *                       7 = pass ("PASS")
388  *                       8 = fail ("FAIL")
389  *                       9 = open ("OPEn")
390  *                      10 = shorted ("Srt")
391  *           bit 4-6 = ??? (maybe part of same field with 0-3)
392  *           bit 7   = ??? (some independent flag)
393  *
394  * 0x0a-0x0e: secondary measurement
395  *   0x0a: measured quantity
396  *           0 = none
397  *           1 = dissipation factor
398  *           2 = quality factor
399  *           3 = parallel AC resistance / ESR
400  *           4 = phase angle
401  *   0x0b-0x0e: like primary measurement
402  *
403  * 0x0f: footer1 (0x0d) ?
404  * 0x10: footer2 (0x0a) ?
405  */
406
407 #define PACKET_SIZE 17
408
409 static const uint64_t frequencies[] = {
410         100, 120, 1000, 10000, 100000, 0,
411 };
412
413 enum { QUANT_AUTO = 5, };
414
415 static const char *const quantities1[] = {
416         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "RESISTANCE", "AUTO",
417 };
418
419 static const char *const list_quantities1[] = {
420         "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "AUTO",
421 };
422
423 static const char *const quantities2[] = {
424         "NONE", "DISSIPATION", "QUALITY", "RESISTANCE", "ANGLE", "AUTO",
425 };
426
427 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
428
429 static const char *const models[] = {
430         "NONE", "PARALLEL", "SERIES", "AUTO",
431 };
432
433 /** Private, per-device-instance driver context. */
434 struct dev_context {
435         /** Opaque pointer passed in by the frontend. */
436         void *cb_data;
437
438         /** The number of samples. */
439         struct dev_sample_counter sample_count;
440
441         /** The time limit counter. */
442         struct dev_time_counter time_count;
443
444         /** Data buffer. */
445         struct dev_buffer *buf;
446
447         /** The frequency of the test signal (index to frequencies[]). */
448         unsigned int freq;
449
450         /** Measured primary quantity (index to quantities1[]). */
451         unsigned int quant1;
452
453         /** Measured secondary quantity (index to quantities2[]). */
454         unsigned int quant2;
455
456         /** Equivalent circuit model (index to models[]). */
457         unsigned int model;
458 };
459
460 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
461 {
462         return is_secondary ? pkt + 10 : pkt + 5;
463 }
464
465 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
466 {
467         const uint8_t *buf;
468
469         buf = pkt_to_buf(pkt, is_secondary);
470
471         switch (is_secondary << 8 | buf[0]) {
472         case 0x001:
473                 return is_parallel ?
474                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
475         case 0x002:
476                 return is_parallel ?
477                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
478         case 0x003:
479         case 0x103:
480                 return is_parallel ?
481                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
482         case 0x004:
483                 return SR_MQ_RESISTANCE;
484         case 0x100:
485                 return SR_MQ_DIFFERENCE;
486         case 0x101:
487                 return SR_MQ_DISSIPATION_FACTOR;
488         case 0x102:
489                 return SR_MQ_QUALITY_FACTOR;
490         case 0x104:
491                 return SR_MQ_PHASE_ANGLE;
492         }
493
494         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
495
496         return -1;
497 }
498
499 static float parse_value(const uint8_t *buf)
500 {
501         static const float decimals[] = {
502                 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7
503         };
504         int16_t val;
505
506         val = (buf[1] << 8) | buf[2];
507         return (float)val * decimals[buf[3] & 7];
508 }
509
510 static void parse_measurement(const uint8_t *pkt, float *floatval,
