]> sigrok.org Git - libsigrok.git/blob - src/hwdriver.c
Add config info for device type and limit config keys.
[libsigrok.git] / src / hwdriver.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <sys/types.h>
23 #include <dirent.h>
24 #include <string.h>
25 #include <glib.h>
26 #include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */
27 #include "libsigrok.h"
28 #include "libsigrok-internal.h"
29
30 /** @cond PRIVATE */
31 #define LOG_PREFIX "hwdriver"
32 /** @endcond */
33
34 extern SR_PRIV struct sr_dev_driver *drivers_list[];
35
36 /**
37  * @file
38  *
39  * Hardware driver handling in libsigrok.
40  */
41
42 /**
43  * @defgroup grp_driver Hardware drivers
44  *
45  * Hardware driver handling in libsigrok.
46  *
47  * @{
48  */
49
50 static struct sr_config_info sr_config_info_data[] = {
51         /* Device types */
52         {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic Analyzer", NULL},
53         {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
54         {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
55         {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
56         {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
57         {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
58         {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
59         {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
60         {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
61         {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
62         {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
63
64         /* Sample limiting */
65         {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
66                 "Sample limit", NULL},
67         {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
68                 "Time limit", NULL},
69         {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
70                 "Frame limit", NULL},
71         {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous",
72                 "Continuous sampling", NULL},
73
74         /* Scan options */
75         {SR_CONF_CONN, SR_T_STRING, "conn",
76                 "Connection", NULL},
77         {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
78                 "Serial communication", NULL},
79
80         /* Device/channel group options */
81         {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
82                 "Sample rate", NULL},
83         {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
84                 "Pre-trigger capture ratio", NULL},
85         {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
86                 "Pattern", NULL},
87         {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
88                 "Trigger matches", NULL},
89         {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
90                 "External clock mode", NULL},
91         {SR_CONF_SWAP, SR_T_BOOL, "swap",
92                 "Swap channel order", NULL},
93         {SR_CONF_RLE, SR_T_BOOL, "rle",
94                 "Run Length Encoding", NULL},
95         {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
96                 "Trigger slope", NULL},
97         {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
98                 "Trigger source", NULL},
99         {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
100                 "Horizontal trigger position", NULL},
101         {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
102                 "Buffer size", NULL},
103         {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
104                 "Time base", NULL},
105         {SR_CONF_FILTER, SR_T_STRING, "filter",
106                 "Filter targets", NULL},
107         {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
108                 "Volts/div", NULL},
109         {SR_CONF_COUPLING, SR_T_STRING, "coupling",
110                 "Coupling", NULL},
111         {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
112                 "Datalog", NULL},
113         {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
114                 "Sound pressure level frequency weighting", NULL},
115         {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
116                 "Sound pressure level time weighting", NULL},
117         {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
118                 "Hold max", NULL},
119         {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
120                 "Hold min", NULL},
121         {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
122                 "Sound pressure level measurement range", NULL},
123         {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
124                 "Voltage threshold", NULL },
125         {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
126                 "Power off", NULL},
127         {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
128                 "Data source", NULL},
129         {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
130                 "Number of logic channels", NULL},
131         {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
132                 "Number of analog channels", NULL},
133         {SR_CONF_OUTPUT_VOLTAGE, SR_T_FLOAT, "output_voltage",
134                 "Current output voltage", NULL},
135         {SR_CONF_OUTPUT_VOLTAGE_TARGET, SR_T_FLOAT, "output_voltage_target",
136                 "Output voltage target", NULL},
137         {SR_CONF_OUTPUT_CURRENT, SR_T_FLOAT, "output_current",
138                 "Current output current", NULL},
139         {SR_CONF_OUTPUT_CURRENT_LIMIT, SR_T_FLOAT, "output_current_limit",
