]> sigrok.org Git - libsigrok.git/blob - src/hwdriver.c
ab2210104fbe72ac6c82100253516fbcd266b65f
[libsigrok.git] / src / hwdriver.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <string.h>
26 #include <glib.h>
27 #include <libsigrok/libsigrok.h>
28 #include "libsigrok-internal.h"
29
30 /** @cond PRIVATE */
31 #define LOG_PREFIX "hwdriver"
32 /** @endcond */
33
34 /**
35  * @file
36  *
37  * Hardware driver handling in libsigrok.
38  */
39
40 /**
41  * @defgroup grp_driver Hardware drivers
42  *
43  * Hardware driver handling in libsigrok.
44  *
45  * @{
46  */
47
48 /* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49 static struct sr_key_info sr_key_info_config[] = {
50         /* Device classes */
51         {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52         {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53         {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54         {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55         {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56         {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57         {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58         {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59         {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60         {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61         {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62         {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63         {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64
65         /* Driver scan options */
66         {SR_CONF_CONN, SR_T_STRING, "conn",
67                 "Connection", NULL},
68         {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
69                 "Serial communication", NULL},
70         {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
71                 "Modbus slave address", NULL},
72
73         /* Device (or channel group) configuration */
74         {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
75                 "Sample rate", NULL},
76         {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
77                 "Pre-trigger capture ratio", NULL},
78         {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
79                 "Pattern", NULL},
80         {SR_CONF_RLE, SR_T_BOOL, "rle",
81                 "Run length encoding", NULL},
82         {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
83                 "Trigger slope", NULL},
84         {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
85                 "Averaging", NULL},
86         {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
87                 "Number of samples to average over", NULL},
88         {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
89                 "Trigger source", NULL},
90         {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
91                 "Horizontal trigger position", NULL},
92         {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
93                 "Buffer size", NULL},
94         {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
95                 "Time base", NULL},
96         {SR_CONF_FILTER, SR_T_BOOL, "filter",
97                 "Filter", NULL},
98         {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
99                 "Volts/div", NULL},
100         {SR_CONF_COUPLING, SR_T_STRING, "coupling",
101                 "Coupling", NULL},
102         {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
103                 "Trigger matches", NULL},
104         {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
105                 "Sample interval", NULL},
106         {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
107                 "Number of horizontal divisions", NULL},
108         {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
109                 "Number of vertical divisions", NULL},
110         {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
111                 "Sound pressure level frequency weighting", NULL},
112         {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
113                 "Sound pressure level time weighting", NULL},
114         {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
115                 "Sound pressure level measurement range", NULL},
116         {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
117                 "Hold max", NULL},
118         {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
119                 "Hold min", NULL},
120         {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
121                 "Voltage threshold", NULL },
122         {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
123                 "External clock mode", NULL},
124         {SR_CONF_SWAP, SR_T_BOOL, "swap",
125                 "Swap channel order", NULL},
126         {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
127                 "Center frequency", NULL},
128         {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
129                 "Number of logic channels", NULL},
130         {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
131                 "Number of analog channels", NULL},
132         {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
133                 "Current voltage", NULL},
134         {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
135                 "Voltage target", NULL},
136         {SR_CONF_CURRENT, SR_T_FLOAT, "current",
137                 "Current current", NULL},
138         {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
139                 "Current limit", NULL},
140         {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
141                 "Channel enabled", NULL},
142         {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
143                 "Channel modes", NULL},
144         {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
145                 "Over-voltage protection enabled", NULL},
146         {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
147                 "Over-voltage protection active", NULL},
148         {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
149                 "Over-voltage protection threshold", NULL},
150         {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
151                 "Over-current protection enabled", NULL},
152         {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
153                 "Over-current protection active", NULL},
154         {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
155                 "Over-current protection threshold", NULL},
156         {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
157                 "Clock edge", NULL},
158         {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
159                 "Amplitude", NULL},
160         {SR_CONF_REGULATION, SR_T_STRING, "regulation",
161                 "Channel regulation", NULL},
162         {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
163                 "Over-temperature protection", NULL},
164         {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
165                 "Output frequency", NULL},
166         {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
167                 "Output frequency target", NULL},
168         {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
169                 "Measured quantity", NULL},
170         {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
171                 "Equivalent circuit model", NULL},
172         {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
173                 "Over-temperature protection active", NULL},
174         {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
175                 "Under-voltage condition", NULL},
176         {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
177                 "Under-voltage condition active", NULL},
178         {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