511                               struct sr_datafeed_analog *analog,
512                               int is_secondary)
513 {
514         static const struct {
515                 int unit;
516                 float mult;
517         } units[] = {
518                 { SR_UNIT_UNITLESS, 1 },        /* no unit */
519                 { SR_UNIT_OHM, 1 },             /* Ohm     */
520                 { SR_UNIT_OHM, 1e3 },           /* kOhm    */
521                 { SR_UNIT_OHM, 1e6 },           /* MOhm    */
522                 { -1, 0 },                      /* ???     */
523                 { SR_UNIT_HENRY, 1e-6 },        /* uH      */
524                 { SR_UNIT_HENRY, 1e-3 },        /* mH      */
525                 { SR_UNIT_HENRY, 1 },           /* H       */
526                 { SR_UNIT_HENRY, 1e3 },         /* kH      */
527                 { SR_UNIT_FARAD, 1e-12 },       /* pF      */
528                 { SR_UNIT_FARAD, 1e-9 },        /* nF      */
529                 { SR_UNIT_FARAD, 1e-6 },        /* uF      */
530                 { SR_UNIT_FARAD, 1e-3 },        /* mF      */
531                 { SR_UNIT_PERCENTAGE, 1 },      /* %       */
532                 { SR_UNIT_DEGREE, 1 }           /* degree  */
533         };
534         const uint8_t *buf;
535         int state;
536
537         buf = pkt_to_buf(pkt, is_secondary);
538
539         analog->mq = -1;
540         analog->mqflags = 0;
541
542         state = buf[4] & 0xf;
543
544         if (state != 0 && state != 3)
545                 return;
546
547         if (pkt[2] & 0x18) {
548                 /* Calibration and Sorting modes not supported. */
549                 return;
550         }
551
552         if (!is_secondary) {
553                 if (pkt[2] & 0x01)
554                         analog->mqflags |= SR_MQFLAG_HOLD;
555                 if (pkt[2] & 0x02)
556                         analog->mqflags |= SR_MQFLAG_REFERENCE;
557         } else {
558                 if (pkt[2] & 0x04)
559                         analog->mqflags |= SR_MQFLAG_RELATIVE;
560         }
561
562         if ((analog->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) < 0)
563                 return;
564
565         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
566                 sr_err("Unknown unit %u.", buf[3] >> 3);
567                 analog->mq = -1;
568                 return;
569         }
570
571         analog->unit = units[buf[3] >> 3].unit;
572
573         *floatval = parse_value(buf);
574         *floatval *= (state == 0) ? units[buf[3] >> 3].mult : INFINITY;
575 }
576
577 static unsigned int parse_freq(const uint8_t *pkt)
578 {
579         unsigned int freq;
580
581         freq = pkt[3] >> 5;
582
583         if (freq >= ARRAY_SIZE(frequencies)) {
584                 sr_err("Unknown frequency %u.", freq);
585                 freq = ARRAY_SIZE(frequencies) - 1;
586         }
587
588         return freq;
589 }
590
591 static unsigned int parse_quant(const uint8_t *pkt, int is_secondary)
592 {
593         const uint8_t *buf;
594
595         if (pkt[2] & 0x20)
596                 return QUANT_AUTO;
597
598         buf = pkt_to_buf(pkt, is_secondary);
599
600         return buf[0];
601 }
602
603 static unsigned int parse_model(const uint8_t *pkt)
604 {
605         if (pkt[2] & 0x40)
606                 return MODEL_AUTO;
607         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
608                 return MODEL_NONE;
609         else if (pkt[2] & 0x80)
610                 return MODEL_PAR;
611         else
612                 return MODEL_SER;
613
614 }
615
616 static gboolean packet_valid(const uint8_t *pkt)
617 {
618         /*
619          * If the first two bytes of the packet are indeed a constant
620          * header, they should be checked too. Since we don't know it
621          * for sure, we'll just check the last two for now since they
622          * seem to be constant just like in the other Cyrustek chipset
623          * protocols.