140                 "Output current limit", NULL},
141         {SR_CONF_OUTPUT_ENABLED, SR_T_BOOL, "output_enabled",
142                 "Output enabled", NULL},
143         {SR_CONF_OUTPUT_CHANNEL_CONFIG, SR_T_STRING, "output_channel_config",
144                 "Output channel modes", NULL},
145         {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
146                 "Over-voltage protection enabled", NULL},
147         {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
148                 "Over-voltage protection active", NULL},
149         {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
150                 "Over-voltage protection threshold", NULL},
151         {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
152                 "Over-current protection enabled", NULL},
153         {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
154                 "Over-current protection active", NULL},
155         {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
156                 "Over-current protection threshold", NULL},
157         {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
158                 "Clock edge", NULL},
159         {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
160                 "Amplitude", NULL},
161         {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
162                 "Over-temperature protection", NULL},
163         {SR_CONF_OUTPUT_REGULATION, SR_T_STRING, "output_regulation",
164                 "Output channel regulation", NULL},
165         {SR_CONF_OUTPUT_FREQUENCY, SR_T_UINT64, "output_frequency",
166                 "Output frequency", NULL},
167         {SR_CONF_MEASURED_QUANTITY, SR_T_STRING, "measured_quantity",
168                 "Measured quantity", NULL},
169         {SR_CONF_MEASURED_2ND_QUANTITY, SR_T_STRING, "measured_2nd_quantity",
170                 "Measured secondary quantity", NULL},
171         {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
172                 "Equivalent circuit model", NULL},
173         {0, 0, NULL, NULL, NULL},
174 };
175
176 SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
177 {
178         switch (datatype) {
179         case SR_T_INT32:
180                 return G_VARIANT_TYPE_INT32;
181         case SR_T_UINT64:
182                 return G_VARIANT_TYPE_UINT64;
183         case SR_T_STRING:
184                 return G_VARIANT_TYPE_STRING;
185         case SR_T_BOOL:
186                 return G_VARIANT_TYPE_BOOLEAN;
187         case SR_T_FLOAT:
188                 return G_VARIANT_TYPE_DOUBLE;
189         case SR_T_RATIONAL_PERIOD:
190         case SR_T_RATIONAL_VOLT:
191         case SR_T_UINT64_RANGE:
192         case SR_T_DOUBLE_RANGE:
193                 return G_VARIANT_TYPE_TUPLE;
194         case SR_T_KEYVALUE:
195                 return G_VARIANT_TYPE_DICTIONARY;
196         default:
197                 return NULL;
198         }
199 }
200
201 SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
202 {
203         const struct sr_config_info *info;
204         const GVariantType *type, *expected;
205         char *expected_string, *type_string;
206
207         info = sr_config_info_get(key);
208         if (!info)
209                 return SR_OK;
210
211         expected = sr_variant_type_get(info->datatype);
212         type = g_variant_get_type(value);
213         if (!g_variant_type_equal(type, expected)
214                         && !g_variant_type_is_subtype_of(type, expected)) {
215                 expected_string = g_variant_type_dup_string(expected);
216                 type_string = g_variant_type_dup_string(type);
217                 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
218                         info->name, expected_string, type_string);
219                 g_free(expected_string);
220                 g_free(type_string);
221                 return SR_ERR_ARG;
222         }
223
224         return SR_OK;
225 }
226
227 /**
228  * Return the list of supported hardware drivers.
229  *
230  * @return Pointer to the NULL-terminated list of hardware driver pointers.
231  *
232  * @since 0.1.0
233  */
234 SR_API struct sr_dev_driver **sr_driver_list(void)
235 {
236
237         return drivers_list;
238 }
239
240 /**
241  * Initialize a hardware driver.
242  *
243  * This usually involves memory allocations and variable initializations
244  * within the driver, but _not_ scanning for attached devices.
245  * The API call sr_driver_scan() is used for that.
246  *
247  * @param ctx A libsigrok context object allocated by a previous call to
248  *            sr_init(). Must not be NULL.
249  * @param driver The driver to initialize. This must be a pointer to one of
250  *               the entries returned by sr_driver_list(). Must not be NULL.
251  *
252  * @retval SR_OK Success
253  * @retval SR_ERR_ARG Invalid parameter(s).
254  * @retval SR_ERR_BUG Internal errors.
255  * @retval other Another negative error code upon other errors.
256  *
257  * @since 0.2.0
258  */
259 SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
260 {
261         int ret;
262
263         if (!ctx) {
264                 sr_err("Invalid libsigrok context, can't initialize.");
265                 return SR_ERR_ARG;
266         }
267
268         if (!driver) {
269                 sr_err("Invalid driver, can't initialize.");
270                 return SR_ERR_ARG;
271         }
272
273         sr_spew("Initializing driver '%s'.", driver->name);
274         if ((ret = driver->init(ctx)) < 0)
275                 sr_err("Failed to initialize the driver: %d.", ret);
276
277         return ret;
278 }
279
280 /**
281  * Tell a hardware driver to scan for devices.