179                 "Trigger level", NULL},
180
181         /* Special stuff */
182         {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
183                 "Session file", NULL},
184         {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
185                 "Capture file", NULL},
186         {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
187                 "Capture unitsize", NULL},
188         {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
189                 "Power off", NULL},
190         {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
191                 "Data source", NULL},
192         {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
193                 "Probe factor", NULL},
194         {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
195                 "Number of ADC powerline cycles", NULL},
196
197         /* Acquisition modes, sample limiting */
198         {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
199                 "Time limit", NULL},
200         {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
201                 "Sample limit", NULL},
202         {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
203                 "Frame limit", NULL},
204         {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
205                 "Continuous sampling", NULL},
206         {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
207                 "Datalog", NULL},
208         {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
209                 "Device mode", NULL},
210         {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
211                 "Test mode", NULL},
212
213         ALL_ZERO
214 };
215
216 /* Please use the same order as in enum sr_mq (libsigrok.h). */
217 static struct sr_key_info sr_key_info_mq[] = {
218         {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
219         {SR_MQ_CURRENT, 0, "current", "Current", NULL},
220         {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
221         {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
222         {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
223         {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
224         {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
225         {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
226         {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
227         {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
228         {SR_MQ_POWER, 0, "power", "Power", NULL},
229         {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
230         {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
231         {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
232         {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
233         {SR_MQ_TIME, 0, "time", "Time", NULL},
234         {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
235         {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
236         {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
237         {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
238         {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
239         {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
240         {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
241         {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
242         {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
243         {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
244         {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
245         {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
246         {SR_MQ_COUNT, 0, "count", "Count", NULL},
247         {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
248         {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
249         {SR_MQ_MASS, 0, "mass", "Mass", NULL},
250         ALL_ZERO
251 };
252
253 /* Please use the same order as in enum sr_mqflag (libsigrok.h). */
254 static struct sr_key_info sr_key_info_mqflag[] = {
255         {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
256         {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
257         {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
258         {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
259         {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
260         {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
261         {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
262         {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
263         {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
264         {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
265                 "Frequency weighted (A)", NULL},
266         {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
267                 "Frequency weighted (C)", NULL},
268         {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
269                 "Frequency weighted (Z)", NULL},
270         {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
271                 "Frequency weighted (flat)", NULL},
272         {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
273                 "Time weighted (S)", NULL},
274         {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
275                 "Time weighted (F)", NULL},
276         {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
277         {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
278                 "Percentage over alarm", NULL},
279         {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
280         {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
281         {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
282         {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
283         {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
284         ALL_ZERO
285 };
286
287 /* This must handle all the keys from enum sr_datatype (libsigrok.h). */
288 SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
289 {
290         switch (datatype) {
291         case SR_T_INT32:
292                 return G_VARIANT_TYPE_INT32;
293         case SR_T_UINT64:
294                 return G_VARIANT_TYPE_UINT64;
295         case SR_T_STRING:
296                 return G_VARIANT_TYPE_STRING;
297         case SR_T_BOOL:
298                 return G_VARIANT_TYPE_BOOLEAN;
299         case SR_T_FLOAT:
300                 return G_VARIANT_TYPE_DOUBLE;
301         case SR_T_RATIONAL_PERIOD:
302         case SR_T_RATIONAL_VOLT:
303         case SR_T_UINT64_RANGE:
304         case SR_T_DOUBLE_RANGE:
305                 return G_VARIANT_TYPE_TUPLE;
306         case SR_T_KEYVALUE:
307                 return G_VARIANT_TYPE_DICTIONARY;
308         case SR_T_MQ:
309                 return G_VARIANT_TYPE_TUPLE;
310         default:
311                 return NULL;
312         }
313 }
314
315 SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
316 {
317         const struct sr_key_info *info;
318         const GVariantType *type, *expected;
319         char *expected_string, *type_string;
320
321         info = sr_key_info_get(SR_KEY_CONFIG, key);
322         if (!info)
323                 return SR_OK;
324
325         expected = sr_variant_type_get(info->datatype);
326         type = g_variant_get_type(value);
327         if (!g_variant_type_equal(type, expected)
328                         && !g_variant_type_is_subtype_of(type, expected)) {
329                 expected_string = g_variant_type_dup_string(expected);
330                 type_string = g_variant_type_dup_string(type);
331                 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
332                         info->name, expected_string, type_string);
333                 g_free(expected_string);
334                 g_free(type_string);
335                 return SR_ERR_ARG;
336         }
337
338         return SR_OK;
339 }
340
341 /**
342  * Return the list of supported hardware drivers.