624          */
625         if (pkt[15] == 0xd && pkt[16] == 0xa)
626                 return TRUE;
627
628         return FALSE;
629 }
630
631 static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
632                             GVariant *var)
633 {
634         struct dev_context *devc;
635
636         devc = sdi->priv;
637
638         return send_config_update_key(devc->cb_data, key, var);
639 }
640
641 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
642 {
643         return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
644                                 g_variant_new_uint64(frequencies[freq]));
645 }
646
647 static int send_quant1_update(struct sr_dev_inst *sdi, unsigned int quant)
648 {
649         return do_config_update(sdi, SR_CONF_MEASURED_QUANTITY,
650                                 g_variant_new_string(quantities1[quant]));
651 }
652
653 static int send_quant2_update(struct sr_dev_inst *sdi, unsigned int quant)
654 {
655         return do_config_update(sdi, SR_CONF_MEASURED_2ND_QUANTITY,
656                                 g_variant_new_string(quantities2[quant]));
657 }
658
659 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
660 {
661         return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
662                                 g_variant_new_string(models[model]));
663 }
664
665 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
666 {
667         struct sr_datafeed_packet packet;
668         struct sr_datafeed_analog analog;
669         struct dev_context *devc;
670         unsigned int val;
671         float floatval;
672         int count;
673
674         devc = sdi->priv;
675
676         val = parse_freq(pkt);
677         if (val != devc->freq) {
678                 if (send_freq_update(sdi, val) == SR_OK)
679                         devc->freq = val;
680                 else
681                         return;
682         }
683
684         val = parse_quant(pkt, 0);
685         if (val != devc->quant1) {
686                 if (send_quant1_update(sdi, val) == SR_OK)
687                         devc->quant1 = val;
688                 else
689                         return;
690         }
691
692         val = parse_quant(pkt, 1);
693         if (val != devc->quant2) {
694                 if (send_quant2_update(sdi, val) == SR_OK)
695                         devc->quant2 = val;
696                 else
697                         return;
698         }
699
700         val = parse_model(pkt);
701         if (val != devc->model) {
702                 if (send_model_update(sdi, val) == SR_OK)
703                         devc->model = val;
704                 else
705                         return;
706         }
707
708         count = 0;
709
710         memset(&analog, 0, sizeof(analog));
711
712         analog.num_samples = 1;
713         analog.data = &floatval;
714
715         packet.type = SR_DF_ANALOG;
716         packet.payload = &analog;
717
718         analog.channels = g_slist_append(NULL, sdi->channels->data);
719
720         parse_measurement(pkt, &floatval, &analog, 0);
721         if (analog.mq >= 0) {
722                 if (sr_session_send(devc->cb_data, &packet) == SR_OK)
723                         count++;
724         }
725
726         analog.channels = g_slist_append(NULL, sdi->channels->next->data);
727
728         parse_measurement(pkt, &floatval, &analog, 1);
729         if (analog.mq >= 0) {
730                 if (sr_session_send(devc->cb_data, &packet) == SR_OK)
731                         count++;
732         }
733
734         if (count > 0)
735                 dev_sample_counter_inc(&devc->sample_count);
736 }
737
738 static int handle_new_data(struct sr_dev_inst *sdi)
739 {
740         struct dev_context *devc;
741         uint8_t *pkt;
742         int ret;
743
744         devc = sdi->priv;
745
746         ret = dev_buffer_fill_serial(devc->buf, sdi);
747         if (ret < 0)
748                 return ret;
749
750         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
751                                              PACKET_SIZE)))
752                 handle_packet(sdi, pkt);
753
754         return SR_OK;
755 }
756
757 static int receive_data(int fd, int revents, void *cb_data)
758 {
759         struct sr_dev_inst *sdi;
760         struct dev_context *devc;
761
762         (void)fd;
763
764         if (!(sdi = cb_data))
765                 return TRUE;
766
767         if (!(devc = sdi->priv))