282  *
283  * In addition to the detection, the devices that are found are also
284  * initialized automatically. On some devices, this involves a firmware upload,
285  * or other such measures.
286  *
287  * The order in which the system is scanned for devices is not specified. The
288  * caller should not assume or rely on any specific order.
289  *
290  * Before calling sr_driver_scan(), the user must have previously initialized
291  * the driver by calling sr_driver_init().
292  *
293  * @param driver The driver that should scan. This must be a pointer to one of
294  *               the entries returned by sr_driver_list(). Must not be NULL.
295  * @param options A list of 'struct sr_hwopt' options to pass to the driver's
296  *                scanner. Can be NULL/empty.
297  *
298  * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
299  *         found (or errors were encountered). This list must be freed by the
300  *         caller using g_slist_free(), but without freeing the data pointed
301  *         to in the list.
302  *
303  * @since 0.2.0
304  */
305 SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
306 {
307         GSList *l;
308         struct sr_config *src;
309
310         if (!driver) {
311                 sr_err("Invalid driver, can't scan for devices.");
312                 return NULL;
313         }
314
315         if (!driver->priv) {
316                 sr_err("Driver not initialized, can't scan for devices.");
317                 return NULL;
318         }
319
320         for (l = options; l; l = l->next) {
321                 src = l->data;
322                 if (sr_variant_type_check(src->key, src->data) != SR_OK)
323                         return NULL;
324         }
325
326         l = driver->scan(options);
327
328         sr_spew("Scan of '%s' found %d devices.", driver->name,
329                 g_slist_length(l));
330
331         return l;
332 }
333
334 /** Call driver cleanup function for all drivers.
335  *  @private */
336 SR_PRIV void sr_hw_cleanup_all(void)
337 {
338         int i;
339         struct sr_dev_driver **drivers;
340
341         drivers = sr_driver_list();
342         for (i = 0; drivers[i]; i++) {
343                 if (drivers[i]->cleanup)
344                         drivers[i]->cleanup();
345         }
346 }
347
348 /** Allocate struct sr_config.
349  *  A floating reference can be passed in for data.
350  *  @private
351  */
352 SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
353 {
354         struct sr_config *src;
355
356         if (!(src = g_try_malloc(sizeof(struct sr_config))))
357                 return NULL;
358         src->key = key;
359         src->data = g_variant_ref_sink(data);
360
361         return src;
362 }
363
364 /** Free struct sr_config.
365  *  @private
366  */
367 SR_PRIV void sr_config_free(struct sr_config *src)
368 {
369
370         if (!src || !src->data) {
371                 sr_err("%s: invalid data!", __func__);
372                 return;
373         }
374
375         g_variant_unref(src->data);
376         g_free(src);
377
378 }
379
380 /**
381  * Query value of a configuration key at the given driver or device instance.
382  *
383  * @param[in] driver The sr_dev_driver struct to query.
384  * @param[in] sdi (optional) If the key is specific to a device, this must
385  *            contain a pointer to the struct sr_dev_inst to be checked.
386  *            Otherwise it must be NULL.
387  * @param[in] cg The channel group on the device for which to list the
388  *                    values, or NULL.
389  * @param[in] key The configuration key (SR_CONF_*).
390  * @param[in,out] data Pointer to a GVariant where the value will be stored.
391  *             Must not be NULL. The caller is given ownership of the GVariant
392  *             and must thus decrease the refcount after use. However if
393  *             this function returns an error code, the field should be
394  *             considered unused, and should not be unreferenced.
395  *
396  * @retval SR_OK Success.
397  * @retval SR_ERR Error.
398  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
399  *          interpreted as an error by the caller; merely as an indication
400  *          that it's not applicable.
401  *
402  * @since 0.3.0
403  */
404 SR_API int sr_config_get(const struct sr_dev_driver *driver,
405                 const struct sr_dev_inst *sdi,
406                 const struct sr_channel_group *cg,
407                 uint32_t key, GVariant **data)
408 {
409         int ret;
410
411         if (!driver || !data)
412                 return SR_ERR;
413
414         if (!driver->config_get)
415                 return SR_ERR_ARG;
416
417         if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
418                 /* Got a floating reference from the driver. Sink it here,
419                  * caller will need to unref when done with it. */
420                 g_variant_ref_sink(*data);
421         }
422
423         return ret;
424 }
425
426 /**
427  * Set value of a configuration key in a device instance.
428  *
429  * @param[in] sdi The device instance.