343  *
344  * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
345  *
346  * @retval NULL The ctx argument was NULL, or there are no supported drivers.
347  * @retval Other Pointer to the NULL-terminated list of hardware drivers.
348  *               The user should NOT g_free() this list, sr_exit() will do that.
349  *
350  * @since 0.4.0
351  */
352 SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
353 {
354         if (!ctx)
355                 return NULL;
356
357         return ctx->driver_list;
358 }
359
360 /**
361  * Initialize a hardware driver.
362  *
363  * This usually involves memory allocations and variable initializations
364  * within the driver, but _not_ scanning for attached devices.
365  * The API call sr_driver_scan() is used for that.
366  *
367  * @param ctx A libsigrok context object allocated by a previous call to
368  *            sr_init(). Must not be NULL.
369  * @param driver The driver to initialize. This must be a pointer to one of
370  *               the entries returned by sr_driver_list(). Must not be NULL.
371  *
372  * @retval SR_OK Success
373  * @retval SR_ERR_ARG Invalid parameter(s).
374  * @retval SR_ERR_BUG Internal errors.
375  * @retval other Another negative error code upon other errors.
376  *
377  * @since 0.2.0
378  */
379 SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
380 {
381         int ret;
382
383         if (!ctx) {
384                 sr_err("Invalid libsigrok context, can't initialize.");
385                 return SR_ERR_ARG;
386         }
387
388         if (!driver) {
389                 sr_err("Invalid driver, can't initialize.");
390                 return SR_ERR_ARG;
391         }
392
393         sr_spew("Initializing driver '%s'.", driver->name);
394         if ((ret = driver->init(driver, ctx)) < 0)
395                 sr_err("Failed to initialize the driver: %d.", ret);
396
397         return ret;
398 }
399
400 /**
401  * Enumerate scan options supported by this driver.
402  *
403  * Before calling sr_driver_scan_options_list(), the user must have previously
404  * initialized the driver by calling sr_driver_init().
405  *
406  * @param driver The driver to enumerate options for. This must be a pointer
407  *               to one of the entries returned by sr_driver_list(). Must not
408  *               be NULL.
409  *
410  * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
411  *         entry is a configuration key that is supported as a scan option.
412  *         The array must be freed by the caller using g_array_free().
413  *
414  * @since 0.4.0
415  */
416 SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
417 {
418         GVariant *gvar;
419         const uint32_t *opts;
420         gsize num_opts;
421         GArray *result;
422
423         if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
424                 return NULL;
425
426         opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
427
428         result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
429
430         g_array_insert_vals(result, 0, opts, num_opts);
431
432         g_variant_unref(gvar);
433
434         return result;
435 }
436
437 static int check_options(struct sr_dev_driver *driver, GSList *options,
438                 uint32_t optlist_key, struct sr_dev_inst *sdi,
439                 struct sr_channel_group *cg)
440 {
441         struct sr_config *src;
442         const struct sr_key_info *srci;
443         GVariant *gvar_opts;
444         GSList *l;
445         const uint32_t *opts;
446         gsize num_opts, i;
447         int ret;
448
449         if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
450                 /* Driver publishes no options for this optlist. */
451                 return SR_ERR;
452         }
453
454         ret = SR_OK;
455         opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
456         for (l = options; l; l = l->next) {
457                 src = l->data;
458                 for (i = 0; i < num_opts; i++) {
459                         if (opts[i] == src->key)
460                                 break;
461                 }
462                 if (i == num_opts) {
463                         if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
464                                 /* Shouldn't happen. */
465                                 sr_err("Invalid option %d.", src->key);
466                         else
467                                 sr_err("Invalid option '%s'.", srci->id);
468                         ret = SR_ERR_ARG;
469                         break;
470                 }
471                 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
472                         ret = SR_ERR_ARG;
473                         break;
474                 }
475         }
476         g_variant_unref(gvar_opts);
477
478         return ret;
479 }
480
481 /**
482  * Tell a hardware driver to scan for devices.