768                 return TRUE;
769
770         if (revents == G_IO_IN) {
771                 /* Serial data arrived. */
772                 handle_new_data(sdi);
773         }
774
775         if (dev_sample_limit_reached(&devc->sample_count) ||
776             dev_time_limit_reached(&devc->time_count))
777                 sdi->driver->dev_acquisition_stop(sdi, cb_data);
778
779         return TRUE;
780 }
781
782 static int add_channel(struct sr_dev_inst *sdi, const char *name)
783 {
784         struct sr_channel *ch;
785
786         if (!(ch = sr_channel_new(0, SR_CHANNEL_ANALOG, TRUE, name)))
787                 return SR_ERR;
788
789         sdi->channels = g_slist_append(sdi->channels, ch);
790
791         return SR_OK;
792 }
793
794 static const char *const channel_names[] = { "P1", "P2" };
795
796 static int setup_channels(struct sr_dev_inst *sdi)
797 {
798         unsigned int i;
799         int ret;
800
801         ret = SR_ERR_BUG;
802
803         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
804                 ret = add_channel(sdi, channel_names[i]);
805                 if (ret != SR_OK)
806                         break;
807         }
808
809         return ret;
810 }
811
812 SR_PRIV void es51919_serial_clean(void *priv)
813 {
814         struct dev_context *devc;
815
816         if (!(devc = priv))
817                 return;
818
819         dev_buffer_destroy(devc->buf);
820         g_free(devc);
821 }
822
823 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
824                                                 const char *vendor,
825                                                 const char *model)
826 {
827         struct sr_serial_dev_inst *serial;
828         struct sr_dev_inst *sdi;
829         struct dev_context *devc;
830         int ret;
831
832         serial = NULL;
833         sdi = NULL;
834         devc = NULL;
835
836         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
837                 goto scan_cleanup;
838
839         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
840                                   3000, 9600);
841         if (ret != SR_OK)
842                 goto scan_cleanup;
843
844         sr_info("Found device on port %s.", serial->port);
845
846         sdi = sr_dev_inst_new();
847         sdi->status = SR_ST_INACTIVE;
848         sdi->vendor = g_strdup(vendor);
849         sdi->model = g_strdup(model);
850
851         if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
852                 sr_err("Device context malloc failed.");
853                 goto scan_cleanup;
854         }
855
856         if (!(devc->buf = dev_buffer_new(PACKET_SIZE * 8)))
857                 goto scan_cleanup;
858
859         sdi->inst_type = SR_INST_SERIAL;
860         sdi->conn = serial;
861
862         sdi->priv = devc;
863
864         if (setup_channels(sdi) != SR_OK)
865                 goto scan_cleanup;
866
867         return sdi;
868
869 scan_cleanup:
870         es51919_serial_clean(devc);
871         if (sdi)
872                 sr_dev_inst_free(sdi);
873         if (serial)
874                 sr_serial_dev_inst_free(serial);
875
876         return NULL;
877 }
878
879 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
880                                       const struct sr_dev_inst *sdi,
881                                       const struct sr_channel_group *cg)
882 {
883         struct dev_context *devc;
884
885         (void)cg;
886
887         if (!(devc = sdi->priv))
888                 return SR_ERR_BUG;
889
890         switch (key) {
891         case SR_CONF_OUTPUT_FREQUENCY:
892                 *data = g_variant_new_uint64(frequencies[devc->freq]);
893                 break;
894         case SR_CONF_MEASURED_QUANTITY:
895                 *data = g_variant_new_string(quantities1[devc->quant1]);
896                 break;
897         case SR_CONF_MEASURED_2ND_QUANTITY:
898                 *data = g_variant_new_string(quantities2[devc->quant2]);
899                 break;
900         case SR_CONF_EQUIV_CIRCUIT_MODEL:
901                 *data = g_variant_new_string(models[devc->model]);
902                 break;
903         default:
904                 sr_spew("%s: Unsupported key %u", __func__, key);
905                 return SR_ERR_NA;
906         }
907
908         return SR_OK;
909 }
910
911 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