430  * @param[in] cg The channel group on the device for which to list the
431  *                    values, or NULL.
432  * @param[in] key The configuration key (SR_CONF_*).
433  * @param data The new value for the key, as a GVariant with GVariantType
434  *        appropriate to that key. A floating reference can be passed
435  *        in; its refcount will be sunk and unreferenced after use.
436  *
437  * @retval SR_OK Success.
438  * @retval SR_ERR Error.
439  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
440  *          interpreted as an error by the caller; merely as an indication
441  *          that it's not applicable.
442  *
443  * @since 0.3.0
444  */
445 SR_API int sr_config_set(const struct sr_dev_inst *sdi,
446                 const struct sr_channel_group *cg,
447                 uint32_t key, GVariant *data)
448 {
449         int ret;
450
451         g_variant_ref_sink(data);
452
453         if (!sdi || !sdi->driver || !data)
454                 ret = SR_ERR;
455         else if (!sdi->driver->config_set)
456                 ret = SR_ERR_ARG;
457         else if ((ret = sr_variant_type_check(key, data)) == SR_OK)
458                 ret = sdi->driver->config_set(key, data, sdi, cg);
459
460         g_variant_unref(data);
461
462         return ret;
463 }
464
465 /**
466  * Apply configuration settings to the device hardware.
467  *
468  * @param sdi The device instance.
469  *
470  * @return SR_OK upon success or SR_ERR in case of error.
471  *
472  * @since 0.3.0
473  */
474 SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
475 {
476         int ret;
477
478         if (!sdi || !sdi->driver)
479                 ret = SR_ERR;
480         else if (!sdi->driver->config_commit)
481                 ret = SR_OK;
482         else
483                 ret = sdi->driver->config_commit(sdi);
484
485         return ret;
486 }
487
488 /**
489  * List all possible values for a configuration key.
490  *
491  * @param[in] driver The sr_dev_driver struct to query.
492  * @param[in] sdi (optional) If the key is specific to a device, this must
493  *            contain a pointer to the struct sr_dev_inst to be checked.
494  * @param[in] cg The channel group on the device for which to list the
495  *                    values, or NULL.
496  * @param[in] key The configuration key (SR_CONF_*).
497  * @param[in,out] data A pointer to a GVariant where the list will be stored.
498  *             The caller is given ownership of the GVariant and must thus
499  *             unref the GVariant after use. However if this function
500  *             returns an error code, the field should be considered
501  *             unused, and should not be unreferenced.
502  *
503  * @retval SR_OK Success.
504  * @retval SR_ERR Error.
505  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
506  *          interpreted as an error by the caller; merely as an indication
507  *          that it's not applicable.
508  *
509  * @since 0.3.0
510  */
511 SR_API int sr_config_list(const struct sr_dev_driver *driver,
512                 const struct sr_dev_inst *sdi,
513                 const struct sr_channel_group *cg,
514                 uint32_t key, GVariant **data)
515 {
516         int ret;
517
518         if (!driver || !data)
519                 ret = SR_ERR;
520         else if (!driver->config_list)
521                 ret = SR_ERR_ARG;
522         else if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK)
523                 g_variant_ref_sink(*data);
524
525         return ret;
526 }
527
528 /**
529  * Get information about a configuration key, by key.
530  *
531  * @param[in] key The configuration key.
532  *
533  * @return A pointer to a struct sr_config_info, or NULL if the key
534  *         was not found.
535  *
536  * @since 0.2.0
537  */
538 SR_API const struct sr_config_info *sr_config_info_get(uint32_t key)
539 {
540         int i;
541
542         for (i = 0; sr_config_info_data[i].key; i++) {
543                 if (sr_config_info_data[i].key == key)
544                         return &sr_config_info_data[i];
545         }
546
547         return NULL;
548 }
549
550 /**
551  * Get information about a configuration key, by name.
552  *
553  * @param[in] optname The configuration key.
554  *
555  * @return A pointer to a struct sr_config_info, or NULL if the key
556  *         was not found.
557  *
558  * @since 0.2.0
559  */
560 SR_API const struct sr_config_info *sr_config_info_name_get(const char *optname)
561 {
562         int i;
563
564         for (i = 0; sr_config_info_data[i].key; i++) {
565                 if (!strcmp(sr_config_info_data[i].id, optname))
566                         return &sr_config_info_data[i];
567         }
568
569         return NULL;
570 }
571
572 /** @} */