483  *
484  * In addition to the detection, the devices that are found are also
485  * initialized automatically. On some devices, this involves a firmware upload,
486  * or other such measures.
487  *
488  * The order in which the system is scanned for devices is not specified. The
489  * caller should not assume or rely on any specific order.
490  *
491  * Before calling sr_driver_scan(), the user must have previously initialized
492  * the driver by calling sr_driver_init().
493  *
494  * @param driver The driver that should scan. This must be a pointer to one of
495  *               the entries returned by sr_driver_list(). Must not be NULL.
496  * @param options A list of 'struct sr_hwopt' options to pass to the driver's
497  *                scanner. Can be NULL/empty.
498  *
499  * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
500  *         found (or errors were encountered). This list must be freed by the
501  *         caller using g_slist_free(), but without freeing the data pointed
502  *         to in the list.
503  *
504  * @since 0.2.0
505  */
506 SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
507 {
508         GSList *l;
509
510         if (!driver) {
511                 sr_err("Invalid driver, can't scan for devices.");
512                 return NULL;
513         }
514
515         if (!driver->context) {
516                 sr_err("Driver not initialized, can't scan for devices.");
517                 return NULL;
518         }
519
520         if (options) {
521                 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
522                         return NULL;
523         }
524
525         l = driver->scan(driver, options);
526
527         sr_spew("Scan of '%s' found %d devices.", driver->name,
528                 g_slist_length(l));
529
530         return l;
531 }
532
533 /**
534  * Call driver cleanup function for all drivers.
535  *
536  * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
537  *
538  * @private
539  */
540 SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
541 {
542         int i;
543         struct sr_dev_driver **drivers;
544
545         if (!ctx)
546                 return;
547
548         drivers = sr_driver_list(ctx);
549         for (i = 0; drivers[i]; i++) {
550                 if (drivers[i]->cleanup)
551                         drivers[i]->cleanup(drivers[i]);
552                 drivers[i]->context = NULL;
553         }
554 }
555
556 /**
557  * Allocate struct sr_config.
558  *
559  * A floating reference can be passed in for data.
560  *
561  * @private
562  */
563 SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
564 {
565         struct sr_config *src;
566
567         src = g_malloc0(sizeof(struct sr_config));
568         src->key = key;
569         src->data = g_variant_ref_sink(data);
570
571         return src;
572 }
573
574 /**
575  * Free struct sr_config.
576  *
577  * @private
578  */
579 SR_PRIV void sr_config_free(struct sr_config *src)
580 {
581
582         if (!src || !src->data) {
583                 sr_err("%s: invalid data!", __func__);
584                 return;
585         }
586
587         g_variant_unref(src->data);
588         g_free(src);
589
590 }
591
592 static void log_key(const struct sr_dev_inst *sdi,
593         const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
594 {
595         const char *opstr;
596         const struct sr_key_info *srci;
597         gchar *tmp_str;
598
599         /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
600         if (key == SR_CONF_DEVICE_OPTIONS)
601                 return;
602
603         opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
604         srci = sr_key_info_get(SR_KEY_CONFIG, key);
605
606         tmp_str = g_variant_print(data, TRUE);
607         sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
608                 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
609                 data ? tmp_str : "NULL");
610         g_free(tmp_str);
611 }
612
613 static int check_key(const struct sr_dev_driver *driver,
614                 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
615                 uint32_t key, int op, GVariant *data)
616 {
617         const struct sr_key_info *srci;
618         gsize num_opts, i;
619         GVariant *gvar_opts;
620         const uint32_t *opts;
621         uint32_t pub_opt;
622         const char *suffix;
623         const char *opstr;
624
625         if (sdi && cg)
626                 suffix = " for this device and channel group";
627         else if (sdi)
628                 suffix = " for this device";
629         else
630                 suffix = "";
631
632         if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
633                 sr_err("Invalid key %d.", key);
634                 return SR_ERR_ARG;
635         }
636         opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
637
638         switch (key) {
639         case SR_CONF_LIMIT_MSEC:
640         case SR_CONF_LIMIT_SAMPLES:
641         case SR_CONF_SAMPLERATE:
642                 /* Setting any of these to 0 is not useful. */
643                 if (op != SR_CONF_SET || !data)
644                         break;
645                 if (g_variant_get_uint64(data) == 0) {
646                         sr_err("Cannot set '%s' to 0.", srci->id);
647                         return SR_ERR_ARG;
648                 }
649                 break;
650         }
651
652         if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
653                 /* Driver publishes no options. */
654                 sr_err("No options available%s.", suffix);
655                 return SR_ERR_ARG;
656         }
657         opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
658         pub_opt = 0;
659         for (i = 0; i < num_opts; i++) {
660                 if ((opts[i] & SR_CONF_MASK) == key) {
661                         pub_opt = opts[i];
662                         break;
663                 }
664         }
665         g_variant_unref(gvar_opts);
666         if (!pub_opt) {
667                 sr_err("Option '%s' not available%s.", srci->id, suffix);
668                 return SR_ERR_ARG;
669         }
670
671         if (!(pub_opt & op)) {
672                 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
673                 return SR_ERR_ARG;
674         }
675
676         return SR_OK;
677 }
678
679 /**
680  * Query value of a configuration key at the given driver or device instance.