912                                       const struct sr_dev_inst *sdi,
913                                       const struct sr_channel_group *cg)
914 {
915         struct dev_context *devc;
916         uint64_t val;
917
918         (void)cg;
919
920         if (!(devc = sdi->priv))
921                 return SR_ERR_BUG;
922
923         switch (key) {
924         case SR_CONF_LIMIT_MSEC:
925                 val = g_variant_get_uint64(data);
926                 dev_time_limit_set(&devc->time_count, val);
927                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
928                 break;
929         case SR_CONF_LIMIT_SAMPLES:
930                 val = g_variant_get_uint64(data);
931                 dev_sample_limit_set(&devc->sample_count, val);
932                 sr_dbg("Setting sample limit to %" PRIu64 ".", val);
933                 break;
934         default:
935                 sr_spew("%s: Unsupported key %u", __func__, key);
936                 return SR_ERR_NA;
937         }
938
939         return SR_OK;
940 }
941
942 static const uint32_t scanopts[] = {
943         SR_CONF_CONN,
944         SR_CONF_SERIALCOMM,
945 };
946
947 static const uint32_t devopts[] = {
948         SR_CONF_LCRMETER,
949         SR_CONF_CONTINUOUS,
950         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
951         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
952         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
953         SR_CONF_MEASURED_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
954         SR_CONF_MEASURED_2ND_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
955         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
956 };
957
958 static const struct std_opt_desc opts = {
959         scanopts, ARRAY_SIZE(scanopts),
960         devopts, ARRAY_SIZE(devopts),
961 };
962
963 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
964                                        const struct sr_dev_inst *sdi,
965                                        const struct sr_channel_group *cg)
966 {
967         (void)sdi;
968         (void)cg;
969
970         if (std_config_list(key, data, &opts) == SR_OK)
971                 return SR_OK;
972
973         switch (key) {
974         case SR_CONF_OUTPUT_FREQUENCY:
975                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
976                         frequencies, ARRAY_SIZE(frequencies), sizeof(uint64_t));
977                 break;
978         case SR_CONF_MEASURED_QUANTITY:
979                 *data = g_variant_new_strv(list_quantities1,
980                                            ARRAY_SIZE(list_quantities1));
981                 break;
982         case SR_CONF_MEASURED_2ND_QUANTITY:
983                 *data = g_variant_new_strv(quantities2,
984                                            ARRAY_SIZE(quantities2));
985                 break;
986         case SR_CONF_EQUIV_CIRCUIT_MODEL:
987                 *data = g_variant_new_strv(models, ARRAY_SIZE(models));
988                 break;
989         default:
990                 sr_spew("%s: Unsupported key %u", __func__, key);
991                 return SR_ERR_NA;
992         }
993
994         return SR_OK;
995 }
996
997 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi,
998                                              void *cb_data)
999 {
1000         struct dev_context *devc;
1001         struct sr_serial_dev_inst *serial;
1002
1003         if (sdi->status != SR_ST_ACTIVE)
1004                 return SR_ERR_DEV_CLOSED;
1005
1006         if (!(devc = sdi->priv))
1007                 return SR_ERR_BUG;
1008
1009         devc->cb_data = cb_data;
1010
1011         dev_sample_counter_start(&devc->sample_count);
1012         dev_time_counter_start(&devc->time_count);
1013
1014         /* Send header packet to the session bus. */
1015         std_session_send_df_header(cb_data, LOG_PREFIX);
1016
1017         /* Poll every 50ms, or whenever some data comes in. */
1018         serial = sdi->conn;
1019         serial_source_add(sdi->session, serial, G_IO_IN, 50,
1020                           receive_data, (void *)sdi);
1021
1022         return SR_OK;
1023 }
1024
1025 SR_PRIV int es51919_serial_acquisition_stop(struct sr_dev_inst *sdi,
1026                                             void *cb_data)
1027 {
1028         return std_serial_dev_acquisition_stop(sdi, cb_data,
1029                         std_serial_dev_close, sdi->conn, LOG_PREFIX);
1030 }