681  *
682  * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
683  * @param[in] sdi (optional) If the key is specific to a device, this must
684  *            contain a pointer to the struct sr_dev_inst to be checked.
685  *            Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
686  *            also be != NULL.
687  * @param[in] cg The channel group on the device for which to list the
688  *               values, or NULL.
689  * @param[in] key The configuration key (SR_CONF_*).
690  * @param[in,out] data Pointer to a GVariant where the value will be stored.
691  *             Must not be NULL. The caller is given ownership of the GVariant
692  *             and must thus decrease the refcount after use. However if
693  *             this function returns an error code, the field should be
694  *             considered unused, and should not be unreferenced.
695  *
696  * @retval SR_OK Success.
697  * @retval SR_ERR Error.
698  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
699  *         interpreted as an error by the caller; merely as an indication
700  *         that it's not applicable.
701  *
702  * @since 0.3.0
703  */
704 SR_API int sr_config_get(const struct sr_dev_driver *driver,
705                 const struct sr_dev_inst *sdi,
706                 const struct sr_channel_group *cg,
707                 uint32_t key, GVariant **data)
708 {
709         int ret;
710
711         if (!driver || !data)
712                 return SR_ERR;
713
714         if (!driver->config_get)
715                 return SR_ERR_ARG;
716
717         if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
718                 return SR_ERR_ARG;
719
720         if (sdi && !sdi->priv) {
721                 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
722                 return SR_ERR;
723         }
724
725         if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
726                 log_key(sdi, cg, key, SR_CONF_GET, *data);
727                 /* Got a floating reference from the driver. Sink it here,
728                  * caller will need to unref when done with it. */
729                 g_variant_ref_sink(*data);
730         }
731
732         return ret;
733 }
734
735 /**
736  * Set value of a configuration key in a device instance.
737  *
738  * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
739  *                sdi->priv must not be NULL either.
740  * @param[in] cg The channel group on the device for which to list the
741  *                    values, or NULL.
742  * @param[in] key The configuration key (SR_CONF_*).
743  * @param data The new value for the key, as a GVariant with GVariantType
744  *        appropriate to that key. A floating reference can be passed
745  *        in; its refcount will be sunk and unreferenced after use.
746  *
747  * @retval SR_OK Success.
748  * @retval SR_ERR Error.
749  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
750  *         interpreted as an error by the caller; merely as an indication
751  *         that it's not applicable.
752  *
753  * @since 0.3.0
754  */
755 SR_API int sr_config_set(const struct sr_dev_inst *sdi,
756                 const struct sr_channel_group *cg,
757                 uint32_t key, GVariant *data)
758 {
759         int ret;
760
761         g_variant_ref_sink(data);
762
763         if (!sdi || !sdi->driver || !sdi->priv || !data)
764                 ret = SR_ERR;
765         else if (!sdi->driver->config_set)
766                 ret = SR_ERR_ARG;
767         else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
768                 return SR_ERR_ARG;
769         else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
770                 log_key(sdi, cg, key, SR_CONF_SET, data);
771                 ret = sdi->driver->config_set(key, data, sdi, cg);
772         }
773
774         g_variant_unref(data);
775
776         return ret;
777 }
778
779 /**
780  * Apply configuration settings to the device hardware.
781  *
782  * @param sdi The device instance.
783  *
784  * @return SR_OK upon success or SR_ERR in case of error.
785  *
786  * @since 0.3.0
787  */
788 SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
789 {
790         int ret;
791
792         if (!sdi || !sdi->driver)
793                 ret = SR_ERR;
794         else if (!sdi->driver->config_commit)
795                 ret = SR_OK;
796         else
797                 ret = sdi->driver->config_commit(sdi);
798
799         return ret;
800 }
801
802 /**
803  * List all possible values for a configuration key.
804  *
805  * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
806  * @param[in] sdi (optional) If the key is specific to a device, this must
807  *            contain a pointer to the struct sr_dev_inst to be checked.
808  *            Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
809  *            also be != NULL.
810  * @param[in] cg The channel group on the device for which to list the
811  *                    values, or NULL.
812  * @param[in] key The configuration key (SR_CONF_*).
813  * @param[in,out] data A pointer to a GVariant where the list will be stored.
814  *             The caller is given ownership of the GVariant and must thus
815  *             unref the GVariant after use. However if this function
816  *             returns an error code, the field should be considered
817  *             unused, and should not be unreferenced.
818  *
819  * @retval SR_OK Success.
820  * @retval SR_ERR Error.
821  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
822  *         interpreted as an error by the caller; merely as an indication
823  *         that it's not applicable.
824  *
825  * @since 0.3.0
826  */
827 SR_API int sr_config_list(const struct sr_dev_driver *driver,
828                 const struct sr_dev_inst *sdi,
829                 const struct sr_channel_group *cg,
830                 uint32_t key, GVariant **data)
831 {
832         int ret;
833
834         if (!driver || !data)
835                 return SR_ERR;
836         else if (!driver->config_list)
837                 return SR_ERR_ARG;
838         else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
839                 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
840                         return SR_ERR_ARG;
841         }
842         if (sdi && !sdi->priv) {
843                 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
844                 return SR_ERR;
845         }
846         if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
847                 log_key(sdi, cg, key, SR_CONF_LIST, *data);
848                 g_variant_ref_sink(*data);
849         }
850
851         return ret;
852 }
853
854 static struct sr_key_info *get_keytable(int keytype)
855 {
856         struct sr_key_info *table;
857
858         switch (keytype) {
859         case SR_KEY_CONFIG:
860                 table = sr_key_info_config;
861                 break;
862         case SR_KEY_MQ:
863                 table = sr_key_info_mq;
864                 break;
865         case SR_KEY_MQFLAGS:
866                 table = sr_key_info_mqflag;
867                 break;
868         default:
869                 sr_err("Invalid keytype %d", keytype);
870                 return NULL;
871         }
872
873         return table;
874 }
875
876 /**
877  * Get information about a key, by key.
878  *
879  * @param[in] keytype The namespace the key is in.
880  * @param[in] key The key to find.
881  *
882  * @return A pointer to a struct sr_key_info, or NULL if the key
883  *         was not found.
884  *
885  * @since 0.3.0
886  */
887 SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
888 {
889         struct sr_key_info *table;
890         int i;
891
892         if (!(table = get_keytable(keytype)))
893                 return NULL;
894
895         for (i = 0; table[i].key; i++) {
896                 if (table[i].key == key)
897                         return &table[i];
898         }
899
900         return NULL;
901 }
902
903 /**
904  * Get information about a key, by name.
905  *
906  * @param[in] keytype The namespace the key is in.
907  * @param[in] keyid The key id string.
908  *
909  * @return A pointer to a struct sr_key_info, or NULL if the key
910  *         was not found.
911  *
912  * @since 0.2.0
913  */
914 SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
915 {
916         struct sr_key_info *table;
917         int i;
918
919         if (!(table = get_keytable(keytype)))
920                 return NULL;
921
922         for (i = 0; table[i].key; i++) {
923                 if (!table[i].id)
924                         continue;
925                 if (!strcmp(table[i].id, keyid))
926                         return &table[i];
927         }
928
929         return NULL;
930 }
931
932 /** @} */